FN Archimer Export Format PT J TI The Transpolar Drift as a Source of Riverine and Shelf-Derived Trace Elements to the Central Arctic Ocean BT AF Charette, Matthew A. Kipp, Lauren E. Jensen, Laramie T. Dabrowski, Jessica S. Whitmore, Laura M. Fitzsimmons, Jessica N. Williford, Tatiana Ulfsbo, Adam Jones, Elizabeth Bundy, Randelle M. Vivancos, Sebastian M. Pahnke, Katharina John, Seth G. Xiang, Yang Hatta, Mariko Petrova, Mariia V. Heimbürger-Boavida, Lars-Eric Bauch, Dorothea Newton, Robert Pasqualini, Angelica Agather, Alison M. Amon, Rainer M.W. Anderson, Robert F. Andersson, Per S. Benner, Ronald Bowman, Katlin L. Edwards, R. Lawrence Gdaniec, Sandra Gerringa, Loes J.A. González, Aridane G. Granskog, Mats Haley, Brian Hammerschmidt, Chad R. Hansell, Dennis A. Henderson, Paul B. Kadko, David C. Kaiser, Karl Laan, Patrick Lam, Phoebe J. Lamborg, Carl H. Levier, Martin Li, Xianglei Margolin, Andrew R. Measures, Chris Middag, Rob Millero, Frank J. Moore, Willard S. Paffrath, Ronja Planquette, Helene Rabe, Benjamin Reader, Heather Rember, Robert Rijkenberg, Micha J.A. Roy-Barman, Matthieu Rutgers van der Loeff, Michiel Saito, Mak Schauer, Ursula Schlosser, Peter Sherrell, Robert M. Shiller, Alan M. Slagter, Hans Sonke, Jeroen E. Stedmon, Colin Woosley, Ryan J. Valk, Ole van Ooijen, Jan Zhang, Ruifeng AS 1:1;2:2,3;3:4;4:1;5:5;6:4;7:4;8:6;9:7;10:1,8;11:3,9;12:10;13:11;14:12;15:13;16:14;17:14;18:15;19:3;20:16;21:17;22:4,18;23:3;24:19;25:20;26:12;27:21;28:19,22,23;29:24;30:25,26;31:27;32:28;33:17;34:29;35:1;36:30;37:4,18;38:24;39:12;40:12;41:23;42:21;43:29,31;44:13;45:24;46:29;47:20;48:10;49:25;50:32;51:33,34;52:35;53:25;54:24;55:32;56:1;57:32;58:3,36,37;59:38,39;60:5;61:23,40;62:41;63:33;64:29,42;65:32;66:24;67:11,43; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:;11:;12:;13:;14:;15:;16:;17:;18:;19:;20:;21:;22:;23:;24:;25:;26:;27:;28:;29:;30:;31:;32:;33:;34:;35:;36:;37:;38:;39:;40:;41:;42:;43:;44:;45:;46:;47:;48:;49:;50:;51:;52:;53:;54:;55:;56:;57:;58:;59:;60:;61:;62:;63:;64:;65:;66:;67:; C1 Woods Hole Oceanographic Institution; Woods Hole MA, USA Dalhousie University; Halifax NS, Canada Lamont-Doherty Earth Observatory of Columbia University; Palisades NY ,USA Department of Oceanography; Texas A&M University; College Station TX, USA School of Ocean Science and Engineering, University of Southern Mississippi, Stennis Space Center; MS, USA Department of Marine Sciences; University of Gothenburg; Gothenburg, Sweden Institute of Marine Research, Fram Centre; Tromsø ,Norway School of Oceanography, University of Washington; Seattle Washington, USA Department of Earth and Environmental Sciences; Columbia University; New York NY, USA Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg; Oldenburg, Germany Department of Earth Sciences; University of Southern California; Los Angeles CA, USA Department of Ocean Sciences; University of California, Santa Cruz; Santa Cruz CA, USA Department of Oceanography; University of Hawaii at Manoa; Honolulu Hawaii ,USA Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110; Marseille, France GEOMAR Helmholtz Center for Ocean Research Kiel; Kiel ,Germany Department of Earth and Environmental Engineering; Columbia University; New York NY ,USA Department of Earth and Environmental Sciences; Wright State University; Dayton OH ,USA Department of Marine Science; Texas A&M University at Galveston; Texas ,USA Swedish Museum of Natural History, Department of Geosciences; Stockholm ,Sweden School of the Earth, Ocean and Environment, University of South Carolina; Columbia SC ,USA Department of Earth and Environmental Sciences; University of Minnesota; Minneapolis MN, USA Stockholm University; Department of Geological Sciences; Stockholm, Sweden Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ; Université Paris-Saclay; Gif-sur-Yvette, France Department of Ocean Systems; NIOZ Royal Institute for Sea Research and Utrecht University; Den Burg ,Netherlands University of Brest, CNRS, IRD, Ifremer, LEMAR; Plouzané, France Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Las Palmas de Gran Canaria (ULPGC); Las Palmas ,Spain Norwegian Polar Institute; Tromsø ,Norway College of Earth, Ocean, and Atmospheric Sciences, Oregon State University; Corvalis OR ,USA Rosenstiel School of Marine and Atmospheric Science, University of Miami; Miami FL, USA Florida International University, Applied Research Center; Miami FL, USA Institute for the Oceans and Fisheries, University of British Columbia, Vancouver; British Columbia, Canada Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Bremerhaven, Germany Technical University of Denmark, National Institute of Aquatic Resources; Lyngby ,Denmark Department of Chemistry; Memorial University of Newfoundland; St John's NL ,Canada International Arctic Research Center; University of Alaska, Fairbank; Fairbanks AK, USA Arizona State University, School of Sustainability; Tempe AZ, USA The Earth Institute of Columbia University; New York NY, USA Department of Marine and Coastal Sciences; Rutgers University; New Brunswick NJ, USA Department of Earth and Planetary Sciences; Rutgers University; Piscataway NJ ,USA Max Planck Institute for Chemistry; Mainz ,Germany Laboratoire Géosciences Environnement Toulouse, CNRS/Institute for Research and Development/Université Paul Sabatier-Toulouse III; Toulouse, France Center for Global Change Science, Massachusetts Institute of Technology; Cambridge MA ,USA School of Oceanography, Shanghai Jiao Tong University; Shanghai, China C2 WHOI, USA UNIV DALHOUSIE, CANADA UNIV COLUMBIA, USA UNIV TEXAS A&M, USA UNIV SOUTHERN MISSISSIPPI, USA UNIV GOTHENBURG, SWEDEN IMR, NORWAY UNIV WASHINGTON, USA UNIV COLUMBIA, USA UNIV OLDENBURG, GERMANY UNIV CALIF LOS ANGELES, USA UNIV CALIF SANTA CRUZ, USA UNIV HAWAII MANOA, USA UNIV AIX MARSEILLE, FRANCE IFM GEOMAR, GERMANY UNIV COLUMBIA, USA UNIV WRIGHT STATE, USA UNIV TEXAS A&M, USA SWEDISH MUSEUM NAT HIST, SWEDEN UNIV SOUTH CAROLINA, USA UNIV MINNESOTA, USA UNIV STOCKHOLM, SWEDEN IPSL, FRANCE UNIV UTRECHT, NETHERLANDS UBO, FRANCE UNIV LAS PALMAS GRAN CANARIA, SPAIN NORWEGIAN POLAR INST, NORWAY UNIV OREGON STATE, USA UNIV MIAMI, USA UNIV FLORIDA INT, USA MPO, CANADA INST A WEGENER, GERMANY UNIV TECH DENMARK (DTU AQUA), DENMARK UNIV MEM NEWFOUNDLAND, CANADA UNIV ALASKA, USA UNIV ARIZONA STATE, USA UNIV COLUMBIA, USA UNIV RUTGERS, USA UNIV RUTGERS, USA MAX PLANCK INST CHEM, GERMANY UNIV TOULOUSE, FRANCE MIT, USA UNIV SHANGHAI JIAO TONG, CHINA UM LEMAR IN WOS Cotutelle UMR copubli-france copubli-europe copubli-univ-france copubli-int-hors-europe copubli-sud IF 3.405 TC 84 UR https://archimer.ifremer.fr/doc/00620/73223/72435.pdf https://archimer.ifremer.fr/doc/00620/73223/72437.xlsx https://archimer.ifremer.fr/doc/00620/73223/72438.pdf LA English DT Article AB A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25‐50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s‐1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean. PY 2020 PD MAY SO Journal Of Geophysical Research-oceans SN 2169-9275 PU American Geophysical Union (AGU) VL 125 IS 5 UT 000548601000017 DI 10.1029/2019JC015920 ID 73223 ER EF