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Abstract :   
 
Recent studies have investigated the identification of governing equations of geophysical systems from 
data. Here, we investigate such identification issues for ocean surface dynamcis from ocean remote 
sensing data. From a methodological point of view, we address the learning of data-driven dynamical 
models when only provided with a noisy training dataset. We propose a novel architecture that relies on 
data assimilation schemes to learn the underlying dynamical model through the minimization of a 
reconstruction cost. We demonstrate the relevance of the proposed architecture with respect to the state-
of-the-art approaches in the identification and forecasting of synthetic and real case-studies. 
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1. PROBLEM STATEMENT AND RELATED WORK

The constantly increasing wealth of simulation and ob-
servation data on geophysical dynamics makes data-driven
strategies more and more appealing as new means to address
key issues in ocean and atmosphere science, including for ins-
tance forecasting and assimilation issues [1]. In this respect,
recent studies have investigated data-driven strategies to iden-
tify governing equations from data using different machine
learning frameworks [2, 3].

The availability of representative training datasets is a
strong requirement for the development of such approaches.
When considering observation datasets (e.g., satellite-derived
data or in-situ observations), the question of whether one may
learn such data-driven representations from noisy and partial
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observation data naturally arises. For instance, regarding sea
surface dynamics, beyond observation noise patterns, satellite
sensors also involve irregular space-time sampling patterns
due to their intrinsic characteristics or their sensitivity to the
atmospheric conditions. In this work, we investigate these
issues. We show that the effectiveness of previously proposed
learning-based methods [2, 3, 4] is strongly affected when
applied to noisy and partial observation datasets. Within a
neural-network-based framework, we address the data-driven
identification of governing equations as the joint learning of
a dynamical model and the assimilation of the hidden states
from noisy and partial observations. We restate state-of-the-
art assimilation schemes as neural network architectures,
such that the identification of the dynamical operator comes
to the minimization of a data assimilation cost, rather than
a simple forecasting error. From numerical experiments we
demonstrate the relevance of the proposed approaches in the
data-driven identification of dynamical operators.

Fig. 1: Generated Lorenz-63 time series from data-driven models
trained on noisy data. Given the same initial condition, we generate
time series of 1500 time steps for the following models : AF : Classic
analog forecasting, RINN4-EM : proposed residual network optimi-
zed recursively on an assimilated training set, VBRNN : proposed
variational bilinear recurrent network.



2. PROPOSED MODELS

In this section, we describe two data-driven models inspi-
red by a data assimilation framework. The first one is a direct
implementation of the Ensemble Kalman Smoother (EnKS)
in the optimization of an approximate dynamical model. The
second model is inspired by recent neural networks imple-
mentations of classic smoothing schemes.

2.1. EM-based learning of dynamical models

Data-driven dynamical models identification techniques
usually aim at finding the hidden governing equations of a
given set of temporally evolving states. Formally, assuming
that we are provided with a set of the states xt, where t ∈
{1, ..., T} is the temporal sampling of our time series, the
goal of a data-driven technique is to approximate the follo-
wing model :

xt+1 = F(xt) + ηt (1)

where F is the approximate dynamical system formulated as
a parametric [3, 2] or a non parametric model [4] and η is a
noise vector accounting for uncertainties.

State-of-the-art techniques [4, 2] usually suppose perfect
knowledge of the state variables x or propose specific denoi-
sing solutions in the noisy case. On the other hand, regarding
geosciences, we are almost never provided with the true states
xt and we are only given observations yt related to our states
through an observation model as follow :

yt+1 = H(xt+1,Ωt+1) + εt (2)

with H is an observation operator, Ωt+1 a mask accounting
for missing data and ε is a random noise accounting for un-
certainties in the model. Therefore, when only provided with
partial and noisy observations, state-of-the-art architectures
are most likely to fail or would need specific tuning depen-
ding on the irregularity present in the observations.

From another point of view, and supposing that the dyna-
mical model F is known, we can approach the state variables
xt given the observations yt using data assimilation schemes.
In this case, equations (1) and (2) are used in Bayesian filte-
ring schemes to approach the posterior density distribution of
the states given the observations resulting in an estimations
of the state variables. From this point of view, one can ex-
ploit data assimilation schemes as a natural framework to deal
with partial and noisy data in data driven identification of dy-
namical operators. Formally, for a given architecture of the
approximate dynamical model F we can restate the learning
of the parameters of the dynamical model (which is usually
carried through an optimization of a forecasting cost) as the
optimization of a reconstruction cost over the hidden states
x based on a data assimilation technique. The simplest way
to do so is to alternate the optimization of our model and the
computation of the hidden states x in an Expectation Maxi-
mization (EM) like algorithm as follow :

— E-step : Based on the approximate dynamical model
F , we compute an estimate of the posterior distribution
of the states given the observations p(xt|y1:T ), ∀t ∈
{1, ..., T} using a smoothing data assimilation scheme ;

— M-step : We learn the dynamical model given the pos-
terior distribution p(xt|y1:T ) using a maximum likeli-
hood criterion.

2.2. Variational learning of dynamical operators

For many real-life problems, the observation operator H
is highly nonlinear, or the signal to noise ratio is too small
making the derivation of the posterior distribution p(xt|y1:T )
intractable. This motivates the development of new filte-
ring/smoothing schemes based on a variational approach
where we introduce an approximate distribution q(xt|y1:T )
of the true posterior p(xt|y1:T ) parametrized by a neural
network [5].

This technique has shown illustrious results for several
tasks, including image, text and speech generation, noisy and
irregularly-sampled time series modelling [5]. In this work,
we adapt this idea to the problem of data driven identifica-
tion of dynamical models. Specifically, the dynamical system
F , the observation operator H and the approximate poste-
rior distribution q(xt|y1:T ) are parametrized by deep neural
networks as illustrated in Fig 2. However, instead of jointly
learning the three models using the Evidence Lower Bound
(ELBO) as the objective function like in [5], we alternately
learn the dynamical model and the approximate posterior dis-
tribution as follow :

— Initialization : First, the approximate posterior net-
work q is initialized to reconstruct the observations
themselves. (xt = yt).

— Pseudo E-M : Given a series xq
1:T reconstructed by the

approximate posterior distribution, the dynamical mo-
del is trained to minimize the forecasting error of the
generated state sequences. Given F , the approximate
posterior network q and the observation network H are
then trained to minimized the distance between the new
reconstructed observation sequence yF1:T and the true
observation sequence y1:T . This process is repeated un-
til all the networks converge.

3. NUMERICAL EXPERIMENTS

In this section, we evaluate the proposed models in the
forecasting and assimilation of dynamical systems governed
by an unknown dynamical model when only provided with
noisy training data.



3.1. Synthetic case study

The Lorenz 63 dynamical system is a 3-dimensional mo-
del governed by the following ODE :

dxt,1
dt

= σ (xt,2 − xt,2)
dxt,2
dt

= ρxt,1 − xt,2 − xt,1xt,3
dxt,3
dt

= xt,1xt,2 − βxt,3

(3)

Under parameterization σ = 10, ρ = 28 and β = 8/3, this
system involves chaotic dynamics with two attractors.

We simulate Lorenz-63 state sequences using the LOSDA
ODE solver [6] with an integration step of 0.01. We then add
Gaussian noise with several variance levels N and evaluate
the learnt models given the noisy training data.

Experimental setting : We perform a quantitative ana-
lysis of the forecasting and data assimilation performance of
the proposed schemes with respect to state-of-the-art identifi-
cation techniques :

— Analog forecasting [4] (AF) : This model applies a
locally-linear regression operator estimated from nea-
rest neighbors of the current state and their successors
[4] ;

— Sparse regression model [2] (SR) : This model com-
putes a sparse regression over an augmented states vec-
tor based on second order polynomial representations.
The learnt dynamical model is then integrated to com-
pute forecasts using the LOSDA ODE solver [6].

— Four-block Bi-linear Residual Neural Network
(Runge-kutta 4 setting) (BRNN) : In this model,
we reproduce a runge kutta 4 integration scheme of
an approximate Ordinary Differential Equation (ODE)
governing our states. The parametrization of this ap-
proximate model is set as in [3] and the model is trained
to optimize the forecasting error ;

— Four-block Bi-linear Residual Neural Network trai-
ned in an EM scheme (BRNN-EM) : The same model
as above trained in an EM scheme as proposed in sec-
tion 2. The data assimilation technique used in the E-
step was an EnKS and the training of the BRNN model
in the M-step was carried through a Gaussian likelihood
maximization ;

— Variational Bi-linear Recurrent Neural Network
(VBRNN) : the dynamical model F is the BRNN des-
cribed above, the observation operator H is an identity
operator, the approximate posterior q(xt|y1:T ) is mo-
deled by a 2-layer bi-directional LSTM with the size of
9. To increase the capacity of this network, we also add
an encoder to embed the observation xt to the hidden
space of the LSTM and a decoder to reconstruct yt,
as shown in Fig. 2. Both the encoder and the decoder
are modeled by a fully connected network, with one
hidden layer of size of 7.

Forecasting and assimilation experiment : We report
the mean forecasting performance, the largest Lyapunov

Fig. 2: Architecture of the proposed VBRNN : xt : true state at a gi-
ven time step t, yt : noisy observation, ht : hidden state of the LSTM,
F and H are the neural network implementation of the dynamical
function and the observation operator, respectively. The backbone of
the approximate posterior network q(xt|y1:T ) is a LSTM, an enco-
der and a decoder network can be added to improve the modeling
capacity of q.

exponent of the data-driven models and the reconstruction
RMSE in Tab. 1. The proposed models achieve the best per-
formances in terms of forecasting error. This is due to the
training configuration of the dynamical models that rely on
assimilated states rather then directly using the noisy observa-
tions as a training set. Regarding the long term characteristics
of the proposed models, the VRBNN scheme is the only
model to keep generating long term Lorenz time series (cha-
racterized by a Lyapunov exponent similar to the true Lorenz
exponent) up to a noise level of N = 7. Finally, the assimila-
tion performance also supports the relevance of the proposed
models since only the neural networks based models achieve
the best scores for the highest noise level.

3.2. SLA case study

We also evaluate the relevance of the proposed EM based
NN architecture for the forecasting and reconstruction of Sea
Level Anomaly (SLA) dynamics 1.

We design an Observing System Simulation Experiment
(OSSE) associated with the fast-sampling phase of the fu-
ture mission assuming some noise patterns of the daily high-
resolution SLA data. The data used in this experiment was
generated by the WMOP model [8] with a 0.05◦ spatial reso-
lution and a temporal resolution h = 1 day. We focus on the
forecasting and reconstruction of fine scale components be-
low 100km. Therefore, the large scale component was com-
puted using an optimal interpolation and removed from the
original data. As case-study region, we consider a region in
the Algerian sea located on longitude 2.5◦E to 4.25◦E and
latitude 36.5◦S to 38.25◦S.

Our goal is to model and SLA anomaly time series using
the proposed NN architecture. Following [9], project our data
into an EOF subspace so that our patch is represented by a

1. We currently perform complementary experiments for this case-study
using the proposed VBRNN approach that would be included in the final
version.



Model N=0.5 N=3 N=7

AF t0 + h 0.21 0.51 0.43
t0 + 4h 0.27 0.48 0.87
λ1 -1.251 -46.64 -29.404
Assimilation 0.54 1.65 7.59

SR t0 + h 0.012 0.045 0.094
t0 + 4h 0.37 0.13 0.290
λ1 0.887 0.883 -0.240
Assimilation 0.81 2.35 8.51

RINN4 t0 + h 0.094 0.303 0.605
t0 + 4h 0.265 0.881 1.668
λ1 -0.574 -2.456 -2.241
Assimilation 0.60 1.47 2.17

RINN4-EM t0 + h 0.001 0.011 0.018
t0 + 4h 0.008 0.025 0.035
λ1 0.904 0.042 -0.15
Assimilation 0.57 1.39 2.10

VBRNN t0 + h 0.010 0.012 0.009
t0 + 4h 0.024 0.034 0.032
λ1 0.885 0.891 0.914
Assimilation 0.57 1.42 2.13

Table 1: Forecasting and assimilation performance of data-driven
models for Lorenz-63 dynamical model : first two rows : mean
RMSE for different forecasting time steps, third row : largest Lya-
punov exponent of a predicted series of length of 10000 time-steps
(The true largest Lyaponov exponent of the Lorenz 63 model is 0.90
[7]). Last row : data assimilation RMSE of a reconstructed a time
series of length of 1000 time-steps when only observing the Lorenz
states ones every 8 time-steps.

15-dimensional vector. This EOF decomposition accounts for
92% of the total patch-level variance. Our training data was
then corrupted with a Gaussian noise with several variance le-
vels in the EOF space, which account for spatially-correlated
noise patterns.

Forecasting and assimilation experiment : We report
forecasting and assimilation performance in Tab.2. Similarly
to the experiments with synthetic data, the proposed NN mo-
del trained in an EM scheme outperforms both the state-of-
the-art techniques in terms of forecasting and assimilation
score, with a relative gain up to 18% in terms of assimila-
tion RMSE (the SR technique leads to a quasi-stationary short
term forecasting models regardless of the noise level which
explains the constant forecasting score).

4. CONCLUSION

In this work, we demonstrated the relevance of training
data driven models in data assimilation schemes when pro-
vided with noisy training data. Further works could explore
the relevance of such frameworks in the identification of sea
surface dynamics based on real observations. The extension
of the proposed framework to non-Gaussian systems through
the use of a particle filter is also an interesting issue since it
may extend the proposed framework to the representation of
different distributions such as extremes.

Model N=0.2 N=0.3 N=0.5

AF t0 + h 0.059 0.067 0.071
t0 + 4h 0.074 0.087 0.092
Assimilation 0.041 0.050 0.062

SR t0 + h 0.017 0.017 0.017
t0 + 4h 0.043 0.044 0.044
Assimilation >0.5 >0.5 >0.5

RINN4 t0 + h 0.016 0.031 0.037
t0 + 4h 0.050 0.055 0.078
Assimilation 0.041 0.050 >0.5

RINN4-EM t0 + h 0.017 0.030 0.019
t0 + 4h 0.045 0.048 0.048
Assimilation 0.042 0.045 0.051

Table 2: Forecasting and assimilation performance of data-driven
models for the SLA case-study : first two rows : mean RMSE for
different forecasting time steps, third row : data assimilation RMSE
of a reconstructed time series over the first 347 days of the year 2015.
In the assimilation experiment, we used as observations synthetic
along-track observations generated from real satellite track spatio-
temporal locations from a four-altimeter sampling configuration.
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