Comparison of quantitative gonad maturation scales in a temperate oyster (*Crassostrea gigas*) and a sub-tropical oyster (*Crassostrea corteziensis*)

Rodriguez-Jaramillo C. ^{1, 3}, Ibarra A. M. ¹, Soudant Philippe ², Palacios E. ^{1, 2, *}

¹ Ctr Invest Biol Noroeste CIBNOR, La Paz, Mexico.
 ² Univ Bretagne Occidentale, Inst Univ Europeen Mer, LEMAR Lab Sci Environm Marin, UMR,CNRS,UMR 6539, Technopole Brest Iroise,PI Nicolas Copernic, Plouzane, France.
 ³ Univ Autonoma Baja California Sur, Ciencias Marinas & Costeras CIMACO, La Paz, Mexico.

* Corresponding author : E. Palacios, email address : epalacio@cibnor.mx

Abstract :

Quantitative scales to evaluate maturity of female gonads were compared for a temperate oyster, Crassostrea gigas and a tropical oyster, Crassostrea corteziensis grown in the same locality. C. gigas had well-defined maturation and spawning periods and a resting phase in winter; in C. corteziensis mature individuals occurred most of the year and there were several spawning peaks. Of the quantitative scales used here, average oocyte diameter and gonad coverage area, much used for C. gigas, and ovary maturity index, less used, were inadequate to distinguish the reproductive pattern of C. corteziensis, since they both skewed the degree of maturation in vitellogenic stages in favor of C. gigas. Maximum oocyte diameter and maximum cytoplasm area were different among species at vitellogenic stages and also in previtellogenic stages. Nucleus: cytoplasm ratio was significantly different in previtellogenic and spawned stages between C. gigas and C. corteziensis. The Index of gonadal development was skewed in favor of C. gigas in postvitellogenic stage. The only scale that was comparable between species was reproductive potential, but it also was one of the most laborious. Other ordinal scales commonly used, such as a visual external evaluation of the gonad, only classified correctly a quarter of the stages.

Keywords : Female, histology, mollusk, oyster, reproduction, vitellogenesis

Introduction

49	A continuous scale of maturation is more accurate to describe reproductive
50	potential in mollusks, since it can be correlated to biochemical or physiological
51	variables or used as a co-variable for analyses. Several quantitative scales that are based
52	on continuous data have been proposed; for example, a comparison of gonadal to
53	visceral mass area or gonad coverage area in C. gigas (Mori 1979; Enriquez-Diaz 2004;
54	Fabioux et al. 2005) and C. viriginica (Heferman & Walker 1989; Barber et al. 1991),
55	and in C. gigas males (Lannan 1980). A variation of this is the follicle cross-sectional
56	area relative to total cross-sectional area (Allen & Downing 1986) and the ratio of the
57	weight of the photographic print area occupied by ova to the photographic print weight
58	of the gonad in C. gigas (Muranaka & Lannan 1984). The number of mature oocytes in
59	relation to total oocytes was used to determine stage of gonadal development in C. gigas
60	(Lannan 1980). Oocyte diameter has been proposed to evaluate the degree of maturation
61	in oysters (Lango-Reynoso et al. 2000; Ren et al. 2003; Chavez-Villalba et al. 2002; Li
62	et al. 2006) proposed using average oocyte diameter as a tool for assigning maturation
63	stages in C. gigas.
64	However, for tropical oysters there are scarce studies that report quantitative
65	data on maturation. Among the existing scales, the gonadosomatic index (GSI),
66	calculated as gonad weight in relation to body weight has been reported for C.
67	corteziensis (Frias-Espericueta et al. 1997, 1999) and C. iridescens (Páez-Osuna et al.
68	1993; Frias-Espericueta et al. 1997). However, Frias-Espericueta et al. (1997) concluded
69	that measuring GSI in oysters was inaccurate because the gonad cells develop spread
70	within the mantle. The area occupied by gonad relative to somatic tissue, termed gonad
71	coverage area (GCA) has been reported for C. corteziensis (Rodríguez-Jaramillo et al.
72	2008). The oocyte diameter, widely used for C. gigas, has also been tested in C.
73	rhizophorae (Ferreira et al. 2006) and C. corteziensis (Rodríguez-Jaramillo et al. 2008).

Page 4 of 31

74	4 The shortage of quantitative maturation data in tropical oysters is further
75	complicated when the objective is to compare reproductive potential between species.
76	For example, the oocyte diameter in same stage oocytes is bigger in C. gigas compared
77	to C. corteziensis, which can skew data to a false advance stage of maturation in the
78	former. In accordance, Ferreira et al. (2006) also concluded that differences in oocytes
79	do not allow for direct use of scales developed for C. gigas, to C. rhizophorae, a
80	tropical oyster. Relative scales, as GSI, have been applied to compare maturation in
81	different species of fish (David-Gómez & Gerson-Araujo 2004; Brewer et al. 2007). A
82	maturity index (MI), calculated by the number of individuals at each maturity stage, has
83	been applied to compare different species of echinoderms (Egea et al. 2011). The
84	reproductive output index (ROI=% area of propagules/total area of tissue scanned) has
85	been applied to compare different species of sponges (Whalan et al. 2007; Leong &
86	Pawlik 2011). The objective of this study was to compare quantitative methods used for
87	assigning continuous scales of maturation in C. gigas, and analyzing if the same scale
88	can be use to reflect variations in the reproductive pattern of C. corteziensis, in an effort
89	to make comparable maturation grade in both species.
90	
91	Materials and methods
92	Site, origin and sampling
93	Oysters were sampled from Bahía Ceuta, on the coast of the state of Sinaloa in
94	the Northwest of Mexico. C. corteziensis were sampled in 2005-2006, as described in
95	Rodríguez-Jaramillo et al. (2008), while C. gigas were sampled in 2007, as described in
96	Galindo-Sanchez et al. (2008). Upon arrival, the specimens were inspected and
97	measured (total weight, length, width, and wet tissue weight). The oyster meat was
98	removed from the shell and a 2-mm cross-section was processed and the maturation
99	stage frequency was analyzed as described in Rodríguez-Jaramillo et al. (2008).

of 31		Invertebrate Reproduction and Development		
	101	5 <i>Visual test for maturity</i>		
	102	The visual maturity was done based on the method described by Costil et al. (2005)		
	103	and modified here by assigning a number to the perceived stage of maturation of the		
	104	gonad after opening the oyster:		
	105	1. Immature: Thin oysters		
	106	2. Early maturation or post-spawning: partially thin oysters		
	107	3. Late maturation: fleshy individuals		
	108	4. Mature or ready to spawn. Individuals that seem "veined"		
	109	n martine of fearly to oparmin martineaus shar seem "remou		
	110	Quantitative histology		
	111	<i>Oocyte frequency</i> : Frequency was calculated by counting each type of oocyte in three		
	112	regions of the ovary of each female that appeared within an area of 1.44 mm ² at 20×. A		
	112	total of 8457 oocytes were analyzed for <i>C. gigas</i> , and 9870 for <i>C. corteziensis</i> .		
		total of 8437 obcytes were analyzed for C. gigus, and 9870 for C. correstensis.		
	114			
	115	Oocyte area and diameter: The diameter and area of oocytes were determined with		
	116	digitalized images at 40×and 100× for ovogonias (Image Pro Plus software v. 7.0 Media		
	117 Cybernetics, Silver Spring, MD, USA). Approximately 40–50 oocytes in three			
	118	randomly selected regions of a slide were observed if the nucleus was visible. Since		
	119	oocytes deviate markedly from a sphere, the theoretical diameter (TD) was calculated		
	120	from the total area (A) of each oocyte using the following formula: TD= $\sqrt{4A/\pi}$ (Saout		
	121	et al. 1999).		
	122			
	123	Reproductive scale: The average diameter of oocytes was calculated for each female,		
	124	and females were classified according to the scale proposed by Lango-Reynoso et al.		
	125	(2000) for C. gigas based on oocyte diameter:		
	126	Early gametogenesis =3.0-12.0 μ m		
	127	Growing = 12.1-30.0 μm		
		URL: http://mc.manuscriptcentral.com/tinv		

	6
128	Mature =30.1-41.0 μm
129	Degenerating =41.1-60.0 μ m
130	
131	Gonad coverage area: The area occupied by the gonad was determined using an image
132	system analyzer (Image Pro Plus v.7.0) at $4 \times (7.9 \text{ mm}^2)$ from a mean of three different
133	slices from each specimen. The image analysis was based on the intensity of the tissue-
134	specific color and the female gonad and visceral area were automatically calculated in
135	pixels and expressed in μ m ² . The area reported as the gonadal coverage area (GCA) was
136	calculated as: GCA= (gonad occupation area/total area) ×100.
137	
138	Ovary Maturity Index: The ovary maturity index was calculated as the total area
139	occupied by each oocyte in each gonad, using the following formula: GCA x Oocyte
140	area x total number of oocytes, modified from Arcos et al. (2005) to analyze maturation
141	in shrimp.
142	
143	Index of Gonadal Development: The index of gonadal development was calculated as
144	the ratio of postvitellogenic oocytes in relation to the total number of oocytes present in
145	the gonad, as described by Lannan (1980).
146	
147	Nucleus: cytoplasm ratio: The area of the nucleus was determined for each oocyte
148	similarly to the area for oocytes using digitalized images at $40 \times$ and $100 \times$ for ovogonia.
149	The ratio was calculated as nucleus: cytoplasm ratio= nucleus total area/cytoplasm total
150	area without nucleus.
151	
152	Reproductive potential: Determined based on fecundity as described by Heffernan and
153	Walker (1989), modified here to include oocytes in all stages of maturation, was
154	calculated using the following equation: $(4/3\pi)$ r ³ N, where r = radius of the oocyte and

	7
155	N = total number of oocytes, but only the oocytes present in 1.44 mm ² at 20× were
156	counted.
157	
158	Statistical analysis
159	The stages of visual maturation were compared to the stages of reproduction by
160	a <i>X</i> ² .
161	Oocyte measurements of each female were analyzed with a nested ANOVA (40-
162	50 oocytes per female when possible, 10 oysters per month). Morphometric analyses,
163	GCA, and oocyte frequencies per oyster were analyzed by one-way ANOVA, followed
164	by Newman-Keuls post hoc analysis to assess the significant differences ($P < 0.05$)
165	between months (14 levels) or maturation stages (4 levels).
166	All statistical analyses were made using Statistica TM v. 6.0. Percentage results
167	were transformed to arcsine before ANOVA but only untransformed means are
168	presented. All data are reported as mean \pm standard error, except where indicated.
169	
170	Results
171	Maturation stage frequency
172	Females of C. corteziensis were found in several stages of maturation during
173	most of the year, postvitellogenic females were found from March to November, and
174	spawned females were observed from May to December. From December to February, a
175	large proportion of immature females were present (Fig. 1A).
176	In contrast, spawning occurred in late summer and during autumn in females of
177	C. gigas, and no matured females were found before May (Fig. 1B).
178	
179	Average oocyte diameter
180	The average oocyte diameter of both species is shown in Fig. 2. The oocytes of
181	C. gigas were approx. 25µm in January and grew till reaching their biggest size in April

Page 8 of 31

2
3
4
5
6
7
8
0
3
10
11
12
9 10 11 12 13 14 15
14
15
16 17 18
17
18
19
20
21
20 21 22 23 24 25 26 27 28 29 30
22
23
24
25
26
27
28
29
30
31
32
22
24
32 33 34
35 36 37 38 39
36
37
38
39
40
41
42
43
44
44 45
40 46
46
47
48
49
50
51
52
53
54
55
56
50 57
58
59
60

1

182 (more than 40µm), then decreased in size in May and further still in June, and 183 increased again in July and August, after which they reached their smaller size in

184 October.

185 No significant differences were found for oocyte diameter of *C. corteziensis*.186

187 Gonad coverage area

188 The GCA of *C. gigas* was lowest in January and from there, increased till

189 reaching highest values in April and May. It decreased from June till reaching values

190 similar to January in August, where it remained stable till October.

191 In *C. corteziensis* the GCA increased from January and February when values

192 were lowest, till reaching highest values in April. In May and June it decreased to

193 intermediate values and then increased in August to values similar to April. In

194 September it decreased again to values similar to May, and then decreased to values

similar to January from October to December (Fig. 3).

196

197 *Reproductive potential*

198The reproductive potential for *C. gigas* increased from January to February and199still more to its highest values in March, and then decreased in April and even more in200May. It increased again in June and decreased to similar levels of January in July, and201then decreased to lowest values in August and October (Fig. 4).

202 The same index calculated for *C. corteziensis* showed lowest levels in January,

203 then increased from February till reaching the highest peak in April, decreasing in May

and June, and reaching a second peak in August till October, and then decreased in

205 November to reach values similar to January in December.

206

207 Ovary maturity index

Invertebrate Reproduction and Development

208	The ovary maturity index calculated for C. gigas increased from January and
209	February to intermediate values in March, and then to highest levels in April, then
210	gradually decreasing from May till reaching in August and October similar values to
211	January (Fig. 5).
212	The same index calculated for C. corteziensis showed lowest levels in January,
213	then increased from February till reaching a peak in April, decreasing in May and June,
214	and reaching a second peak in August; decreasing in September till reaching, from
215	October on, similar values to February and January.
216	
217	Index of gonadal development
218	The Index of gonadal development of C. gigas showed significant differences
219	during the year, increasing to maximum values in April, and lowest values in January.
220	The same index calculated for <i>C. corteziensis</i> showed significant differences,
221	with higher values in April. The rest of the year presented similar high values form a
222	homogeneous group, falling down to the lowest values in November, and recovering in
223	December (Fig. 6).
224	
225	Oocyte and cytoplasm size
226	Quantitative measurements by stage of maturation are presented in Table 1.
227	There were significant difference in average oocyte diameter between <i>C. gigas</i> and <i>C.</i>
228	corteziensis. In C. gigas, largest oocytes were found in vitellogenic females, with
229	significantly smaller oocytes in the other three stages of maturation. In C. corteziensis,
230	spawned and vitellogenic females had the largest oocytes, followed by postvitellogenic
231	females, with the smaller oocytes in previtellogenic stage. The average oocyte diameter
232	of vitellogenic <i>C. gigas</i> was significantly larger than the average oocyte diameter in <i>C</i> .
233	corteziensis.

1 2	
3 4 5	
6 7 8	
9 10	
11 12 13	
14 15 16	
17 18 19	
-2 3 4 5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 01 22 32 42 52 62 72 82 93 31 32 33 43 53 63 73 82 64 74 75 75 75 75 75 75 75 75 75 75 75 75 75	
23 24 25	
26 27 28	
20 29 30	
31 32 33	
34 35 36	
39	
40 41 42	
43 44 45	
46 47 48	
49 50	
51 52 53 54	
55 56 57	
58 59 60	

234	10 Maximum oocyte diameter followed a similar trend, but significant
235	differences were found between previtellogenic and spawned stages in <i>C. gigas</i> , and
235	between vitellogenic and previtellogenic stages in <i>C. corteziensis</i> . There were
237	significant differences between species in the previtellogenic and vitellogenic stage.
238	Maximum cytoplasm area was biggest in vitellogenic stage of C. gigas, which
239	was significantly different from postvitellogenic stage and spawned stage. In C.
240	corteziensis, the vitellogenic stage was significantly different from previtellogenic
241	stage. There were significant differences in the cytoplasm area between species in the
242	previtellogenic and vitellogenic stages.
243	
244	Nucleus:Cytoplasm ratio
245	The Nucleus:cytoplasm ratio was highest in spawned stage of C. gigas, and in
246	previtellogenic stage of C. corteziensis, compared to other stages for each species.
247	There were significant differences for the Nucleus:cvtoplasm ratio between species in
248	the previtellogenic and spawned stage.
249	
250	Gonad coverage area
251	The GCA was analyzed in relation to maturation stages, the highest values were
252	found in vitellogenic females, with no differences among the other three stages in either
253	species. However, the values of GCA were significantly larger in the vitellogenic stage
254	of C. Gigas compared to C. corteziensis.
255	
256	Reproductive potential
257	Reproductive potential classified by stage, is presented in Table 1. Vitellogenic
258	females had the highest values, while the other stages presented similar values in C .
259	corteziensis females. In C. gigas, spawned females had the lowest values.
260	

261	Ovary maturity index
262	This index had the highest values in the vitellogenic stage compared to other
263	stages in both species. The ovary maturity index was significantly higher in C. gigas in
264	females in vitellogenic stage, compared to C. corteziensis females in the same stage
265	(Table 1).
266	
267	Index of gonadal development.
268	This index had the highest values in the postvitellogenic stage and the lowest in
269	the previtellogenic. The index of gonadal development was significantly higher in C.
270	gigas in females in postvitellogenic stage, compared to C. corteziensis females in the
271	same stage (Table 1).
272	
273	Visual test for maturity and stages of gonad development
274	The four stages of the visual test for maturity were determined only for C.
275	corteziensis and are presented in Table 2. The histological analysis found that 16.7% of
276	oysters classified as in late maturation of spawning using the visual scale were, in fact,
277	immature. Only 22.7% of the oysters classified as being in early maturation were in
278	previtellogenic stage. The best results were obtained with the vitellogenic stage, where
279	50% were classified as late maturation by the visual scale. Oysters in postvitellogenic or
280	spawned stage were mostly classified as immature.
281	spawned stage were mostry classified as inimature.
282	Reproductive scale and stages of gonad development
283	The four stages of the reproductive scale assigned by oocyte size, similar to what
284	has been described for C. gigas by Lango-Reynoso et al. (2000) but modified for C.
285	corteziensis that has smaller oocytes, is presented in Table 2. The histological analysis
286	found that most (71%) of oysters classified as in early maturation were in
287	previtellogenic stage, and 50% of oysters classified as growing were in vitellogenic

stage. Oysters in postvitellogenic stage were classified as mature (32%) or
degenerating (43%); the least asserts were found for spawning stage in which females
were mostly classified as growing (50%), mature (43%) or early maturation and
degenerating, both with 29%.

293 Discussion

Maturation stages are usually subjective and largely depend on the experience of the classifier and on previous work for the same or similar species (Barber & Blake 1991). There are different numerical scales that can be used to sort individual ovsters into maturation stages in a more objective way, and one that is widely used for scallops and other aquatic organisms because of its simplicity, is the visual maturity, that has the advantage of being easily applied and not expensive (Barber & Blake 1991; Palacios et al. 2003). However, since oocytes in oysters are not profusely pigmented, as is the case for scallops, the assignment of a visual maturation is difficult, and it has the additional disadvantage of generating ordinal data. We used the visual scale to predict maturation stage in oysters, but have found that some oysters were classified as immature even when by the ordinal histological scale they were rated as in vitellogenesis or completely mature (Table 2): 25% of immature oysters were classified as immature when using a visual scale, even if they were spawned, while 52% were classified as spawned in the visual scale, when they were in vitellogenic stage, according to histology. In total, only about a quarter of the C. corteziensis oysters were correctly classified. Lango-Reynoso et al. (2000) proposed a system for classifying C. gigas females into maturation stages based on the size of the oocytes present in the gonad; thus females with oocytes smaller than 6.5µm were considered in early gametogenesis, when half the gonad of a female had oocytes of approx. 21µm and the other half oocytes of $34\mu m$, the female was in growing stage, when most (90%) of oocytes were larger than 30-41µm the female was considered mature, and when most of the gonad had oocytes

Invertebrate Reproduction and Development

1	2
	ر

	13
315	smaller than 5.5 μ m while one part of oocytes were larger than 46 μ m, the gonad was
316	degenerating. This scale has since been applied in several works to the same species
317	(Chávez-Villalba et al. 2002; Ren et al. 2003). We classified maturation stages for C.
318	corteziensis on the basis of oocyte diameter, a scale termed reproductive scale, as
319	proposed for C. gigas by Lango-Reynoso et al. (2000), but modified here because
320	oocytes in <i>C. corteziensis</i> are smaller than that of <i>C. gigas</i> . We did found some oocytes
321	that seemed overmature, possible a result of distention of endoplasmic reticulum, and
322	were larger (45 μ m) than postvitellogenic oocytes, in contrast to 60 μ m reported by
323	Lango-Reynoso et al. (2000) for C. gigas. As can be seen in Table 2, early maturation
324	was the most correctly classified stage, with 71% of females in previtellogenic stage,
325	followed by 50% of vitellogenic females classified in growing stage. In contrast, the
326	mature and degenerated stages were mostly classified as spawned or postvitellogenic,
327	respectively. Nevertheless, the scale proposed by Lango-Reynoso et al. (2000) was far
328	better in predicting maturation stage than the visual scale. Thus, the ranges used for
329	assigning a maturation stage should be adapted according to species and possibly for
330	different populations from different ecosystems.
331	One of the most used continuous scales to indicate the state of maturity is the
332	relation between gonad weight and body weight, termed gonadosomatic index (GSI). It
333	has the advantage of being inexpensive, quick, objective, and that it generates
334	continuous data. GSI has been extensively used in C. gigas (Ren et al. 2003; Ngo et al.
335	2006) and C. corteziensis (Páez-Osuna et al. 1993; Frias-Espericueta et al. 1997, 1999).
336	However and in contrast to scallops and other marine organisms, the gonad in oysters
337	can be difficult to separate from adjacent tissue (Mori 1979; Frías-Espericueta et al.
338	1997). In addition, the weight of the gonad "corrected" by body weight can still be
339	dependent of body weight, particularly when animals are growing (de Vlaming et al.
340	1982; Grant & Tyler 1983b; Packard & Boardman 1988; West 1990; Palacios et al.
341	2003). Furthermore, GSI is not a precise reflection of gonad activity because there can

Page 14 of 31

342	be temporal differences in the recruitment of oocytes or fluid content in the ovary
343	tissues external to oocytes during maturation (Grant & Tyler 1983a; Palacios et al.
344	2004) or in the digestive gland (Grant & Tyler 1983b), that affect gonad or total weight.
345	Costil et al. (2005) observed that even if no gametes remained in the follicles, the
346	presence of abundant connective tissue might induce visual of fatness. The same applies
347	to gonad biomass estimated by stereology, since it requires the weight of the gonad for
348	the calculations (Enriquez-Diaz 2004). A further disadvantage of this methodology is
349	that it requires three sections of the gonad, anterior, middle and rear, and this reduces
350	the amount of gonad that can be used for other additional test such as biochemistry and
351	genetics. To overcome the difficulty of dissecting and weighing a gonad dispersed in
352	other tissues, some studies have measured the gonad thickness using calipers (Lossanoff
353	1965), the weight of the area of the photographic print occupied by ova to the weight of
354	the gonad (Muranaka & Lannan 1984), or the follicle or gonad tissue area in relation to
355	the other tissue, usually determined by image analyses (Mori 1979; Lannan, 1980; Allen
356	& Downing 1986; Hefferman & Walker 1989; Barber et al. 1991; Enriquez-Diaz 2004;
357	Fabioux et al. 2005; Quintana 2005). This ratio has received several names and has been
358	evaluated by slightly different protocols by each group; for commodity is termed here
359	gonad coverage area (GCA). The GCA has the advantage of being quantitative and
360	relatively quick and simple to analyze, although image analysis requires previous
361	histological process, which can be expensive and time consuming. GCA can provide
362	continuous data in completely immature oysters, but also in males, as demonstrated in
363	C. gigas by Lannan (1980). The GCA can indicate when the female is fully mature, as
364	can be seen in figure 3, but the differences in a gonad that is maturing or spawning is
365	not so evident. This is further observed in Table 1, where no differences were found
366	among stages other than vitellogenic stage. A similar result was obtained by Brewer et
367	al. (2007) in different fish species, who proposed using GSI till fishes appear to be in

Invertebrate Reproduction and Development

	15
368	mature condition and then to incorporate histology to pinpoint specific periods when
369	spawning occurs.
370	Oocyte size is independent of the body size (Grant & Tyler 1983a; Palacios et al.
371	2003) and can be used as a covariable to correct for gonad maturation in females
372	(Palacios et al. 2003). However, when average oocyte diameter was used to reveal the
373	annual reproductive pattern of C. corteziensis, no significant differences were found
374	among the sampled periods (Fig. 2). In a similar analysis, oocyte maximum area or
375	diameter has been proven efficient in organisms that have partial spawns and thus
376	present a wide distribution of oocytes of different sizes or cohorts (Palacios et al. 2003).
377	Maximum oocyte area was slightly better revealing the annual reproductive pattern than
378	average oocyte diameter, since there were significant differences as a result of the
379	sampling period, but a Tukey posthoc analysis revealed that there were only differences
380	between maximum oocyte diameter in December and May for C. corteziensis (results
381	not shown). The spawning periods were not evidenced using maximum oocyte
382	diameter. The analysis per stage presented in Table 1 revealed that the vitellogenic stage
383	was well separated in both species using oocyte size, but the spawned stage was only
384	significantly separated in C. gigas.
385	There are several scales that are based on ratios or indexes. These have the
386	advantage of using relative scales of reproduction and enables comparison of
387	reproductive output to be made among species. One of these has been extensively used
388	in medicine to determine cell growth; the Nucleus:cytoplasm ratio. The
389	Nucleus:cytoplasm ratio has been applied to analyze oocyte growth with good results in
390	marine organisms (Pastorinho et al. 2003; Van der Molen 2003; Arjarasirikoon et al.
391	2004) and in mollusks (Rodríguez-Jaramillo et al. 2001). However, when using this
392	ratio to predict maturation stages here, we could not distinguish between vitellogenic
393	stage and other stages, although spawned stage of C. gigas and previtellogenic stage of
394	C. corteziensis were different from other stages (Table 1). This ratio allowed thus to

Page 16 of 31

reveal the resting period of December and January, but not gonad maturation. It also

has the disadvantage of being quite laborious.

The Ovary Maturity Index, modified from that proposed by Arcos et al. (2005) could distinguish the vitellogenic stage, but not the other stages (Table 1). It also has the disadvantage of using the oocyte area, which increases significantly the values of the vitellogenic stage in *C. gigas*, and it is laborious to measure.

The Reproductive Potential, calculated in relation to number of oocytes and their size, based on the formula for fecundity proposed by Heffernan & Walker (1989) that was based on the analysis of postvitellogenic oocytes, and that was modified here to include oocytes in all stages of maturation, is a good predictor of maturation stage, particularly for C. gigas. Of all the analysis, this was the only one where the values were not significantly different between species, indicating this to be the best way to compare these two species. However, it was by far the most laborious of all the analysis.

The Index of Gonadal Development proposed by Lannan (1980) could distinguish the postvitellogenic stage en *C. gigas*, but not the other stages (Table 1). It also has the disadvantage of using the ratio of postvitellogenic oocytes in relation to the total number of oocytes present in the gonad, which increases significantly the values of the vitellogenic and postvitellogenic stages in *C. corteziensis*, and it is laborious to measure.

The comparison of the annual reproductive pattern using some of these different methods of analysis on the same females was of particular interest, because there are differences that may lead to an erroneous conclusion in relation to gametogenesis and spawning, particularly when comparing reproductive effort between species. The quantitative methods that are significantly different per stage between *C. gigas* and *C. corteziensis*, indicate that comparison is skewed, since a more advanced maturation can be assigned to *C. gigas* for the same stage. This is the case of oocyte size, GCA, and

Invertebrate Reproduction and Development

1	7
- 1	1

	17
422	ovary maturity index; even the last two are a relative measure of maturity. The only
423	scale where the values of C. corteziensis were similar to and even surpassed the ones in
424	C. gigas, was again, Reproductive potential. This scale is by far the best to use for
425	comparing this two species, or using as a covariable when comparing biochemical
426	reserves during maturation. In any case, differences among methods should be
427	considered when establishing a reproductive period for each species, since there can be
428	differences among them that makes comparison complex.
429	In conclusion, there are strong variations among the different methods tested to
430	generate quantitative data on gonad maturation, particularly when comparing different
431	species. GSI, abundantly used in scallops and other marine organisms, cannot be
432	straightforward applied to oysters in general. Oocyte size can be a relatively adequate
433	predictor of maturation stage, but it does not represent the reproductive pattern in
434	tropical oysters with an extended reproductive period and several partial spawns.
435	Nucleus:cytoplasm ratio might only evidence the resting period, while the ovary
436	maturity index is skewed in favor of C. gigas. The Ovary Maturity Index, the
437	Reproductive Potential, and the GCA, all continuous and objective scales, seem to be
438	the more adequate measure of maturity to compare oysters of different species.
439	However, the Ovary Maturity Index and the Reproductive Potential are much more
440	laborious, since they requires additional measures. So for general maturation analysis
441	the GCA could be enough, but to pinpoint the specifics of maturation between species,
442	the Reproductive Potential is better.
443	
444	Acknowledgements
445	We are grateful to the local fishermen for their hospitality and assistance during
446	collection of wild oysters at aquaculture facilities at Bahía Ceuta, Sinaloa, and to J.
447	Guevara (Ostrícola Guevara). Special thanks to Eulalia Meza Chávez, Susana Tobar,

448 José Luis Ramírez, Roberto Ascencio, Miguel A. Hurtado, Gabriel González, and Juan

449	18 M. Mackliz, for their technical assistance. This research was funded by grants from
450	SAGARPA-CONACYT 2003-02-035 to A.M. Ibarra, SEP-CONACYT 2006-24333 to
451	E. Palacios.
452	
453	References
454	Allen Jr SK, Downing SL. 1986. Performance of triploid Pacific oysters, Crassostrea
455	gigas (Thunberg). I. Survival, growth, glycogen content and sexual maturation in
456	yearlings. J. Exp. Mar. Biol. Ecol. 102:197-208.
457	Arjarasirikoon U, Kruatrachue M, Sretarugsa P, Chitramvong Y, Jantataeme S,
458	Upatham ES. 2004. Gametogenic processes in the pearl oyster, Pteria penguin
459	(Röding, 1789) (Bivalvia, Mollusca). J. Shellfish Res. 23:403-409.
460	Arcos F, Racotta IS, Palacios E, Ibarra AM. 2005. Ovary development at the onset of
461	gametogenesis is genetically determined and correlated with reproductive traits at
462	maturity in shrimp Litopenaeus (Penaeus) vannamei. Mar. Biol. 148:339-346.
463	Barber BJ, Blake NJ. 1991. Reproductive physiology. In: Shumway SE (ed.) Scallops:
464	Biology, Ecology and Aquaculture. Elsevier, West Boothbay Harbor, p 377-428.
465	Barber BJ, Ford SE, Wargo RN. 1991. Genetic variation in the timing of gonadal
466	maturation and spawning of the eastern oyster Crassostrea virginica (Gmelin). Biol.
467	Bull. 181:216-221.
468	Brewer SK, Rabeni CF, Papoulias DM. 2007. Comparing histology and gonadosomatic
469	index for determining spawning condition of small-bodied riverine fishes. Ecol.
470	Fresh. Fish 17: 54-58.
471	Chávez-Villalba J, Barret J, Mingant C, Cochard J-C, Le Pennec M. 2002. Autumn
472	conditioning of the oyster Crassostrea gigas: A new approach. Aquaculture 210:171-
473	186.

474	Costil K, Royer J, Ropert M, Soletchnik P, Mathieu M. 2005. Spatio-temporal
475	variations in biological performances and summer mortality of the Pacific oyster
476	<i>Crassostrea gigas</i> in Normandy (France). Helgol Mar. Res. 59:286-300.
477	David-Gómez I, Gerson-Araujo F. 2004. Reproductive biology of two marine catfishes
478	(Siluriformes, Ariidae) in the Sepetiba Bay, Brazil. Rev. Biol. Trop. 52(1): 143-156.
479	Delaporte M, Soudant P, Moal J, Marty Y, Samain JF. 2005. Incorporation and
480	modification of dietary fatty acids in gill polar lipids by two bivalve species
481	<i>Crassostrea gigas</i> and <i>Ruditapes philippinarum</i> . Comp. Biochem. Physiol. 140B:
482	460–470.
483	De Vlaming V, Grossman G, Chapman F. 1982. On the use of the gonadosomatic index.
484	J. Fish Physiol. 1:31-39.
485	Egea E, Mérigot B, Mahé-Bézac C, Féral JP, Chenuil A. 2011. Differential reproductive
486	timing in <i>Echinocardium</i> spp.: The first Mediterranean survey allows interoceanic
487	and interspecific comparisons. C. R. Biologies. 334:13-23.
488	Enriquez-Díaz M. 2004. Variabilité et bioénergétique de la reproduction chez l'huître
489	creuse <i>Crassostrea gigas</i> . 2004. PhD Thesis, Université de Bretagne Occidentale. 1-
409	
	216 pp.
491	Fabioux C, Huvet A, Le Souchu P, Le Pennec M, Pouvreau S. 2005. Temperature and
492	photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture
493	250:458-470.
494	Ferreira MPA, Paixao LF, Alcantara-Nieto CP, Santos SSD, Rocha RM. 2006. The
495	analysis of fecundity, based on the radius and total number of oocytes, was a good
496	reflection of maturation as described by traditional histology. Int. J. Morphol.
497	24:437-442.
498	Frias-Espericueta MG, Osuna-Lopez J I, Paez-Osuna F. 1999. Gonadal maturation and
499	trace metals in the mangrove oyster Crassostrea corteziensis: seasonal variation. Sci.
500	Total Environ. 231:115-123.

501	Frias-Espericueta M, Páez-Osuna F, Osuna-López JI. 1997. Seasonal changes in the
502	gonadal state of the oysters Crassostrea iridescens and Crassostrea corteziensis
503	(Filibranchia: Ostreidae) in the Northwest coast of Mexico. Rev. Biol. Trop.
504	45:1061-1065.
505	Grant A, Tyler PA. 1983a. The analysis of data in studies of invertebrate reproduction.
506	II. The analysis of oocyte size/frequency data, and comparison of different types of
507	data. Int. J. Invert. Reprod. 6:271-283.
508	Grant A, Tyler PA. 1983b. The analysis of data in studies of invertebrate reproduction.
509	I. Introduction and statistical analysis of gonad indices and maturation indices. Int. J.
510	Invert. Reprod. 6:259-269.
511	Hefferman PB, Walker RL. 1989. Quantitative image analysis methods for use in
512	histological studies of bivalve reproduction. J. Moll. Stud. 55:135-137.
513	Hurtado MA, Racotta IS, Arcos F, Morales-Bojórquez E, Moal J, Soudant P, Palacios
514	E. 2012. Seasonal biochemical composition, fatty acids, and sterols in female
515	Crassostrea corteziensis oysters in relation to the reproductive cycle. Comp.
516	Biochem. Physiol, Part B. 163:172-183.
517	Galindo-Sanchez CE, Ibarra AM, Cruz P. 2008. Genetic diversity among four different
518	world-wide lines of Pacific oyster Crassostrea gigas by microsatellites. Poster.
519	PHYSIOMAR 08, Brest Francia.1-4 Septiembre.
520	Lango-Reynoso F., Chávez-Villalba J, Cochard J-C, Le Pennec M. 2000. Oocyte size, a
521	means to evaluate the gametogenic development of the Pacific oyster (Crassostrea
522	gigas) Thunberg. Aquaculture 190:183-199.
523	Lannan JE. 1980. Broodstock management of Crassostrea gigasI. Genetic and
524	environmental variation in survival in the larval rearing system. Aquaculture 21:323-
525	336.

526	Leong W, Pawlik JR. 2011. Comparison of reproductive patterns among 7 Caribbean
527	sponge species does not reveal a resource trade-off with chemical defenses. J. Exp.
528	Mar. Biol. Ecol. 401:80-84.
529	Li Q, Liu W, Shirasu K, Chen W, Jiang S. 2006. Reproductive cycle and biochemical
530	composition of the oyster Crassostrea plicatula Gmelin in an eastern coastal bay of
531	China. Aquaculture 261:752-759.
532	Loosanoff VL. 1965. Gonad development and discharge of spawn in oysters of Long
533	Island sound. Biol. Bull. 129:546-561.
534	Mori K. 1979. Effects of artificial eutrophication on the metabolism of the Japanese
535	oyster. Mar. Biol. 53:361-369.
536	Muranaka M, Lannan JE. 1984. Broodstock management of Crassostrea gigas:
537	environmental influences on broodstock conditioning. Aquaculture 39:217-228
538	Ngo TTT, Kang SG, Kang DH, Sorgeloos P, Choi KS. 2006. Effect of culture depth on
539	the proximate composition and reproduction of the Pacific oyster, Crassostrea gigas
540	from Gosung Bay, Korea. Aquaculture 253:712-720.
541	Packard GC, Boardman TJ. 1988. The misuse of ratios, indices and percentages in
542	ecophysiological research. Physiol. Zool. 6:1-9.
543	Páez-Osuna F, Zazueta-Padilla HM, Osuna-López JI. 1993. Biochemical composition of
544	the oysters Crassostrea iridescens Hanley and Crassostrea corteziensis Hertlein in
545	the Northwest coast of Mexico: seasonal changes. J. Exp. Mar. Biol. 170:1-9.
546	Palacios E, Racotta IS, Villalejo-Fuerte M. 2003. Assessment of ovarian development
547	and its relation to mating in wild and pond-reared Litopenaeus vannamei shrimp in a
548	commercial hatchery. J. World Aquacult. Soc. 34:446-477.
549	Palacios E, Racotta IS, Ibarra AM, Ramírez JL, Millan A, Avila S. 2004. Comparison of
550	biochemical composition and muscle hypertrophy associated with the reproductive
551	cycle of diploid and triploid Argopecten ventricosus scallops. J. Shellfish Res.
552	23:483-489.

	22
553	Pastorinho MR, Antunes CP, Marques JC, Pereira ML, Azeiteiro UMM, Morgado
554	FM. 2003. Histochemistry and histology in planktonic ecophysiological processes
555	determination in a temperate estuary (Mondego River estuary, Portugal). Acta
556	Oecologica 24: S235-S243.
557	Quintana R. 2005. Effect of estradiol-17 β on the gonadal development of diploid and
558	triploid female eastern oysters PhD Thesis. Universidad Autónoma de Baja
559	California. 1-138 pp.
560	Ren JS, Marsden ID, Ross AH, Schiel DR. 2003. Seasonal variation in the reproductive
561	activity and biochemical composition of the Pacific oyster (Crassostrea gigas) from
562	the Marlborough Sounds, New Zealand. New Zealand J. Mar. Fresh. Res. 37:171-
563	182
564	Rodríguez-Jaramillo C, Maeda-Martínez AN, Valdez ME, Reynoso-Granados T,
565	Monsalvo-Spencer P, Prado-Ancona D, Cardoza-Velasco F, Robles-Mungaray M,
566	Sicard MT. 2001. The effect of temperature on the reproductive maturity of the
567	penshell Atrina maura (Sowerby 1835). J. Shellfish Res. 20:39-47.
568	Rodríguez-Jaramillo C, Hurtado M, Romero-Vivas E, Ramírez JL, Manzano M,
569	Palacios E. 2008. Gonadal development and histochemistry of the tropical oyster,
570	Crassostrea corteziensis (Hertlein, 1951) during an annual reproductive cycle. J.
571	Shellfish Res. 27:1129-1141.
572	Saout C, Paulet YM, Duinker A. 1999. Histological study on the early stages of
573	oogenesis in <i>Pecten maximus</i> : a new approach with quantitative semithin histology.
574	Bergen, Norway, 12th Interational Pectinid Workshop. pp. 129-130.
575	Van Der Molen S. 2003. Estudio sobre la reproducción de Notothenioidei (Pisces:
576	Perciformes) del Océano Austral. PhD Thesis. Universidad Autónoma de Barcelona.
577	West G. 1990. Methods for assessing ovarian development in fishes: a review. Aust. J.
578	Mar. Fresh. Res. 41:199-222.

Invertebrate Reproduction and Development

1	579	Whalan S, Battershill C, de Nys R. 2007. Sexual reproduction of the brooding sponge
2 3 4 5 6 7 8 9 10 11	580 581	Rhopaloeidesodorabile. Coral Reefs 26: 655–663.
$\begin{array}{c} 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \end{array}$		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		

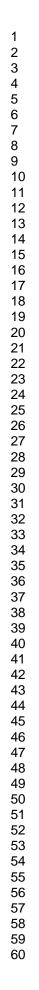
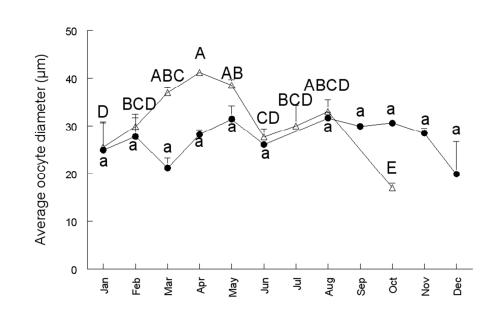



Fig. 1A) Frequency of gonad developmental stages determined by histology in females
of A) *Crassostrea corteziensis* and; B) *C. gigas*, sampled from Ceuta Lagoon System,
Sinaloa, Mexico. White bars = Immature or stage 0; light gray bars = Previtellogenesis
or stage I; dark gray bars = Vitellogenesisor stage II; black = Postvitellogenesis or stage
III; hatched bars = Spawned or stage IV.

590 Fig. 2. Average oocyte diameter (μ m) in *C. gigas* (white triangles) and *C. corteziensis* (Black circles). Data were analyzed using sampling month as the 592 independent variable in a unifactorial ANOVA (*P*<0.05). Results are reported as 593 mean ± standard error. Different letters indicate significant differences; each species 594 were analyzed separately (*P*<0.05).

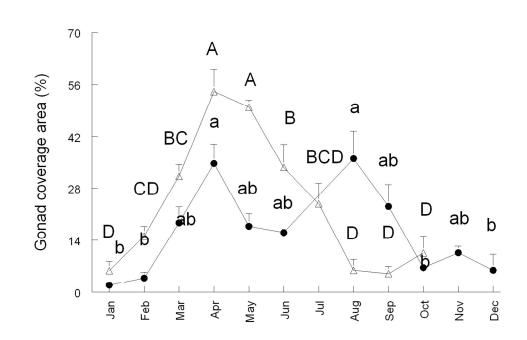


Fig. 3. Gonad Coverage Area (%) for *C. gigas* (white triangles) and *C. corteziensis* (Black circles) by month. Data were analyzed using sampling month as the independent variable in a unifactorial ANOVA (P<0.05). Results are reported as mean \pm standard error. Different letters indicate significant differences; each specie was analyzed separately (P<0.05).

Page 27 of 31

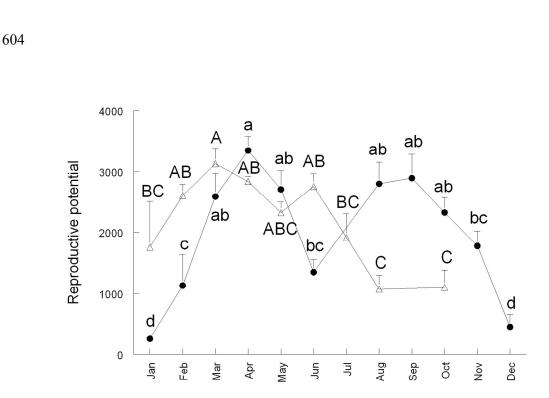


Fig. 4. Reproductive potential for *C. gigas* (white triangles) and *C. corteziensis* (Black circles) by month. Data were analyzed using sampling month as the independent variable in a unifactorial ANOVA (P < 0.05). Results are reported as mean \pm standard error. Different letters indicate significant differences; each specie was analyzed separately (P < 0.05).

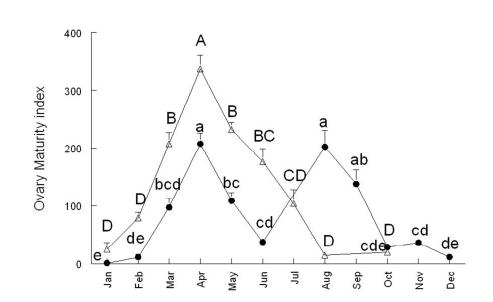


Fig. 5. Ovary Maturity Index for *C. gigas* (white triangles) and *C. corteziensis* (Black circles) by month. Data were analyzed using sampling month as the independent variable in a unifactorial ANOVA (P < 0.05). Results are reported as mean \pm standard error. Different letters indicate significant differences; each species was analyzed separately (P < 0.05).

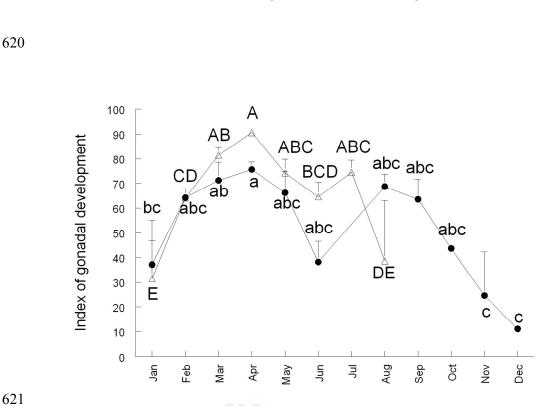


Fig. 6. Index of Gonadal Development for *C. gigas* (white triangles) and *C. corteziensis* (Black circles) by month. Data were analyzed using sampling month as the independent variable in a unifactorial ANOVA (P<0.05). Results are reported as mean \pm standard error. Different letters indicate significant differences; each species was analyzed separately (P<0.05).

16³⁰

36j31

 Table 1. Female morphometric and maturation data classified by stage of female gonad development of *Crassostrea corteziensis* and *Crassostrea gigas* were sampled from Bahía Ceuta, Sinaloa, Mexico from April 2005 to April 2006.

		Stage I	Stage II	Stage III	Stage IV
		Previtellogenesis	Vitellogenesis	Postvitellogenesis	Spawned
Average oocyte diameter (µm)	C. gigas	27.5±2.0 b	37.4±0.7 a	27.1±2.0 b	26.2±5.0 b
Average obcyte diameter (µm)	C. corteziensis	22.8±2.2 b	29.3±1.1 a*	28.5±2.4 ab	30.7±3.7 a
Maximum agayta diamatan (um)	C. gigas	45.8±2.6 ab	51.0±0.9 a	39.2±2.5 bc	37.6±2.6 c
Maximum oocyte diameter (µm)	C. corteziensis	33.9±3.1 b *	46.0±1.9 a *	42.8±2.1 ab	42.2±2.3 ab
Maximum cytoplasm area (µm²)	C. gigas	1202±127 ab	1490±55 a	863±88 bc	595±55 c
viaxinum cytopiasm area (µm)	C. corteziensis	730±98 b *	1138±56 a *	1031±54 ab	1021±60 ab
Nucleuse Cutomlesson notic	C. gigas	0.52±0.04 b	0.45±0.01 b	0.55±0.04 b	0.75±0.08 a
Nucleus:Cytoplasm ratio	C. corteziensis	0.60±0.07 a *	0.44±0.01b	0.50±0.03b	0.48±0.03 b*
Gonad Coverage Area	C. gigas	14.6±3.7 b	41.3±2.9 a	16.4±2.7 b	6.5±3.9 b
(GCA, %)	C. corteziensis	9.6±2.5 b	29.7±2.8 a*	11.3±2.1 b	8.8±4.1 b
Reproductive potential ¹	C. gigas	2337±253 ab	2877±91 a	1876±188 b	558±130 cJar
kepi odučtive potentiai	C. corteziensis	1945±297 b	3059±166 a	1843±162 b	430±263 b
Ovary Maturity Index ²	C. gigas	63.9±9.9 b	241.2±11.1 a	59.4±8.2 b	4.4±1.3 b
Gvary maturity muex	C. corteziensis	52.7±8.9 b	172.0±10.9 a*	52.7±8.9 b	0.2±0.04 b
Index of Gonadal Development ³	C. gigas	8.04±1.5 c	63.06±3.9 b	81.20±1.9 a	56.66±6.3 b
index of Gonadal Development	C. corteziensis	13.75±1.2 b	59.10±5.6 a	68.45±3.6 a*	48.66±11.5 al

Data were analyzed using stage as the independent variable (4 levels) in a unifactorial ANOVA (P < 0.05). Results are reported as mean \pm standard error.

Different letters indicate significant differences; species were analyzed separately (P < 0.05). For each maturation stage, significant differences between species are shown with an *. ¹The Reproductive potential is based on fecundity = $4/3\pi \times \text{radius of oocyte}^3 \times \text{total number of oocytes described by Heffernan}$ and Walker (1989). ² The Ovary Maturity Index = GCA x Oocyte area x total number of oocytes, as described by Arcos et al. (2005). ³ Index of gonadal development calculated as the ratio of postvitellogenic oocytes in relation to the total number of oocytes present in the gonad, as described by Lannan (1980).

Table 2. Frequency distribution (%) of hits for proposed visual maturation stage or the reproductive scale determined by oocyte average diameter, in relation to the ordinal stage of gonad development assigned by histology of *C. corteziensis* sampled from Bahía Ceuta, Sinaloa, Mexico.

			Stage 0	Stage I	Stage II	Stage III	Stage IV
Visual	maturation		Immature	Previtel.	Vitel.	Postvitel.	Spawned
		Immature	16.7	11.1	8.3	38.9	25.0
		Early maturation	29.5	22.7	18.2	27.3	2.3
		Late maturation	11.9	21.4	50.0	14.3	2.4
		Spawning	4.8	33.3	52.4	4.8	4.8
Reproductive	scale	Early maturation	0	71.4	0	0	28.6
		Growing	0	0	50.0	0	50.0
		Mature	0	2.2	22.2	31.8	43.2
		Degenerating	0	23.1	7.7	42.9	28.6

Data were analyzed using a Table of contingency:

Visual maturity for females: $X^2 = 67.2$, Degrees of freedom = 15, P < 0.01

Reproductive scale based on oocyte diameter: $X^2 = 46.1$, Degrees of freedom = 12 P<0.01