FN Archimer Export Format PT J TI Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? BT AF Solodoch, Aviv McWilliams, James C. Stewart, Andrew L. Gula, Jonathan Renault, Lionel AS 1:1;2:1;3:1;4:2;5:3; FF 1:;2:;3:;4:;5:; C1 Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Brest, France LEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France C2 UNIV CALIF LOS ANGELES, USA UBO, FRANCE UNIV TOULOUSE, FRANCE UM LOPS IN WOS Cotutelle UMR copubli-france copubli-univ-france copubli-int-hors-europe IF 3.373 TC 10 UR https://archimer.ifremer.fr/doc/00630/74184/73787.pdf LA English DT Article AB The southward flowing deep limb of the Atlantic Meridional Overturning Circulation is comprised of both the Deep Western Boundary Current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float data sets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (“hotspots”) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hotspots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian-mean streamlines separate from the DWBC to the interior at the leakiness hotspots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian-mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hotspots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the Southern Face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed. PY 2020 PD JUN SO Journal Of Physical Oceanography SN 0022-3670 PU American Meteorological Society VL 50 IS 7 UT 000617314700010 BP 1989 EP 2016 DI 10.1175/JPO-D-19-0247.1 ID 74184 ER EF