FN Archimer Export Format PT J TI A model based on data from echosounder buoys to estimate biomass of fish species associated with fish aggregating devices BT AF LOPEZI, Jon MORENO, Gala BOYRA, Guillermo DAGORN, Laurent AS 1:1;2:1,3;3:1;4:2; FF 1:;2:;3:;4:; C1 AZTI Tecnalia, Pasaia 20110, Gipuzkoa, Spain. IRD, UMR EME 212, Ave Jean Monnet,CS 30171, F-34203 Sete, France. ISSF, 805 15th St NW, Washington, DC 20005 USA. C2 AZTI, SPAIN IRD, FRANCE ISSF, USA UM MARBEC IN DOAJ IF 0.879 TC 22 UR https://archimer.ifremer.fr/doc/00626/73799/74376.pdf LA English DT Article AB Most of the drifting fish aggregating devices (DFADs) used in industrial tropical tuna purse seine fisheries are equipped with satellite linked echosounder buoys, which provide fishing crews with remote, accurate geolocation information and rough estimates of FAD-associated tuna biomass. One of the most common brands of echosounder buoys (SATLINK, Madrid, Spain) is currently calibrated for the target strength of skipjack tuna (Katsuwonus pelamis) and provides biomass data on. that species. Using that brand of echosounder buoy, we developed a new behavior-based approach to provide relative biomass estimates and a remote target classification of fish aggregations at FADs. The model is based on current knowledge of the vertical distribution of the main fish species associated with FADs, as well as on appropriate TS and weight values for different species and sizes, and is further based on parameter optimization against a set of fishing operations on DFADs. This model reduced the error variability in biomass estimates by about 60% and also reduced the ranges of underestimation. and overestimation by 55% and 75%, respectively. Similarly, the original coefficients of correlation and determination were also considerably improved from 0.50 and 0.25 to 0.90 and 0.82, respectively. We discuss how this new method opens new opportunities for scientific studies and has implications for sustainable fishing. PY 2016 PD APR SO Fishery Bulletin SN 0090-0656 PU Natl Marine Fisheries Service Scientific Publ Office VL 114 IS 2 UT 000374724100004 BP 166 EP 178 DI 10.7755/FB.114.2.4 ID 73799 ER EF