
Supplementary materials: Liquid Chromatography Coupled to High Resolution Mass Spectrometry for the Confirmation of Caribbean Ciguatoxin-1 as the Main Toxin Responsible for Ciguatera Poisoning Caused by Fish from European Atlantic Coasts

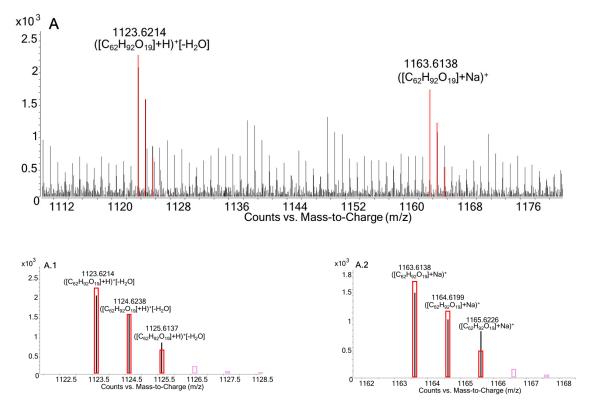

Pablo Estevez, Manoella Sibat, José Manuel Leão-Martins, Pedro Reis Costa, Ana Gago-Martínez and Philipp Hess

Figure S1. ESI⁺ Targeted MS/MS spectra of C-CTX1 LRM (123 ng/mL approx.) selecting C-CTX1 m/z 1123.6200 [M+H-H₂O]+ at an average collision energy of 20, 40 and 60 eV.

Figure S2. LC-HRMS chromatogram of **A**) C-CTX1 LRM (123 ng/mL approx.) at 7.8 min; **B**) C-CTX1 detected at 7.8 min in a naturally contaminated sample of barred hogfish (*Bodianus scrofa*) from Selvagens Islands (Portugal)

Figure S3. A) ESI⁺ Full scan MS spectra of Barred hogfish (*Bodianus scrofa*) from Selvagens Islands (Portugal); **A.1**) Zoom of C-CTX1 *m/z* 1123.6214 [M+H-H₂O]⁺; **A.2**) Zoom of C-CTX1 *m/z* 1163.6138 [M+Na]^{+.}

Table S1. Accurate mono-isotopic masses (theoretical and measured) of C-CTX1 after ESI⁺ Targeted MS/MS analysis selecting $[M+H-(H_2O)]^+$ at m/z 1123.6200 with an averaged collision energy of 20, 40 and 60 eV (**A**) and 30, 50 and 70 eV (**B**).

Ion	Molecular Formula	Theoretical m/z	Α		В	
			Measured m/z	Error (ppm)	Measured m/z	Error (ppm)
$[M+H-H_2O]^+$	$C_{62}H_{91}O_{18}^+$	1123.6200	1123.6191	-0.8	1123.6158	-3.7
$[M+H-2H_2O]^+$	C62H89O17 ⁺	1105.6094	1105.6065	-2.6	1105.6063	-2.8
[M+H-3H ₂ O] ⁺	$C_{62}H_{87}O_{16}^+$	1087.5989	1087.5996	0.6	1087.5933	-5.1
$[M+H-4H_2O]^+$	$C_{62}H_{85}O_{15}$	1069.5883	1069.5879	-0.4	1069.5865	-1.7
	C31H47O9 ⁺	563.3215	563.3211	-0.7	n.d.	n.d.
	$C_{31}H_{45}O_{8}^{+}$	545.3109	n.d.	n.d.	545.3072	-6.8
	$C_{31}H_{43}O_{7}^{+}$	527.3003	n.d.	n.d.	527.2953	-9.5
	$C_{31}H_{41}O_{6^+}$	509.2898	n.d.	n.d.	509.2873	-4.9
	$C_{14}H_{21}O_{4}^+$	253.1434	n.d.	n.d.	253.1431	-1.2
	$C_{14}H_{19}O_{3}^{+}$	235.1329	n.d.	n.d.	235.1334	2.1
	$C_{12}H_{17}O_{3}^{+}$	209.1172	n.d.	n.d.	209.1173	0.5
	$C_{12}H_{15}O_{2^+}$	191.1067	191.1062	-2.6	191.1066	-0.5
	C11H17O2 ⁺	181.1223	181.1228	2.8	181.1224	0.6
	$C_9H_{13}O_{2^+}$	153.0910	153.0919	5.9	n.d.	n.d.
	$C_7H_{15}O_{3^+}$	147.1016	147.1022	4.1	147.1011	-3.4
	$C_{6}H_{13}O_{3^{+}}$	133.0859	133.0854	-3.8	133.0856	-2.3
	$C_5H_{11}O_{2^+}$	103.0754	103.0751	-2.9	103.0751	-2.9
	$C_4H_9O_2^+$	89.0597	89.0596	-1.1	89.0595	-2.2
	$C_3H_7O^+$	59.0491	59.0489	-3.4	59.0487	-6.8