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Abstract We present a mathematical model of two competing marine species that are harvested. We consider three

models according to different levels of complexity, without and with species refuge and density-independent and

density-dependent species movement between fishing area and refuge. We particularly study the effects of the fishing

pressure on the outcome of the competition. We focus on conditions that allow an inferior competitor to invade as a

result of fishing pressure. The model is discussed in relationship to the case of the thiof and the octopus along the

Atlantic West African coast. At the origin, the thiof was abundant and the octopus scarce in that region. Since, the

fishing pressure has strongly increased in some fishing areas leading to the depletion of the thiof and the invasion of

its competitor, the octopus.

Keywords competition, refuge, density-dependent migration, density-independent migration, fishing pressure.

1 Introduction

The North western African coast lying from the Saharan bank to the Guinean shelf is known to be one of the most

productive marine area in world due to hydro-climatic conditions that induce the presence of a strong regional up-

welling system [4, 15, 30]. In link with this high level of biological productivity, this marine area is subjected to a

very ancient fishery exploitation [7], with a fishing pressure that began to reach very high rate during the last past

half century [1, 5, 14, 29] and is still increasing from the sixties until now [14]. This evolution of the fishing pressure

led ecological changes and important evolutions within the marine communities, in particular within the exploited

macrofauna (fishes, shellfish and cephalopods) [14]. Among the most striking changes, two facts were observed and
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widely documented. The first one concerns the population boom of the octopus (Octopus vulgaris) in Northwest Africa,

which occurred from the North area (Sahara, Mauritania) from the sixties [8, 11, 21, 28] and propagated southward to

reach Senegal from the years eighty [10, 11, 16]. The second change concerns a drastic and generalised depletion of

the demersal fishes abundances as a consequence of fishing effect [14]. This generalised decrease of fish abundances

lies since more than fifty year and concerns more or less almost all demersal fish populations of the area from north

to south, but especially those of Sparidae and of Serranidae species who matter among the most valuable and fishery

targeted species. Several authors made the link between these two observations [5, 9], in particular in studies having

attempting to describe and to understand the wide demographic explosion of octopus at the west Africa regional scale,

a species reported to be already present in the whole area at the beginning of the century but at very low concentrations

except punctually and in geographically very limited spots [8, 20, 28]. These authors so emitted the hypothesis as the

emergence of octopuses high concentrations, in the North first and at the scale of the whole region then, had been

made possible by the preliminary depletion of most of the demersal fishes [5, 6, 9], considered as their main predators

and competitors for food supply and space [11,13,20]. In previous works this hypothesis was thus established as direct

interpretation of the co-evolutions observed between these two groups as well as the knowledge on their biology and

their ecology. To our knowledge this hypothesis was never the object of any attempt to test it nor of any exploratory

specific analysis of mechanisms possibly in game . This is the objective the present study, that suggests to do this

using a modelling approach, with the construction of a theoretical competition model envisaged more specifically to

reproduce and analyse the interspecific relations and the joint dynamics of the Senegalese populations of octopus and

of a grooper called thiof (Epinephelus aenus), one of the most common and emblematic serranidae of th area, over the

period from the 1970s to our days. The choice of the thiof (rather than another demersal fish) and of the Senegalese

area are justified because in Senegal, the thiof was very abundant in the 70s as the octopus was almost absent or

rather scarce. Octopus demographic explosion in Senegal is reported to have began in the 80th [10, 11, 16] as well as

its fishing exploitation. The thiof represents one of the most ancient and emblematic fishing ressource of Senegal as

well as the one that registered the most drastic and continuous decrease in abundance during the last half century, a

decrease frequently highlighted as the most convincing example of overfishing effect in the area [22, 23, 25, 31]. This

species is also very well known by Senegalese people because considered as one of the best fish to use in the national

dish (Tieboudienne), even if it is nowadays frequently replaced by less expensive fishes. The thiof and the octopus

are competitive species feeding from some common resources and big thiof specimen are also a potential predators

octopuses. The case of the thiof and the octopus in Senegal lead us to consider a mathematical model of two marine

species competing for a common resource and that are harvested by the same fishing fleet. We assume that in absence

of fishing, species 1 (thiof) would be a superior competitor and species 2 (octopus) an inferior one. This means that
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without fishing, it is assumed that species 1 would outcompete species 2. Throught this model we want to explore the

potential effects of fishing both species on the outcome of interspecific competition. We want to address the following

questions:

- Can fishing provoke extinction of a superior competitor and induce invasion of an inferior one?

- Can the demograhic explosion of octopus in west Africa be explained by an indirect effect of high fishing pressure that

have modified the outcome of interspecific competition between octopus and some of their demersal fish competitors?

- Which consequence can we draw from this in terms of stock assessment and fisheries management of these resources

in the area?

2 Model

We consider a model consists in two competing species in a context of fishing dynamics. We assume that two species

are fished by a constant fishing effort. Considering that the two species are territorial and can use refuge, we envisaged

the two options for the modeling: the case without refuge (model 1) and the case with refuge (model 2).

2.1 Model 1: the case without refuge

We first consider the case without refuge. In this case, the model reads as follows.


dn1
dt

= r1n1

(
1− n1

K1
− a12

n2
K1

)
− q1n1E

dn2
dt

= r2n2

(
1− n2

K2
− a21

n1
K2

)
− q2n2E

(2.1)

where ni is the densities of species i, i ∈ {1, 2}. ri and Ki are the growth rate and the carrying capacity of the species

i, i ∈ {1, 2}. The parameter E is a constant fishing effort. The parameter qi represents the capture rate of the fishing

on the species i, i ∈ {1, 2}. Throughout the paper, we are interested in the asymmetric competition meaning that

species 1 is the superior competitor and species 2 is the inferior competitor. A straightforward calculation leads to the

following condition for the asymmetric competition:

a12K2

K1
< 1 <

a21K1

K2
(2.2)
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There are at most four non-negative equilibria which are P0(0, 0), P1((r1 − q1E)K1/r1, 0) (if r1 − q1E > 0),

P2(0, (r2 − q2E)K2/r2) (if r1 − q1E > 0) and P∗(n
∗
1, n

∗
2) provided one of the following two conditions holds:

(i) :
a12K2

K1
× r2 − q2E

r2
<
r1 − q1E

r1
<

K2

a21K1
× r2 − q2E

r2

or

(ii) :
K2

a21K1
× r2 − q2E

r2
<
r1 − q1E

r1
<
a12K2

K1
× r2 − q2E

r2

Denoting

O1 = q1E − r1;O2 = q2E − r2, I1 =
O2

r2
× a12K2

K1
− O1

r1
; I2 =

O1

r1
− O2

r2
× K2

K1a21

The condition Oi > 0 means that species i is over exploited. While the condition Ii > 0 is related to the case where

species i can invade when rare, i ∈ {1, 2}. It is obvious that if species is over exploited then it gets extinct. For instance,

if O1 > 0 and O2 < 0, it means that due to overfishing, the superior competitor is going extinct while the inferior

competitor which is not overexploited will survive and tend to some carrying capacity. Now we consider the case

where both species are not over exploited. In this case, model 1 is the same as the classical Lotka-Volterra competition

model [24]. The outcomes of model 1 are therefore the following: (i) the superior competitor wins globally; (ii) the

inferior wins globally; (iii) species wins depending on initial conditions; or (iv) the two species coexists. We are

interested in the case where the inferior competitor wins globally- case (ii). This case is valid if O1, O2, I1 < 0 and

I2 > 0. These inequalities hold provided K2 > K1 which is in agreement with the case of thiof and octopus. The

environment carrying capacity of the inferior competitor -octopus (K2) is much large than the one of the superior

competitor-thiof (K1). Figure 1 shows a phase portrait corresponding to the case.
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Fig. 1 Example with the inferior competitor wins globally in model 1. Parameters are chosen as follows r1 = 0.7; r2 = 1.3;K1 = 100;K2 =
100; a12 = 0.8; a21 = 2.2; q1 = 0.6; q2 = 0.3;E = 0.9.
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2.2 Model 2: the case with refuge and density independent migration

It is the fact that both species are territorial at least during some stages of their life. Observations have shown that the

grouper and the octopus spend part of their time at some stages in their refuges [12, 13, 19]. Therefore, in this part

we considered a model with two patches, a refuge and a patch where they need to come to find food. We suppose

that there is no food in the refuge and thus individuals cannot survive and die. However, in the refuge, individuals are

protected from fishing. However, individuals cannot stay in the refuge in the long term and they need to come back

to the common patch to find and compete for food [12, 17]. We assume that for both species, the migration is density

independent and is faster than the growth and mortality in the refuge and fishing in the common patch. Regarding the

density independence it is a statement put in the model 2, but we don’t know if it realistic or not. May be the inferior

competitor (octopus) have a migration rate depending on the density of the superior competitor (grouper). So we will

consider the alternative hypothesis in a following step (see model 3). Regarding the speed of the migration we can

assume the hypothesis considering the feeding behavior of the two species [12,17] and because in the present case for

both species the refuge area is composed of several individual refuges distributed inside the large and common fishing

area so that each species can leave their refuge at any time and reach the fishing zone almost instantaneously (with

migration time non significant compared to time spent in the refuges and the common fishing area). In general, the

dynamics of such a model is given by



dn1F
dτ

=

(
kn1R − kn1F

)
+ εr1n1F

(
1− n1F

K1
− a12

n2F
K1

)
− εq1n1FE

dn1R
dτ

=

(
kn1F − kn1R

)
− εd1n1R

dn2F
dτ

=

(
mn2R −mn2F

)
+ εr2n2F

(
1− n2F

K2
− a21

n1F
K2

)
− εq2n2FE

dn2R
dτ

=

(
mn2F −mn2R

)
− εd2n2R

(2.3)

where niF and niR are the densities of species i, i ∈ {1, 2}, in the fishing patch and in the refuge, respectively. Like

in the previous model, ri and Ki are the growth rate and the carrying capacity of the species i in the fishing patch.
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di is the natural death rate of species i in the refuge, i ∈ {1, 2}. The parameter E is a constant fishing effort. The

parameter qi represents the capture rate of the fishing on the species i. In addition, we suppose that k and m are the

emigration rates from the refuge to the fishing patch of species 1 and 2. The parameter k and m is the emigration rate

from the fishing patch to the refuge patch of species 1 and 2. The parameter ε represents the ratio between two time

scales t = ετ . Keeping in mind that we are still interested in the asymmetric competition. Therefore we use again the

condition 2.2.

The model is similar to the one presented in [26]. We use aggregation method to transform this model into a reduced

system with two ordinary differential equations governing the dynamics of the global variables: the total density of

species 1, n1(t) = n1F (t) + n1R(t), and the total density of species 2, n2(t) = n2F (t) + n2R(t). Both are adequate

candidates to global variables because they are constants of motion of the migration process, i.e., they keep constant

at the fast time scale. If we forget the competitive interactions, global densities will not change but the distribution of

each species between the two patches will evolve and tend towards certain equilibrium proportions. To calculate them

let us suppose fixed values of n1 and n2 and find the equilibria of the fast part of system 2.3. We obtain for species 1

n1F =
k

k + k
n1 = v∗1n1 and n1R =

k

k + k
n1 = v∗2n1 (2.4)

and for species 2

n2F =
m

m+m
n1 = u∗1n1 and n2R =

m

m+m
n1 = u∗2n1 (2.5)

where constants v∗1 and v∗2 represent the fast equilibrium proportions of species 1 on each patch while the constants

u∗1 and u∗2 represent the fast equilibrium proportions of species 2 on each patch. It is immediate to prove that these

equilibria are stable for fast dynamics.

Now, coming back to the complete model (2.3), we can write a system for the two global variables just by adding

up the corresponding equations and substituting the former state variables by the fast equilibria (2.4) and (2.5) as

follows:

n1F = v∗1n1, n1R = v∗2n1, n2F = u∗1n2 and n2R = u∗2n2

Obtaining the following aggregated system at the slow time scale:



dn1
dt

= n1

[(
r1v

∗
1 − q1v∗1E − d1v∗2

)
− r1v

∗
1
2

K1
n1 −

r1a12v
∗
1u

∗
1

K1
n2

]

dn2
dt

= n2

[(
r2u

∗
1 − q2u∗1E − d2u∗2

)
− r2u

∗
1
2

K2
n2 −

r2a21u
∗
1v

∗
1

K2
n1

] (2.6)
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According to aggregation methods [2, 3], we can study the dynamics of the complete system (2.3) by carrying out the

study of the aggregated model (2.6).

There are at most four non-negative equilibria which are P 0(0, 0), P 1((r1v
∗
1 − d1v

∗
2 − q1v

∗
1E)K1/r1(v

∗
1)

2, 0)

(if r1v∗1 − d1v∗2 − q1v∗1E) > 0), P 2(0, (r2u
∗
1 − d1u∗2 − q2u∗1E)K2/r2(u

∗
1)

2) (if (r2u∗1 − d1u∗2 − q2u∗1E) > 0) and

P ∗(n̂1, n̂2) provided one of the following two conditions holds:

(a) :
a12K2

K1
× r2u

∗
1 − d1u∗2 − q2u∗1E

r2u∗1
<
r1v

∗
1 − d1v∗2 − q1v∗1E

r1v∗1
<

K2

a21K1
× r2u

∗
1 − d1u∗2 − q2u∗1E

r2u∗1

or

(b) :
K2

a21K1
× r2u

∗
1 − d1u∗2 − q2u∗1E

r2u∗1
<
r1v

∗
1 − d1v∗2 − q1v∗1E

r1v∗1
<
a12K2

K1
× r2u

∗
1 − d1u∗2 − q2u∗1E

r2u∗1

Denoting

O1 = −r1v∗1 + d1v
∗
2 + q1v

∗
1E; O2 = −r2u∗1 + d1u

∗
2 + q2u

∗
1E

I1 =
O2

r2u∗1
× a12K2

K1
− O1

r1v∗1
; I2 =

O1

r1v∗1
− O2

r2u∗1
× K2

K1a21
;

The condition Oi > 0 means that species i is over exploited and/or the mortality rate is high in the refuge. While the

condition Ii > 0 is related to the case where species i can invade when rare, i ∈ {1, 2}. It is obvious that if species is

over exploited and/or the mortality rate is high in the refuge then it gets extinct. For instance, if O1 > 0 and O2 < 0,

it means that due to overfishing and/or to the high mortality rate in the refuge, the superior competitor is going extinct

while the inferior competitor which is not overexploited will survive and tend to some carrying capacity. Now, we

consider the case where both species are not over exploited. In this case, model 2 is the same as the classical Lotka-

Volterra competition model. The outcomes of model 1 are therefore the following: (i) the superior competitor wins

globally; (ii) the inferior wins globally; (iii) species wins depending on initial conditions; or (iv) the two species

coexists. We are interested in the case where the inferior competitor wins globally- case (ii). This case is valid if

O1, O2, I1 < 0 and I2 > 0. These inequalities hold provided K2 > K1 which is in agreement with the case of

thiof and octopus. The environment carrying capacity of the inferior competitor -octopus (K2) is much large than the

one of the superior competitor-thiof (K1). Figure 2 shows a phase portrait corresponding to the case. We compare, in

Figure 3, the complete model (red line) and the aggregated model (blue dots). It can be seen that the two phase plane

trajectories coincide for small values of ε.
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Fig. 2 Example with the inferior competitor wins globally in model 2. Parameters are chosen as follows r1 = 0.9; r2 = 0.7;K1 = 100;K2 =
100; a12 = 0.8; a21 = 2.2; q1 = 0.6; q2 = 0.3;E = 0.9; d1 = 0.2; d2 = 0.4; k = 5; k = 7;m = 6;m = 0.2.
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Fig. 3 Example with the inferior competitor wins globally in model 2: A comparison between the aggregated model (blue dots) and the complete
model (red line). The parameters are the same as in Figure 2 except for ε = 0.01.

2.3 Model 3: the case with refuge and density dependent migration

In this part, we consider a model which is similar to model 2 but with the density dependent migration case. Indeed,

observations in Senegal have shown that during the benthic stage of his life (juvenile and adult stages), the octopus

can stay hiding in its refuge during relatively long period [12, 13, 19]. It is may be to avoid contests with competitors

and predators. On the contrary, the grouper may not be sensitive to octopus density [12, 17]. As a consequence, in our

model we assumed that the migration of octopus is grouper density dependent while the migrationof grouper is density
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independent. The model then reads as follows



dn1F
dτ

=

(
kn1R − kn1F

)
+ εr1n1F

(
1− n1F

K1
− a12

n2F
K1

)
− εq1n1FE

dn1R
dτ

=

(
kn1F − kn1R

)
− εd1n1R

dn2F
dτ

=

(
mn2R −

(
αn1F + α0

)
n2F

)
+ εr2n2F

(
1− n2F

K2
− a21

n1F
K2

)
− εq2n2FE

dn2R
dτ

=

((
αn1F + α0

)
n2F −mn2R

)
− εd2n2R

(2.7)

In equations (2.7), species 1 use density independent migration as in model 2. In addition, we assume that species 2 use

density-dependent migration (αn1F + α0) from the fishing patch to the refuge. Here α is a parameter that represents

the strength of density-dependence in migration, i.e. if there are too many n1 individuals in the fishing patch then n2

individuals are more likely to leave this patch to the refuge. In the case α = 0 then species 2 uses density-independent

migration from the fishing patch to the refuge with the per capita emigration rate α0. The parameter ε represents the

ratio between two time scales t = ετ . Keeping in mind that we are still interested in the asymmetric competition.

Therefore we use again the condition 2.2.

Again, we are going to use aggregation method to transform this model into a reduced system with two ordinary

differential equations governing the dynamics of the global variables: the total density of species 1, n1(t) = n1F (t) +

n1R(t), and the total density of species 2, n2(t) = n2F (t) + n2R(t). Both are adequate candidates to global variables

because they are constants of motion of the migration process, i.e., they keep constant at the fast time scale. If we

forget the competitive interactions, global densities will not change but the distribution of each species between the

two patches will evolve and tend towards certain equilibrium proportions. To calculate them let us suppose fixed values

of n1 and n2 and find the equilibria of the fast part of system (2.7). We obtain for species 1

n1F =
k

k + k
n1 = v∗1n1 and n1R =

k

k + k
n1 = v∗2n1 (2.8)

and for species 2

n2F =
m

H(n1)
n2 and n2R =

αv∗1n1 + α0

H(n1)
n2 where H(n1) = αv∗1n1 + α0 +m (2.9)
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where constants v∗1 and v∗2 represent the fast density independent equilibrium proportions of species 1 on each patch

while the functions m/H(n1) and (αv∗1n1 + α0)/H(n1) represent the fast species 1 density dependent equilibrium

proportions of species 2 on each patch. It is immediate to prove that these equilibria are stable for fast dynamics.

Now, coming back to the complete model (2.7), we can write a system for the two global variables just by adding

up the corresponding equations and substituting the former state variables by the fast equilibria (2.8) and (2.9) as

follows:

n1F = v∗1n1, n1R = v∗2n1, n2F = mn2/H(n1) and n2R = (αv∗1n1 + α0)n2/H(n1)

Obtaining the following aggregated system at the slow time scale:


dn1
dt

= n1

[
(r1v

∗
1 − q1v∗1E − d1v∗2)−

r1v
∗
1
2

K1
n1 −

r1a12v
∗
1m

K1H(n1)
n2

]
dn2
dt

=
n2

H(n1)

[
(r2m− q2mE − d2(αv∗1n1 + α0))−

r2m
2

K2H(n1)
n2 −

r2
K2

a21mv
∗
1n1

] (2.10)

According to aggregation methods [2, 3], we can study the dynamics of the complete system (2.7) by carrying out the

study of the aggregated model (2.10). To avoid having a lot of parameters, we rewrite system (2.10) equations by using

new parameters as follows: 
dn1
dt

= n1

[
A−Bn1 −

C

H(n1)
n2

]
dn2
dt

=
n2

H(n1)

[
M −Nn1 −

P

H(n1)
n2

] (2.11)

where A = r1v
∗
1 − q1v

∗
1E − d1v

∗
2 ; B = r1(v

∗
1)

2/K1; C = r1a12v
∗
1m/K1; M = r2m − q2mE − d2α0; N =

d2αv
∗
1 + r2a21mv

∗
1/K2; P = r2m

2/K2.

A and M can be considered as the global growth rates for both species. Indeed, if one sets n2 = 0 in the first

equaion (2.11), species 1 grows according to a logistic growth with a global growth rate given by A. Similarly, if one

sets n1 = 0 in the second equation (2.11), species 2 also grows logistically with a global growth rate given by M .

Those growth rates take into account the natural growth rate and the mortality due to fishing and to the mortality in the

refuge.

Denoting

Õ1 = −A; Õ2 = −M ; Ĩ1 = PA−MC; Ĩ2 =MB −NA

The condition Õi > 0 means that species i is over exploited and/or the mortality rate is high in the refuge. While the

condition Ĩi > 0 is related to the case where species i can invade when rare, i ∈ {1, 2}. It is obvious that if species is

over exploited and/or the mortality rate is high in the refuge then it gets extinct. For instance, if Õ1 > 0 and Õ2 < 0,

10



it means that due to overfishing and/or to the high mortality rate in the refuge, the superior competitor is going extinct

while the inferior competitor which is not overexploited will survive and tend to some carrying capacity. Now, we

consider the case where both species are not over exploited. A full analysis of model 3 is given in the appendix. The

outcomes of model 3 are the following: (i) the superior competitor wins globally; (ii) the inferior wins globally; (iii)

species wins depending on initial conditions; or (iv) the two species coexists. We are interested in the case where the

inferior competitor wins globally- case (ii). This case is valid if Õ1, Õ2, Ĩ1 < 0 and Ĩ2 > 0. Figure 4 shows a phase

portrait corresponding to the case. We also compare, in Figure 5, the complete model (red line) and the aggregated

model (blue dots). It can be seen that the two phase plane trajectories coincide for small values of ε.
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Fig. 4 Example with the inferior competitor wins globally in model 3. Parameters are chosen as follows r1 = 0.9; r2 = 1.3;K1 = 100;K2 =
100; a12 = 0.8; a21 = 2.2; q1 = 0.6; q2 = 0.3;E = 0.9; d1 = 0.2; d2 = 0.4; k = 5; k = 7;m = 6;α = 1;α0 = 2.
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Fig. 5 Example with the inferior competitor wins globally in model 3: A comparison between the aggregated model (blue dots) and the complete
model (red line). The parameters are the same as in Figure 4 except for ε = 0.01.
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3 Discussion and Conclusion

About the main result of the study

Several situations or distinct hypothesis have been considered to describe (or simulate) the inter-specific com-

petition between octopus and white grouper. This led to three versions of the model from the simplest to the more

complicated one (model 1 to model 3). As the three models bring similar results, the discussion will focus on the

analysis resulting from the model 2 that we consider as the most realistic one (considering what we can draw from the

current knowledge of both species about the main mechanism in game in the targeted inter-species relationship). In

addition, the model 2 represents an intermediate between model 1 and model 3 (a compromise in term of complexity).

So in the following discussion, the generic term ”model” will refer by default to the version 2 or model 2 otherwise

the precision will be given (for other versions).

The most important result considering the ecological hypothesis we want explore about octopus explosion in

Senegal and North western Africa, is the result emerging from the equilibria of the aggregated model and the local

stability analysis. The model shows that in some conditions of fishing pressure the joint dynamics of both species can

reach stable equilibrium in which the inferior competitor (octopus) is winner globally and the superior competitor (E.

aenus) goes extincts. This interesting situation occurs when Õ1 > 0 and Õ2 < 0. In other words, the model predicts

that extinction of the superior competitor will occur when:

- The fishing effort for the superior competitor (the thiof) is large enough to provoke a global negative growth rate

A or else Õ1 > 0 i.e. the superior competitor is over exploited.

- The fishing effort is large for the inferior competitor (the octopus) but its global growth rate M remains positive

or else Õ2 < 0 i.e. the inferior competitor is not over exploited.

It makes sense to think that this case could explain the observed situation for the thiof and the octopus along the

Atlantic west African coast. Indeed, the natural growth rate of the octopus r2 is large [18] which could lead to a positive

global growth rate M for this species even with fishing. On the contrary, the natural growth rate of the thiof (r1) is

smaller in comparison and the fishing pressure on this species could be large enough to provoke a global negative

growth rate A for the thiof.

The same situation, i.e. extinction of the superior competitor, could also occur when the two global growth rates

are positive A > 0 and M > 0. This means that in this last case, the fishing pressure is not large enough to provoke
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a global negative growth rate neither for the thiof or the octopus. In that case, two supplementary conditions must be

verified, Ĩ1 < 0 and Ĩ2 > 0, which can be rewritten combining with the condition 2.2 as follows:

– Ĩ1 < 0 and (2.2) are equivalent to

K1

K2
×

(
1− q1E

r1
− d1
r1

ν∗2
ν∗1

)
(
1− q2E

r2
− q2
r2

µ∗
2

µ∗
1

) < a12 <
K1

K2

where µ∗
1 = m/(α0 +m), µ∗

2 = 1− µ∗
1.

– Ĩ2 > 0 and (2.2) are equivalent to

K2

K1
< a21 <

K2

K1
×


(
1− q2E

r2
− q2
r2

µ∗
2

µ∗
1

)
(
1− q1E

r1
− d1
r1

ν∗2
ν∗1

) − αd2K1

mr2

 .
These inequalities provide lower and upper limits for competition parameters which could be difficult to check. How-

ever, due to the large number of parameters, an adequate choice of parameters could be made to check all inequalities.

Among the two previous cases leading to extinction of the superior competitor, we believe that the first case (A < 0

and M > 0) is a good candidate to explain observations that are made for thiof and octopus in Senegal and along the

West Africa Atlantic coast.

Considering that the model has been constructed to integrate the general biological knowledge available on the two

species and to simulate their potential interactions in the field, this result is a demonstration that the main hypothesis

evoked by several authors [8, 11, 20, 28] to explain the explosion of octopus in a very plausible one.

Further and on a more general point of view our results gives a positive response to the question whether fishing

pressure can invert the outcome of interspecific competition. This hypothesis is sometimes evoked when considering

ecosystem effects of fishing (see for example NOAA (1998) and, in West Africa, [13, 14, 32, 33]) but to our knowl-

edge only as a potential mechanism among others to interpret unexplained ecological changes in highly exploited

ecosystems. This hypothesis is considered there at a very interpretative level without any attempt to demonstrate it on

concrete specific examples. Here the demonstration is of course not complete, staying at a theoretical and analytical

level (see discussion of this below). But this first step is nevertheless a very interesting result because of the wide range

of consequence it brings in terms of fishery management.

About some limitations of the present model and perspectives for future improvement

Even if based on concrete species and their observed general dynamics, a pattern observed reproduced similarly

along time in several area of the NW Africa (successively for North to South) during the extension of the octopus high
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density emergence and its subsequent exploitation by local fisheries, the model is still a theoretical one, not adjusted

to observed data. A reason of this is the practical difficulty to have good estimates of octopus abundances (because

of its high level of variability of the species at both the intra-annual and inter- annual temporal scale) and of white

grouper abundances at the same place and in relatively long series with same step of time (annual steps for example).

What is possible is to draw is thus the general scheme described in the introduction concerning the relative long term

trends of the two species (based on observations combining scientific trawling, commercial catches and evolution of

fishing strategies along last decades in the region). Anyway here this limitation is not a major problem as far as the

adjustment is not needed regarding the main purpose of the paper: to build a generic and long term model, to explain

the long term dynamics but not to simulate the short-term or middle-term joint dynamics of the two species. If one

wants to go further in the description on the joint dynamic of both species and built a model to simulate this, at local

and short term scale, this model will have to address or resolve the following issue:

a) The first one is the environmental based part of the abundance determinism of octopus which is kown to be very

large [13,33]: a short term simulation model (adjusted to observed data) would have to take account the environmental

variability that is essential to explain the observed short term abundance of octopus (due to annual and seasonal high

variability of the recruitment depending of environmental condition of the year, coupled to the very short lifespan of

the species: one year only [18].

b) The second issue concerns the difference in the speeds and natural variabilities of the two species dynamics:

with a relatively stable fish species of several year lifespan (thiof) and a very unstable species of only one year lifespan

(and half of this lifespan is represented by eggs development and pelagic larval stages, unobservable in the field and

of very low individual biomass).

c) The third issue will be to build a model more complex regarding the fishing pressure. This model should include

a variable (non constant) fishing pressure (and the eventually the mechanistic of the fishing pressure variation because

the reality where fishing pressure is has also a dynamic and complex determinism).

Indeed in the reality for our bi-species system, in terms of fishing pressure as well as for environmental influence,

we are not in stable external conditions and this is an issue to address in future modeling study aiming to simulate a

concrete and short term dynamics.

About some consequence in term of fisheries management

The present study brings analytical argument on the fact that fishing pressure can invert the outcomes of inter-

specific competition. As previously highlighted this is the major ecological result considering potential fishing effects.

But this result has also practical consequences to take into account when considering ecosystem based fishery man-

agement in general and specially in the case of emerging or new resources in multi-target fishery context. The stock
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assessment and the related scientific advice to provide for this kind of resource case cannot be based only on classical

monospecific approach.

In the case of the West Africa regional emergence of octopus high concentrations and exploitation, we have to

reconsider the way to assess the octopus resources in link with the other demersal resources and in particular the

related MSY (maximal sustanaible yields) estimations on these resources.

A management based on collection of cumulated mono-specifically based MSY, leads to unrealistic fisheries ob-

jectives, because based on a unrealistic vision of the cumulated productivity of the area. This modeling reinforce the

necessity to improve our ecological knowledge and the panel tools for fisheries assessment (like models and ecosystem

indicators), in order to brings current fisheries stock-based management towards more integrative and ecosystem based

fisheries management.
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exploitation par la pêche artisanale. In Gascuel D., Chavance P. Bez, N and Biseau A. (eds) , ”Les Espaces de l’Halieutique”, 4ème forum

halieumétrique, Editions IRD, Paris, coll. Colloques et Séminaires, 269-283.
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22. Laurans, M., Barry, M. and Gascuel, D., 2003: Revue des connaisances sur la biologie du thiof (Epinephelus aeneus) et diagnostic de l’etat du

stock au Senegal. In: D. Gascuel, M.D. Barry, M. Laurans and A. Sidibe (eds.), In: Evaluation des stocks demersaux en Afrique du nord-ouest.

Travaux du Groupe ”Analyses monospecifiques” du projet SIAP. COPACE/PACE Series 03/65: pp. 5-70.

23. Meissa B., Gascuel D. and Rivot E., 2013: Assessing stocks in data-poor African fisheries: a case study on the white grouper Epinephelus

aeneus of Mauritania. African Journal of Marine Science 35 (2): 253-267.

24. Murray, J.D., 2003: Mathematical Biology. I. An Introduction. Springer, New York.

16



25. Ndiaye, W., Thiaw M., Diouf K., Ndiaye P., Thiaw OT and Panfili J., 2013: Changes in population structure of the white grouper Epinephelus

aeneus as a result of long-term overexploitation in Senegalese waters. African Journal of Marine Science, 35.4: 465-472.

26. Nguyen-Ngoc D., Nguyen-Huu T., Auger P., 2012: Effects of Refuges and Density Dependent Dispersal on Interspecific Competition Dynam-

ics. International Journal of Bifurcation and Chaos, 22(2): 1250029.

27. Stephen K. Brown, Peter J. Auster, Liz Lauck, and Michael Coyne, 1998: National Oceanic and Atmospheric Administration (NOAA). (on-

line).”Ecological Effects of Fishing”. NOAA’s State of the Coast Report. Silver Spring

28. Pereiro, J.A., et Bravo de Laguna, J., 1981: Dynamique des populations et évaluation des stocks de poulpes de l’Atlantique Centre-Est. FAO,
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A Equilibria and local stability analysis of aggregated model

A.1 Rewrite model

To simplify, we denote by f(n1, n2) the function A−Bn1 −
C

H(n1)
n2 and by g(n1, n2) the function M −Nn1 −

P

H(n1)
n2. The model is

therefore written as follows: 

dn1

dt
= n1f(n1, n2)

dn2

dt
=

n2

H(n1)
g(n1, n2)

(A.1)

A.2 Jacobian matrix

J(n1, n2) =


f + n1f ′n1

n1f ′n2

n2

H(n1)
g′n1

−
n2gαv∗1
H2(n1)

g

H(n1)
+

n2

H(n1)
g′n2

 (A2)
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A.3 Equilibria and stability

– At (0, 0):

J(0, 0) =


A 0

0
M

α0 +m


The matrix has two eigenvalues A and M/(α0 +m). Therefore, (0, 0) stable if and only if M,A < 0.

– At
(
A

B
, 0

)
(the condition for its existence is that A > 0)

J

(
A

B
, 0

)
=



−A −
AC

BH(
A

B
)

0
M −N

A

B
α0 +m


The matrix has two eigenvalues: λ1 = −A < 0 and λ2 = (MB−NA)/(B(α0+m)). Thus, (A/B, 0) is stable if and only ifMB−NA <

0.

– At (0,MH(0)/P ) (the condition for its existence is that M > 0)

J(0,MH(0)/P ) =


PA−MC

P
0

MH(0)/P

H(0)
g′n1

−
MH(0)/Pgαv∗1

H2(0)
−

M

H(0)



The matrix has two eigenvalues: λ1 = −M/H(0) < 0 and λ2 = (PA −MC)/P . Thus, (0,MH(0)/P ) is stable if and only if PA −

MC < 0.

– At (n∗1, n
∗
2) where n∗1 = (PA −MC)/(PB − NC), n∗2 = (A − Bn∗1)H(n∗1)/C (the condition for its existence is that 0 < (PA −

MC)/(PB −NC) < A/B). The Jacobian matrix reads as follows:

J(n∗1, n
∗
2) =


n∗1f
′
n∗
1
n∗1f
′
n∗
2

n∗2g
′
n∗
1

H(n∗1)

n∗2g
′
n∗
2

H(n∗1)


A straightforward calculation leads to the following two possibilities (see figure 6 for more information). The first one, corresponding to conditions

PA−MC > 0 and MB −NA > 0, is the case where (n∗1, n
∗
2) is a stable point. The second one, corresponding to conditions PA−MC < 0

and MB −NA < 0, is the case where (n∗1, n
∗
2) is a saddle point.
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Fig. 6 Two cases where there exists a strictly positive equilibrium. (a) is related to the case where it is stable, (b) is related to the case where it is
saddle.
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4Institut de Recherche pour le Développement (IRD), UMR 248 MARBEC, LABEP-AO (IRD-IFAN), BP 1386, Dakar, Senegal

Email: didier.jouffre@ird.fr

19


