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Abstract: Coolia is a genus of marine benthic dinoflagellates which is widely distributed in tropical 
and temperate zones. Toxicity has been reported in selected Coolia species, although the identity of 
causative compounds is still controversial. In this study, we investigated the taxonomical and 
toxicological aspects of Coolia species from Brazil. Since light- and electron microscopy-based 
morphology was not enough to distinguish small-celled species, ITS and LSU D1-D3 phylogenetic 
analyses were used for species definition. Cultures of Coolia palmyrensis and Coolia santacroce were 
established from samples collected along the northeastern Brazilian coast, the first record of both 
species in South Atlantic waters. Cultures of Coolia malayensis and Coolia tropicalis were also 
established and exhibited acute in vivo toxicity to adults of Artemia salina, while C. palmyrensis and 
C. santacroce were non-toxic. The presence of 30 yessotoxin analogues, 7 metabolites of Coolia and 44 
Gambierdiscus metabolites was screened in 14 strains of Coolia. 44-methyl gambierone (formerly 
referred to as MTX3) and a new isomer of this compound were detected only in C. tropicalis, using 
both low- and high-resolution LC-MS/MS. To our knowledge, this is the first report of gambierone 
analogues in dinoflagellates other than Gambierdiscus; the role of C. tropicalis in ciguatera poisoning 
thus deserves to be considered in further investigations. 

Keywords: benthic microalgae; toxic dinoflagellates; toxicity assay; cooliatoxin; 44-methyl 
gambierone 

Key Contribution: Coolia santacroce and Coolia palmyrensis were described for the first time in the 
South Atlantic Ocean. Coolia malayensis and Coolia tropicalis were acutely toxic to Artemia salina via 
in vivo assays, but no yessotoxin analogues were found. Instead, the presence of 44-methyl 
gambierone and of a new isomer was first reported in C. tropicalis. 

 

1. Introduction 

The marine benthic dinoflagellates are recognized for producing a multitude of toxic 
compounds [1]. Studies concerning these microalgae have increased since the 1970s, after their 
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identification as causative agents of ciguatera poisoning (CP), the most common non-bacterial 
intoxication affecting human consumers of seafood in the world [2]. Today, ciguatoxins (CTXs) and, 
to a lesser degree, maitotoxins (MTXs) are regarded as the responsible compounds for CP symptoms 
[3–5]. These toxins, as well as gambieric acids [6], gambierol [7], gambieroxide [8], and gambierones 
[9], are produced by the dinoflagellate genus Gambierdiscus. However, other benthic dinoflagellates 
may also pose a threat marine organisms and human health, through the production of toxins such 
as palytoxin and analogues by Ostreopsis spp. [2], okadaic acid and dinophysistoxins by Prorocentrum 
spp. [10], and amphidinols by Amphidinium spp. [11,12]. Toxicity has also been reported for the 
broadly distributed genus Coolia [13], although the identity of causative compounds is still 
unresolved in this case. 

Coolia is present in both tropical and temperate seas [14], and to date, eight species have been 
described, namely C. monotis, C. tropicalis, C. areolata, C. canariensis, C. malayensis, C. palmyrensis, C. 
santacroce and C. guanchica [15]. Before 1995, Coolia monotis was the only species of the genus, when 
C. tropicalis was described on a morphological basis [16] and later re-described with molecular 
support [17]. Molecular techniques are also useful for distinguishing morphologically closely related 
species such as C. monotis, C. malayensis, C. palmyrensis and C. santacroce [18,19], which could be 
otherwise misidentified [1,20]. In contrast, no molecular data are available for C. areolata yet, but this 
species can be easily identified using morphological features [1]. Therefore, integrative taxonomy 
should preferably be used for correct identification of Coolia spp., and future studies should focus on 
clarifying morphological differences among closely related species. 

The most widely distributed species within the genus is C. malayensis, found in every ocean on 
both tropical and temperate zones [14,21,22]. Other species like C. tropicalis, C. canariensis and C. 
palmyrensis are present in both Atlantic and Pacific oceans, but they are likely restricted to tropical 
areas [19,22–24]. The reported geographical distribution of the remaining species is much more 
limited. For instance, C. monotis has only been reported in the Atlantic Ocean [14,24], C. santacroce in 
the U.S. Virgin Islands [19] and C. guanchica in the Canary Islands [15]. C. areolata was cited only from 
the Indian Ocean [25]. In Brazil, thus far, C. malayensis can be found along the entire coast, while C. 
tropicalis and C. canariensis are restricted to warmer, northern waters [12,26–28]. 

In an earlier study, Coolia sp. (reported as C. monotis) exhibited positive effects on hemolytic 
assays [29] and, since then, this dinoflagellate genu has been considered potentially toxic to marine 
organisms [1]. Later studies confirmed the toxicity in strains of C. tropicalis, C. malayensis, C. 
palmyrensis and C. santacroce [19,27,30–32], although no toxic effects have been reported in C. monotis, 
C. canariensis, C. guanchica, and in other strains of C. malayensis [15,19,33,34]. Furthermore, toxic 
compounds, named cooliatoxins, have been described from C. tropicalis [30] and C. malayensis [32], 
but their chemical identities remain unclear [13]. In view of the marked species-specific differences 
in toxicity and the inconsistent findings described above, any local assessment of environmental risks 
associated to the presence of Coolia must be preceded by a proper characterization of the genus 
diversity, as well as a comprehensive screening for individual, toxic compounds and toxic effects 
among different species. 

In the present study, we investigated the phylogeny, morphology, toxin production and toxicity 
of Coolia species from different coastal areas in Brazil, including samples from poorly explored sites. 
Molecular analysis and electron microscopy were carried out for species identification. As a result, 
the distribution range of C. malayensis, C. palmyrensis, C. santacroce and C. tropicalis was expanded, 
and toxic and non-toxic strains were characterized and differentiated. We evaluated the toxicity of 
these four species through acute exposure assays with adults of the microcrustacean Artemia salina. 
Moreover, 14 different monoclonal cultures were screened using either low and high mass 
spectrometry for the presence of several toxic compounds, including cooliatoxins, yessotoxins, 
ciguatoxins, maitotoxins, gambieric acids, gambierones, gambierol and gambieroxide. 
  



Toxins 2020, 12, 327 3 of 25 

 

2. Results 

2.1. Phylogenetics 

Species identification was initially evaluated by phylogenetic analyses based on ITS region (ITS 
1, 5.8S rDNA and ITS 2) and partial LSU rDNA (D1–D3 domains). The ITS phylogenetic analyses 
comprised 53 sequences, including 11 sequences from our monoclonal cultures, three outgroup 
sequences, and sequences retrieved from GenBank. The final ITS alignment was 336-base pairs long. 
The best-fit model was a TrN (Tamura-Nei model), with base frequencies of A = 0.27370, C = 0.14067, 
G = 0.22437, T = 0.36125, assuming a gamma distribution shape (G = 0.850). For LSU D1-D3, the final 
alignment comprised 65 sequences with 745 base pairs. The best-fit model was also a TrN, with base 
frequencies of A = 0.29774, C = 0.15203, G = 0.23614, T = 0.31410, assuming gamma distribution shape 
(G = 0.708). 

Phylogenetic analyses were performed with two reconstruction methods: maximum likelihood 
(ML) and Bayesian inference (BI). Considering that both ML and BI analyses gave the same tree 
topology and relationships among clades, only the majority-rule consensus tree of the ML analysis is 
shown herein. Six distinct clades were found in the phylogeny inferred from ITS sequences (C. 
malayensis, C. monotis, C. santacroce, C. palmyrensis, C. canariensis and C. tropicalis), and seven clades 
from LSU D1-D3 (same clades as those inferred from ITS plus Coolia guanchica) ( Figures 1 and 2). The 
sequences from Brazil fit within four (C. malayensis, C. santacroce, C. palmyrensis and C. tropicalis) out 
of the seven described species containing molecular data. 
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Figure 1. Maximum Likelihood phylogenetic tree inferred from ITS 1, 5.8S rDNA and ITS 2 sequences 
of various Coolia strains (LM034–LM141). Ostreopsis cf. ovata is used as outgroup. Black vertical bars 
show distinct Coolia clades. Numbers at nodes indicate bootstrap support values from Maximum 
Likelihood (ML) and posterior probabilities from Bayesian Inference (BI). 
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Figure 2. Maximum Likelihood phylogenetic tree inferred from LSU D1–D3 sequences of various 
Coolia strains (LM034-LM141). Ostreopsis sp. is used as outgroup. Black vertical bars show distinct 
Coolia clades. Numbers at nodes indicate bootstrap support values from Maximum Likelihood (ML) 
and posterior probabilities from Bayesian Inference (BI). 

2.2. Morphology and Geographical Distribution 

Cells of all Coolia species evaluated in the present study were nearly spherical, with slightly 
different degrees of anteroposterior compression among species. Living cells contained many golden-
brown chloroplasts. The thecal plate formulae followed a Po, 3’, 7’’, 5’’’, 2’’’’ pattern (according to 
[1]). 

Cells of C. malayensis were 23.3 to 29.8-μm deep (dorso-ventral length, DV) (mean ± standard 
deviation (SD) = 26.7 μm ± 1.9, n = 26), 19.6 to 29.3 μm wide (W) (24.3 ± 3.0, n = 13) and 16.6 to 25.3 
μm long (22.0 ± 2.6, n = 15) (antero-posterior length, AP). The DV/W ratio was 0.98–1.37 (1.12 ± 0.15, 
n = 11). The apical pore plate Po was short, 6.3 ± 0.5 μm, and slightly curved, contiguous to plates 1’, 
2’, with plate 3’ dorsally and left displaced, measuring 6.3 ± 0.5 μm (Table 1). The first apical plate 
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(1’) was oblong and hexagonal, with pore density equal to 0.30 pores μm−1 (Figure 3; Table 1). The 
largest plate in apical view was the sixth pre-cingular plate (6’’), touching plates 1’, 3’, 5’’, and 7’’, 
with pore density of 0.24 pores μm−1 (Figure 3; Table 1). The seventh pre-cingular plate (7’’) was small 
and quadrangular, with 4–9 pores (Table 1). The large third post-cingular plate (3’’’) could be fully 
viewed in antapical view, exhibiting pore density of 0.18 pores μm−1 (Figure 3; Table 1) and occupying 
most of the hypotheca (Figure 3). The second antapical plate (2’’’’) was small and triangular, 
containing 3–8 pores (Table 1). The thecal surface was smooth and the mean diameter of thecal pores, 
0.33 ± 0.04 μm (n = 36). Strains of C. malayensis were obtained from material collected in the following 
Brazilian States: São Paulo, Rio de Janeiro, Bahia, Alagoas and Rio Grande do Norte (Table 1, Figure 
4). 

Table 1. Cell measurements of Coolia spp., in μm, as obtained from scanning electron micrographs 
(SEM). Minimum and maximum values, as well as the number of cells measured (in italics), are 
provided in parentheses following each average value. DV = dorso-ventral length (depth); W = width; 
AP = antero-posterior length (height); APC = apical pore complex. Pore density (pores μm−1) was 
measured using 5 × 5 μm square, placed in the center of the thecal plate. 

Measurement  C. malayensis C. santacroce C. palmyrensis C. tropicalis 

Cell size 

DV 26.7 (23.3–29.8, 26) 
27.6 (24.0–30.7, 

30) 
24.1 (19.1–28.4, 27) 

34.1 (24.3–
39.8, 29) 

W 24.3 (19.6–29.3, 13) 
26.5 (23.2–29.7, 

26) 
22.2 (17.4–27.3, 29) 

32.9 (23.6–
39.7, 29) 

AP 22.0 (16.6–25.3, 15) 
23.8 (18.0–30.0, 

16) 
21.0 (16.9–26.1, 8) 

28.0 (25.6–
31.3, 9) 

DV/W 1.12 (0.98–1.37, 11) 
1.05 (0.98–1.21, 

20) 
1.11 (0.97–1.29, 22) 

1.08 (0.97–
1.24, 20) 

APC length 6.3 (5.3–7.4, 13) 5.9 (4.9–7.4, 8) 6.3 (5.5–7.5, 8) 
7.2 (6.3–8.6, 

9) 

Pore size 0.33 (0.26–0.42, 36) 
0.31 (0.25–0.44, 

40) 
0.27 (0.23–0.42, 31) 

0.35 (0.27–
0.42, 31) 

Pore 
density 

Plate 
1’ 

0.30 (0.20–0.44, 16) 
0.29 (0.20–0.36, 

12) 
0.24 (0.20–0.28, 8) 

0.23 (0.16–
0.28, 11) 

Plate 
6’’ 

0.24 (0.16–0.32, 14) 
0.25 (0.20–0.32, 

10) 
0.18 (0.16–0.20, 7) 

0.22 (0.16–
0.28, 8) 

Plate 
3’’’ 

0.18 (0.12–0.24, 14) 0.22 (0.16–0.28, 8) 0.16 (0.11–0.20, 11) 
0.22 (0.16–

0.28, 5) 

Pore 
number 

Plate 
7’’ 

6.8 (4–9, 19) 6.9 (4–10, 13) 4.0 (3–5, 6) 
13.3 (7–15, 

10) 
Plate 
2’’’’ 

5.1 (3–8, 13) 6.1 (4–9, 7) 3.5 (2–7, 8) 9.7 (8–12, 7) 

Origin of strains  
(Brazilian states) 

São Paulo, Rio de Janeiro, 
Bahia, Alagoas and Rio 

Grande do Norte 

Abrolhos 
Archipelago 

(Bahia) 

Abrolhos Archipelago 
(Bahia) and 
Pernambuco  

Rio Grande 
do Norte 
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Figure 3. Scanning electron micrographs (SEM) of Coolia malayensis (strain LM-036) cells showing: (A) 
apical view; (B) antapical view; (C) ventral view; (D) dorsal view; (E) right side view; (F) apical pore 
complex. Scale bar = 10 μm, except in F (7.5 μm). 

 
Figure 4. Sampling sites from the present study. Brazilian states and Abrolhos Archipelago (Bahia), 
where Coolia strains were established from, are indicated. 
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Cells of C. santacroce measured 24.0–30.7 μm in DV (27.6 ± 1.7, n = 30), 23.2–29.7 μm in W (26.5 ± 
1.8, n = 26) and 18.0–30.0 μm in AP (23.8 ± 3.1, n = 16). The DV/W ratio was 0.98–1.21 (1.05 ± 0.06, n = 
20). The mean diameter of thecal pores was 0.32 μm (SD = 0.04, n = 40) and the apical pore plate was 
5.9 ± 0.8 μm long (Table 1). The mean pore density was 0.29 pores μm-1 for plate 1’, 0.25 pores μm-1 
for plate 6’’, and 0.22 pores μm−1 for plate 3’’’ (Table 1). Cells of C. santacroce had 4–10 pores in plate 
7’’, and 4–9 pores in plate 2’’’’ (Table 1). Like in C. malayensis, size of the plate 3’’’ was impossible to 
measure in C. santacroce, due to the cell curvature (Figures 3 and 5). Specimens originating the C. 
santacroce strains used in the present study were sampled in Abrolhos Archipelago, Bahia (Table 1, 
Figure 4). 

 
Figure 5. Scanning electron micrographs (SEM) of Coolia santacroce (strain LM-113) cells, showing: (A) 
apical view; (B) antapical view; (C) apical/ventral view; (D) dorsal view; (E) right side view; (F) apical 
pore complex. Scale bar = 10 μm, except in F (7.5 μm). 

Mean cell size of C. palmyrensis was 19.1–28.4 μm DV (24.1 ± 2.3, n = 27), 17.4–27.3 μm W (22.2 ± 
2.4, n = 8) and 16.9–26.1 μm AP (21.0 ± 3.3, n = 8) AP. The DV/W ratio ranged from 0.97 to 1.29 (1.11 ± 
0.10, n = 22). The mean diameter of thecal pores was 0.27 ± 0.04 μm (n = 31) and the apical pore plate 
was 6.3 ± 0.7 μm long (Table 1). Plate 1’ exhibited 0.24 pores μm−1, plate 6’’, 0.18 pores μm-1, and plate 
3’’’, 0.16 pores μm-1 (Table 1). Plate 7’’ was ornamented with 3-5 pores, and plate 2’’’’, with 2-7 pores 
(Table 1). Cells of C. palmyrensis exhibited lower mean pore density when compared with C. 
malayensis and C. santacroce (Figures 3, 5 and 6), however, some cells were found containing a greater 
number of pores, so that an overlapping in pore density and pore number was recorded among the 
three species (Table 1). Strains of C. palmyrensis were obtained from samples collected in the coast of 
Pernambuco State and from Abrolhos Archipelago (Table 1, Figure 4). 
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Figure 6. Scanning electron micrographs (SEM) of Coolia palmyrensis (strain LM-076) cells showing: 
(A) apical view; (B) antapical view; (C) apical/ventral view; (D) dorsal view; (E) right side view; (F) 
apical pore complex. Scale bar = 10 μm, except in F (7.5 μm). 

Cells of C. tropicalis were 24.3–39.8 μm in DV (34.1 ± 3.3, n = 29), 23.6–39.7 μm in W (32.9 ± 3.2, n 
= 29) and 25.6–31.3 μm in AP (28.0 ± 2.1, n = 9). The DV/W ratio was 0.97–1.24 (1.08 ± 0.07, n = 20). The 
mean diameter of thecal pores was 0.35 ± 0.04 μm (n = 31) and the apical pore plate was 7.2 ± 0.8 μm 
long (Table 1). The mean pore densities were 0.23 pores μm-1 for plate 1′, 0.22 pores μm-1 for plate 6’’, 
and 0.22 pores μm-1 for plate 3’’’ (Table 1). Cells of C. tropicalis had 7–15 pores in the plate 7’’ and 8–
12 pores in the plate 2’’’’ (Table 1). This species was easily distinguished from the other three by its 
elongated, rectangular plate 7’’ (Figure 7). The only successful cultivated strain of C. tropicalis was 
obtained from material collected in Pernambuco (Table 1, Figure 4). 
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Figure 7. Scanning electron micrographs (SEM) of Coolia tropicalis (strain LM-141) cells showing: (A) 
apical view; (B) antapical view; (C) ventral view; (D) dorsal view; (E) right side view; (F) apical pore 
complex. Scale bar = 10 μm, except in F (7.5 μm). 

2.3. Toxicity 

Cells Toxicity was evaluated by feeding adults of Artemia salina with increasing biomass of Coolia 
spp. and proportionally decreasing biomass of a nontoxic algal species (Tetraselmis sp.) In control 
treatments, all A. salina individuals fed only with Tetraselmis sp. survived after 96 h of experiment, 
with no signs of impaired swimming or any other visual alteration. 

Among individuals fed with increasing biomass of C. palmyrensis (strain LM112) or C. santacroce 
(LM113), no significant toxic effect was recorded (Figures 8 and 9). On the contrary, exposure to C. 
malayensis (LM036) and C. tropicalis (LM141) was lethal to A. salina, with mortality rates directly 
related to biomass and exposure time (Figures 8C and 8D). C. malayensis killed up to 57% of A. salina 
individuals after 96 h of experiment, with no differences in mortality rates among those exposed to 
biomasses of toxic cells equivalent to 1500 ng C ml−1 or higher (Figure 8C). C. tropicalis, in turn, caused 
significantly increasing mortality rates with increasing biomass of toxic cells and exposure time, 
killing > 90% of the individuals after 72–96 h of exposure to the highest biomass tested (16,000 ng C 
ml−1) (Figure 8D). After 24 h, mortality rates caused by C. tropicalis were consistently higher than those 
provoked by equivalent biomass of C. malayensis at the same exposure time (Figures 8 and 9). 
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Figure 8. Lethality (%) of Coolia spp. to adults of Artemia salina over 96 h of exposure. Data series 
represent different biomass of the toxic algae, expressed as nanograms of carbon per mL. Maximum 
biomass (max) tested was 19,300 ng C mL−1 for C. malayensis, 16,000 ng C mL−1 for C. tropicalis, 15,000 
ng C mL−1 for C. santacroce, and 11,500 ng C mL−1 for C. palmyrensis. Half of the maximum biomass 
was also tested (max/2), as well as three fixed biomasses: 3000, 1500 and 750 ng C mL−1. 

 
Figure 9. Comparative results of Coolia toxicity assays on adults of Artemia salina, expressed by the 
lethal effect (%) after 72 h. Data series represent different species/strains tested. 

2.4. Toxin Analysis in Coolia spp. Using Low and High Resolution Mass Spectrometry, and Discovery of 
Gambierone Toxins in C. Tropicalis 

2.4.1. Screening of Coolia spp. Extracts Using High Resolution Mass Spectrometry (System A) 

Fourteen strains of Coolia spp. were analyzed in negative (ESI−) and positive (ESI+) full scan 
ionization mode on a high-resolution Q-Tof 6550 instrument. Raw data were processed following the 
Find by Formula (FbF) algorithm in the Agilent MassHunter Qualitative Analysis software, using a 
Personal Compound Database and Library (PCDL) created by Phycotoxins Laboratory (IFREMER, 
France). The in-house database used for Coolia spp. screening was composed of 81 compounds, 
including cooliatoxins, yessotoxins, ciguatoxins, maitotoxins, gambieric acids, gambierones, 
gambierol and gambieroxide (see Supplementary Material, Table S1). Screening with the PCDL 
allowed identification of compounds based on their formulae and thus detection of the compound 
itself or isomers. 
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In ESI+ mode, two compounds were tentatively identified in C. tropicalis (strain LM141) as 44-
methyl gambierone (MTX-3) at 6.0 and 6.6 min retention time (RT), with a score of > 90% and a mass 
error of < 5 ppm (Figure 10A). The analysis in ESI− mode confirmed the presence of the same two 
compounds at 6.0 and 6.6 min RT in C. tropicalis, identified as 44-methylgambierone with a score of 
> 90% and a mass error of < 10 ppm (Supplementary Material, Figure S1). These compounds were 
additionally investigated in an extract of Gambierdiscus autrales, used here as reference, as no 
analytical standard is available. The peak at RT = 6.6 min assigned to 44-methylgambierone was also 
present in G. australes, but no other peak was detected. The identity of peak at RT = 6.0 min in C. 
tropicalis extract was further determined as a new isomer of 44-methyl gambierone, as detailed below 
in Section 2.4.2. The assigned positive and negative HRMS ion species for these two compounds are 
listed in Table 2. 

No other known compounds were successfully identified (i.e., with a score > 90% and a mass 
error < 10 ppm) in any of the other thirteen Coolia strains, neither in positive nor in negative mode. 

Table 2. HRMS ion species corresponding to the accurate mono-isotopic m/z for 44-methyl 
gambierone and its isomer. Mass differences (Δ ppm) were compared between measured and exact 
theoretical mass. 

Ion species 
(mono-

isotopic m/z) 

44-methyl gambierone 44-methyl gambierone isomer 

RT = 6.6 min RT = 6.0 min 

[M+H]+ 1039.4959 (−2.1) 1039.4952 (+2.0) 
[M+H-H2O]+ 1021.4844 (+0.9) 1021.4837 (+3.3) 

[M+Na]+ 1061.4706 (−2.1) 1061.4757 (+0.4) 
[M+K]+ 1077.4398 (−8.5) 1077.4423 (−6.2) 
[M-H]- 1037.4797 (+1.1) 1037.4766 (−1.9) 

[M-H-H2O]- 1019.4651 (−2.8) 1019.4587 (−9.1) 

2.4.2. Comparative Fragmentation Between 44-Methyl Gambierone and the New 44-Methyl 
Gambierone Isomer 

As the FbF workflow procedure is not sufficient to unequivocally identify a compound, 
HRMS/MS spectral acquisition in both ESI− and ESI+ mode were necessary to confirm that the new 
compound was in fact an isomer of 44-methyl gambierone. 

In ESI−, fragmentation of the molecular anion [M-H]- at m/z 1037.4785 showed that both 
molecules shared the same product ions (Table 3, Figure S2). The fragments at m/z 899.3741 
[C43H63O18S]- and 96.9601 [HOSO3], which exhibited very small mass error (Δ ppm < 3) in our 
analysis, corresponded to the two fragments also described in previous studies [5,35]. 

The compound with RT at 6.0 min was further confirmed as an isomer of 44-methyl gambierone, 
by comparing the positive HRMS/MS with that of 44-methyl gambierone itself (Table 3, Figure 10B). 
Indeed, the fragmentation pathways showed the formation of protonated fragment ions with a small 
mass error (Δ ppm < 5 ppm) at m/z 959.5330, 941.5216, 923.5133, 905.5012 and 887.4945, corresponding 
to the sulfite loss followed by successive water losses. Furthermore, similar fragmentation patterns 
were observed from m/z 303 to 95 for both compounds, and the gambierone specific fragment ion 
was detected at m/z 109.0645, in the isomer as well (Δ ppm = −2.7). 
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Table 3. List of assigned HRMS/MS fragment ions for 44-methyl gambierone and its isomer obtained 
from MS² spectra of [M+H]+ at m/z 1039.4931 for ESI+, and of [M-H]− at m/z 1037.4785 for ESI−. The m/z 
values correspond to the accurate mono-isotopic m/z. 

Parent or fragment 
ion  Formula 44-methyl gambierone 44-methyl gambierone isomer Ref. (m/z) Δppm (m/z) Δppm 

Parent ion [M+H]+ C52H79O19S+ 1039.4909 -2.1 1039.4952 +2.0  

ESI+ 
Fragment ions 

C52H77O18S+ 1021.4834 +0.9 1021.4859 +3.3 

[5] 

C52H75O17S+ 1003.4773 +5.3 1003.4750 +3.0 
C52H79O16+ 959.5364 +0.1 959.5330 −3.4 
C52H77O15+ 941.5254 −0.3 941.5216 −4.4 
C52H75O14+ 923.5175 +2.5 923.5133 −2.0 
C52H73O13+ 905.5004 −4.6 905.5012 −3.7 
C52H71O12+ 887.4902 −4.3 887.4945 +0.6 

C43H65O18S+ 901.3847 −4.3 901.3880 −0.7 

[36] 

C43H63O14+ 803.4191 −2.7 803.4237 +3.1 
C15H21O2+ 233.1551 +6.4 233.1544 +3.4 
C15H19O+ 215.1438 +3.5 215.1443 +5.9 
C8H11O+ 123.0802 −2.0 123.0810 −5.2 
C7H9O+ 109.0652 +3.8 109.0645 −2.7 

 C7H11+ 95.0855 −0.3 95.0854 −1.3 
Parent ion [M-H]− C52H77O19S− 1037.4797 +1.1 1037.4766 −1.9  

ESI− 
Fragment ions 

C43H63O18S− 899.3743 +0.3 899.3732 −1.0 
[35] 

[HOSO3]− 96.9601 0 96.9599 −2.1 
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Figure 10. (A) LC-HRMS chromatogram (system A) of C. tropicalis extract and high resolution full scan mass spectra acquired in positive mode on the apex of the 
peak at (A1) 6.008 min for 44-methyl gambierone isomer and (A2) at 6.592 min for 44-methyl gambierone. HRMS/MS spectra of [M+H]+ (m/z 1039.4931) for (B1) 44-
methyl gambierone isomer at 6.008 min and for (B2) 44-methyl gambierone at 6.592 min, resulting from an average of three collision energies (15, 30 and 45 eV). 
Fragments common to both compounds were marked in red in the mass spectrum and reported in Table 3.
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2.4.3. Quantification of Gambierone Toxins With LC-LRMS/MS (System B) in C. Tropicalis 

The extract of Coolia tropicalis (strain LM141) was further analyzed on a low-resolution API4000 
Qtrap instrument, in order to confirm the previous results and to quantify the gambierone toxins 
(Figure 11). A targeted MRM method was performed in negative ionization mode for the screening 
of MTXs, gambierones and gambieric acids, as described in Section 5.5.2. Retention times (RTs) were 
slightly shorter in system B compared to system A, due to differences in dead volumes of the UHPLC 
systems. The strain of C. tropicalis contained 73 and 20 pg MTX-1 eq. cell−1 of 44-methylgambierone 
and 44-methylgambierone isomer, respectively. Therefore, under the culture conditions described in 
Section 5.1, this C. tropicalis strain contained 3.6-fold greater intracellular amounts of 44-methyl 
gambierone than those of its isomer. 

 
Figure 11. LC-MS/MS Chromatograms acquired in negative MRM mode (system B) of (A) MTX1 
standard solution at a concentration of 500 ng mL−1 (Wako, Japan) and (B) 44-methyl gambierone at 
5.93 min and the new isomer at 5.42 min in Coolia tropicalis extract. 

3. Discussion 

3.1. Taxonomy and Phylogeny of Coolia Species 

Coolia is usually considered a harmful genus of benthic dinoflagellates [1], even though marked 
species-specific differences in toxicity are observed, as reported herein and discussed later in Section 
3.3. Therefore, accurate taxonomy is desirable before any toxicological discussion concerning Coolia 
spp. For instance, prior to the description of C. malayensis, and without performing genetic analysis, 
the occurrence of toxic (CAWD77) and non-toxic (CAWD39 and CCMP304) strains of C. monotis was 
reported in New Zealand [31]. However, by retrieving genetic sequences of the same strains from 
GenBank, it is possible to find out that two out of three strains belonged, in fact, to C. malayensis, and 
that the actual C. monotis strain (CCMP304) was non-toxic. In the present study, before screening our 
strains for the presence of toxic compounds and toxic effects, we thus assessed Coolia spp. taxonomy 
based on morphology and genetic data, with special focus on the two most toxic species, i.e., C. 
malayensis and C. tropicalis. 

From all eight species of Coolia described so far, only one (C. areolata) has no molecular data 
available to date [15]. Genetic separation among the species is, in general, well resolved. Despite 
several studies suggesting that C. malayensis and C. monotis might be the same species [1,37], currently 
the separation into two different species is more widely accepted [14,19]. In the present study, the 
phylogenetic analysis on Brazilian strains of Coolia spp. revealed similar topology to previous 
investigations, clearly separating all species based on both ITS (ITS-1, 5.8S rDNA, ITS-2) and LSU 
(D1-D3) sequences. However, these two DNA fragments resulted in distinct relative distances 
separating both C. palmyrensis and C. canariensis from the other species. Thus, we strongly 
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recommend that phylogenetic analyses of Coolia include at least two markers in order to confirm 
species identification. 

As previously described, Coolia species can be morphologically separated into two major groups 
based on the shape of the seventh pre-cingular plate (7’’) [14,15,28]. Coolia monotis, C. malayensis 
(Figure 3C), C. palmyrensis and C. santacroce possess a short quadrangular (sometimes triangular) 7’’ 
plate, and the suture 7’’/1’ is short [14,19]. In contrast, Coolia tropicalis (Figure 7C), C. canariensis, C. 
guanchica and C. areolata exhibit a rectangular 7’’ plate. In this case, the suture between 7’’ and the 
first apical plate (1’; 7’’/1’) is elongated [15,16,23,25]. 

The species group encompassing C. tropicalis is characterized by a larger cell size compared to 
the C. monotis group (present study, Table 1; [15,16,18,19]). Both species groups are also 
distinguishable phylogenetically, based on the LSU D1-D3 alignment dataset (see Figure 2). 
Furthermore, C. tropicalis is easily separated from the other species within its own group (i.e., those 
possessing a rectangular 7’’ plate), based on the smooth cell surface on both epitheca and hypotheca 
(present study, Figures 7A–B; [15,23,28]). 

Conversely, species within the C. monotis group are difficult to separate from each other based 
solely on morphological features. Plate arrangements are quite similar, size ranges overlap, and 
thecal plates lack any kind of perforation patterns in these smaller-celled species. For C. malayensis, a 
larger third post-cingular plate (3’’’) is the most noticeable feature distinguishing it from other species 
from C. monotis group. In fact, we did observe this feature in most of the cells examined in this study. 
However, its use as diagnostic of C. malayensis may be questionable, as plate 3’’’ can be, in some cases, 
similar in size to plate 4’’’ (present study, [27,38]). As an additional complicating issue, measuring a 
large plate like 3’’’ can be inaccurate due to the pronounced cell curvature, making it inappropriate 
to base cell identification on morphometrics in this case. Alternatively, each of the species from C. 
monotis group could be differentiated from C. malayensis, based on a particular feature. C. palmyrensis, 
for instance, may be easily separated from other species based on the density and number of pores 
on the cell surface [19]. In the present study, we confirmed that C. palmyrensis had a lower pore 
density than its sister species C. malayensis and C. santacroce (Table 1). However, as previously 
reported [19], some variability exists, and the ranges of both pore numbers and density can overlap 
between species. In this sense, C. malayensis may sometimes possess low pore density, thus mimicking 
C. palmyrensis, and vice versa (Table 1). Such inconstant thecae features can be attributed to natural 
variability inside the population, deformation due to culture conditions or to the cell-cycle phase [38]. 
In conclusion, as already indicated for C. monotis and C. santacroce [20], species identification within 
this group of species (C. monotis group) should always be supported by genetic data, as otherwise, it 
can lead to misidentification. 

3.2. Species Distribution and Diversity in Brazil 

Until quite recently, the distribution of benthic dinoflagellates was poorly documented in 
Brazilian waters, with the genus Coolia, represented at that time by C. malayensis, found exclusively 
along the southeastern coast [21]. Recent studies, however, have documented a larger number of 
species (C. malayensis, C. tropicalis and C. canariensis), occurring over a wider geographical 
distribution, including the south [12], southeast [26,28] and northeast [27,28] sectors of the Brazilian 
coast. In the present study, we reported for the first time the species C. santacroce and C. palmyrensis 
occurring in South Atlantic waters, and confirmed the high genetic diversity of this genus in Brazil, 
as suggested by Nascimento et al. [28] Similar species composition has been found in the Canary 
Islands [15,23], suggesting a high degree of connectivity over the Atlantic Ocean. 

The most widely distributed species in Brazil is C. malayensis, present along the entire coast 
(present study, [12,26–28]). The other toxic species reported herein, C. tropicalis, is more restricted to 
the northeastern warm waters (present study) and the tropical oceanic island of Trindade [28]. The 
other three species, C. canariensis [28], C. santacroce and C. palmyrensis (present study), were found 
exclusively in offshore sites: Trindade Island for C. canariensis, Abrolhos Archipelago for C. santacroce 
and C. palmyrensis, and an offshore diving site in Pernambuco State for C. palmyrensis. Similar patterns 
of species distribution have been observed in Australia [22] and in the Iberian Peninsula [24], with C. 
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malayensis more broadly distributed, C. tropicalis restricted to warmer waters, and C. palmyrensis 
present in offshore sites. Coolia santacroce, in turn, had only been recorded, so far, in the Caribbean 
Sea (GenBank sequences). Thus, a general pattern of Coolia spp. distribution seems to arise from this 
and previous studies: C. malayensis is globally distributed (see [14]); C. monotis is probably broadly 
distributed in coastal waters of Europe and the East Atlantic [24]; while distributions of C. tropicalis, 
C. canariensis, C. santacroce and C. palmyrensis are more restricted, mainly to warmer waters and/or to 
offshore sites with lower hydrodynamics (present study, [22]). 

3.3. Toxicity and Toxin Production 

Toxicity within the genus Coolia (as Coolia sp.) was first reported in the early 1980s, based on 
hemolytic activity via in vitro assays, although no toxicity to mice and fish was registered for the 
same methanol extract [29]. Since then, this genus of benthic dinoflagellates has been considered 
potentially toxic [1]. However, later studies did not detect any toxic activity in several strains/species, 
using different cell models and organisms. For instance, ethanol extracts of cell pellets of C. monotis 
(strain CCMP304) or C. malayensis (CAWD39) were not toxic to mice following intraperitoneal 
injections in mouse bioassays (MBA) [31]. Additionally, Penna et al. [33] tested methanol extracts of 
C. monotis (strain CM2V) and C. malayensis (strain CCMP1345), and did not find any hemolytic 
activity to human erythrocytes. Similarly, methanol extracts of other C. monotis strains (CCMP2582 
and CCMP304) exhibited no cytotoxicity to Rhabdomyosarcoma cells derived from bone marrow [19]. 
Moreover, Artemia franciscana nauplii were not affected upon exposure to living cells of C. monotis 
(strains Dn23EHU, DN24EHU) or C. canariensis (strains Dn28EHU, Dn29EHU) [34], and no toxic 
effects were observed in A. salina nauplii exposed to filtered medium of C. guanchica cultures [15]. In 
the present study, likewise, no toxic effects were observed in adults of A. salina exposed to increasing 
abundances of living C. santacroce or C. palmyrensis cells. In contrast, cells of C. malayensis and C. 
tropicalis were lethal to the micro-crustaceans at equivalent biomass ranges (see Figure 8), confirming 
the marked species-specific variability in Coolia toxicity. 

After the early study by Nakajima et al. [29], Holmes et al. [30] evaluated the toxicity of C. 
tropicalis (as C. monotis) using MBA. The authors reported mouse mortality caused by the butanol-
soluble fraction of the extract, but no toxicity from either hexane- or water-soluble fractions. Later on, 
acetone and ethanol extracts from two different C. malayensis strains (CAWD77 and CAWD151) were 
also lethal to mice via MBA [31,39]. Moreover, C. malayensis (methanol extracts) exhibited the 
strongest cytotoxic effects to Rhabdomyosarcoma cells when compared to C. santacroce (intermediate 
toxicity) and C. palmyrensis (low toxicity) [19]. Finally, methanol extracts from Brazilian strains of 
both C. malayensis (UFBA044) and C. tropicalis (UFBA055) showed hemolytic activity to sheep 
erythrocytes [27]. These are the same species here reported as lethal to A. salina upon short-term (24–
96 h) exposure to living cells. In our experiments, a northeastern Brazilian strain of C. tropicalis 
(LM141) was relatively more toxic than a C. malayensis strain isolated from the southeastern coast 
(LM036). 

Taking the results from this and previous toxicity assessments together, we believe that at least 
C. tropicalis and C. malayensis should be considered toxic species. Toxicity of other Coolia species may 
vary geographically and should be more carefully evaluated, perhaps using a combination of 
different assays. For example, C. santacroce and C. palmyrensis strains from the Caribbean or the Pacific 
Ocean (Palmyra Atoll) were reported as cytotoxic by Karafas et al. [19], but strains from the present 
study were not lethal to A. salina. Nevertheless, considering only genetically sequenced strains, C. 
monotis, C. canariensis and C. guanchica have not shown, up to now, any sign of toxic activity (see 
discussion above), while the toxicity of C. areolata has not been examined [25]. 

The compounds responsible for the toxic activity in C. malayensis and C. tropicalis are still 
controversial. In 1995, an analogue of yessotoxin (YTX), then named cooliatoxin, was described in C. 
tropicalis (as C. monotis) using low-resolution LC-MS/MS [30]. The exact molecular structure of that 
compound, however, was not elucidated. Later on, related, yet unique, compounds with fewer 
oxygen atoms than cooliatoxin or YTX were detected in C. malayensis from Okinawa (Japan), and 
described as disulphated polyether analogues of YTX based on high-resolution LC-MS/MS [32]. 
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However, YTX analogues (including cooliatoxin) have never been detected again in other Coolia spp. 
cultures (present study, [23]). Besides YTX analogues, our strains of C. malayensis, C. palmyrensis and 
C. santacroce also lacked any other toxic compound produced by another genus of benthic 
dinoflagellates, Gambierdiscus, including maitotoxins, gambierones, gambieroxide, and gambieric 
acids. A strain of C. tropicalis, however, contained relatively high intracellular levels of 44-methyl 
gambierone (previously referred to as MTX-3 [35]) and a novel isomer of the same compound. 
Spectral data presented by Holmes et al. [30] suggest that 44-methyl gambierone was not present in 
that extract (absence of 1037.5 in the negative ionspray mass spectrum), suggesting either 
misidentification of species, intra-specific variability of toxin production or divergence of C. tropicalis 
between the Pacific and Atlantic Oceans. 

According to Boente-Juncal et al. [5], 44-methyl gambierone exhibits similar biological activities 
to gambierone and CTX3, leading to the decreased viability of undifferentiated neuroblastoma cells 
and modified expression of excitatory neurotransmitter receptor subunits. This compound can be 
produced by diverse Gambierdiscus species, mainly by G. australes, G. belizeanus and G. polynesiensis, 
which produce large amounts (reviewed in Longo et al. 2019). Intra-cellular contents of 44-methyl 
gambierone ranged from 5.8 to 74.1 pg MTX1 eq. cell−1 in G. polynesiensis (Longo et al. 2019). In the 
smaller C. tropicalis cells (G. polynsiensis is twice the size of C. tropicalis, see [40] and Table 1 above), 
we measured 73 and 20 pg MTX1 eq. cell−1 of 44-methylgambierone and 44-methylgambierone 
isomer. Such surprisingly high toxin levels are especially relevant considering that 44-methyl 
gambierone may be implicated in the neurological manifestations related to ciguatera poisoning (CP) 
in humans [5]. Thus, the role of C. tropicalis as another causative agent of CP deserves to be considered 
in further investigations. 

4. Conclusions 

Coolia is a potentially toxic marine dinoflagellate genus, with many taxonomical and 
toxicological issues yet to be evaluated and resolved. The smaller-celled Coolia species, including C. 
malayensis and similar species, cannot be clearly distinguished from each other based only on 
morphological features. Thus, in studies of any strain from the C. monotis species group (C. monotis, 
C. malayensis, C. santacroce and C. palmyrensis), the use of molecular data is mandatory. C. malayensis 
has proved to be the most broadly distributed species of the genus, found in both temperate and 
tropical waters of the Atlantic and Pacific Oceans, while other species occur in more restricted areas. 
This study increased from three to five (out of eight) the number of Coolia species reported in Brazilian 
waters so far, highlighting Brazil as an area of biodiversity for this genus. 

Assessment of Coolia toxicity can be rather controversial due to the distinct assays/techniques 
used, but also due to species-specific differences in the capacity of producing toxic compounds. In 
the present study, C. malayensis and C. tropicalis cells were toxic to adult Artemia individuals in 
feeding experiments, while C. santacroce and C. palmyrensis were not. Using both low- and high-
resolution LC-MS/MS, we detected considerable amounts of 44-methyl-gambierone (MTX3)—
previously limited to Gambierdiscus spp.—and a new 44-methyl gambierone isomer in C. tropicalis. 
According to previous studies, this compound exhibits a powerful cytotoxic effect, which might 
explain the toxicity in bioassays involving this species. 

5. Materials and Methods 

5.1. Sampling and Cultures 

Toxicity—Nineteen sampling campaigns were conducted from October 2016 to March 2018, at 
nine sampling sites along the Brazilian Coast (Figure 4), including coastal rocky shores and islands. 
Samples were collected and processed following the procedures described in Tester et al. [41] 
Seaweed samples were vigorously shaken to detach particles, and the seawater containing Coolia cells 
was used for microscopic observation and isolation of living cells. Cells of Coolia were isolated using 
a capillary pipette following successive washing in sterile, local filtered seawater. After initial growth 
through consecutive cell divisions, the volume of culture was successively doubled by transferring 
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the old aliquot to a larger microplate well, containing an equivalent volume of sterile, 50% diluted f/2 
media (f/4), without silica and ~ 32 salinity. From 10 mL wells, cultures were transferred to 50 and 
then 250 mL Erlenmeyer flasks, where they were maintained at 26 °C under a 12:12 h light cycle 
(irradiance of 70 ± 20 μmol m−2 s−1). Fourteen strains were successfully established and used in the 
present study (Table 4). For toxin analysis, cultivated cells were harvested at two growth stages 
(exponential and stationary growth phase). Cells were concentrated by centrifugation (2332 g, 5 min), 
the supernatant was removed, and samples were stored at −20 °C. Prior to toxin analysis, frozen cell 
pellets were lyophilized. 

Table 4. Coolia spp. strains used in the present study. 

Specie Strain Brazilian state Latitude (S) Longitude (W) Date 
Coolia malayensis LM-034 São Paulo 23° 50’ 36.90” 45° 24’ 15.66” 12/11/2016 

C. malayensis LM-036 Rio de Janeiro 23° 03’ 19.20” 44° 19’ 45.42” 10/11/2016 
C. malayensis LM-058 Rio de Janeiro 23° 01’ 16.20” 44° 19’ 47.52” 23/01/2017 
C. malayensis LM-066 Bahia 12° 34’ 54.30” 38° 00’ 03.90” 11/03/2017 
C. malayensis LM-085 Bahia 12° 57’ 20.46” 38° 21’ 36.06” 10/03/2017 
C. malayensis LM-132 Alagoas 09° 40’ 07.52” 35° 42’ 45.37” 22/02/2018 
C. malayensis LM-140 Rio Grande do Norte 05° 33’ 53.30” 35° 04’ 20.90” 10/03/2018 

Coolia palmyrensis LM-075 Pernambuco 08° 35’ 31.02” 34° 54’ 43.02” 28/03/2017 
C. palmyrensis LM-076 Pernambuco 08° 35’ 31.02” 34° 54’ 43.02” 28/03/2017 
C. palmyrensis LM-112 Bahia (Abrolhos) 18° 02’ 00.00” 38° 41’ 53.88” 15/10/2017 

Coolia santacroce LM-113 Bahia (Abrolhos) 18° 02’ 00.00” 38° 41’ 53.88” 15/10/2017 
C. santacroce LM-122 Bahia (Abrolhos) 18° 02’ 00.00” 38° 41’ 53.88” 15/10/2017 
C. santacroce LM-123 Bahia (Abrolhos) 18° 02’ 53.88” 38° 41’ 53.88” 15/10/2017 

Coolia tropicalis LM-141 Rio Grande do Norte 05° 33’ 53.30” 35° 04’ 20.90” 11/03/2018 

5.2. DNA Amplification, Sequencing and Molecular Phylogeny 

Cultured cells of Coolia spp. were harvested by centrifugation (2332 g, 5 min). The supernatant 
was removed and replaced by ethanol to preserve samples until DNA analysis. Before amplification, 
single cells from ethanol-preserved samples were isolated with a glass capillary and washed six times 
with deionized water. Single Coolia cells were placed in PCR tubes (at least two tubes for each 
sample), containing 1–3 μL of deionized water and stored at −20°C before direct PCR amplifications. 

Two consecutive PCR reactions (nested PCR) were performed to amplify the rDNA regions 
ITS1-5.8S-ITS2 (ITS) and LSU (D1-D3). For the first PCR reaction, 2.5 μL of each primer (ITSfw and 
D3B, Table 5), 12.5 μL of PCR Master Mix 2X (Promega, Madison®, WI, USA) containing the Taq DNA 
polymerase, dNTPs, MgCl2 and reaction buffers, and 6.5 μL of nuclease-free water were added to 
each tube. The PCR were performed in a Biometra TOne thermocycler (Analytik Jena), as follows: 
one initial denaturation step at 95 °C for 2 min, then 35 cycles of 30 s at 95 °C, 1 min at 62 °C (melting 
temperature, “MT”) and 1 min at 72 °C, and a final elongation step of 5 min 72 °C. For the second 
PCR reaction, 1 μL of the first product was added to a new tube containing 2.5 μL of each primer 
(ITSfw and 28S364r for ITS region; D1R and D3B for D1-D3; Table 3), 12.5 μL of GoTaq® G2 Hot Start 
Green Master Mix (Promega®, Madison, WI, USA) and 6.5 μL of nuclease-free water. The second PCR 
was performed as the first one, changing the MT to 50 °C for ITS, and 56 °C for D1-D3 region. DNA 
amplifications were controlled by electrophoresis on agarose gel. Positive samples were purified and 
sequenced, as described in Chomérat et al. [42] 

The alignment and phylogenetic analyses were performed as described in Chomérat et al. [42], 
with modifications as described below. Both ITS and D1–D3 rDNA region datasets were aligned 
using MAFFT algorithm, with selection of the q-ins-i strategy [43]. Poorly aligned positions were 
removed using Gblocks algorithm [44], and the most appropriate model of sequence evolution was 
selected using jModeltest2 v. 2.1.10 [45]. For both rDNA regions, TrN+G were the models used for 
Maximum Likelihood (ML) and Bayesian Inference (BI) analysis, with 2,000,000 generations 
performed in BI analysis for both alignments, and sampling every 100 generations. The posterior 
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probabilities of each clade were calculated from the remaining 20,000 trees. For some samples, the 
primer Coo5.8f (Table 5) was used in the sequencing reaction to obtain clearer sequences from ITS2. 

Table 5. Oligonucleotide primers used in the present study. 

Primer Sequence Reference 
ITSfw 5′-GTAGGTGAACCTGCGGAAGG-3ʹ [46] 

Coo5.8f 5′-ATGCAGAATCCCGTGAATCA-3ʹ Present study 
D1R 5′-ACCCGCTGAATTTAAGCATA-3ʹ [47] 
364R 5’-CTCTCTTTTCAAAGTCCTTTTC-3’ Present study 
D3B 5′-TCGGAGGGAACCAGCTACTA-3ʹ [48] 

5.3. Morphological Observations 

Prior to the scanning electron microscopy (SEM) observations, cultured Coolia cells were 
preserved with neutral and acidic lugol (1%). Small sample aliquots (2–5 mL) were placed on a piece 
of either a 5 μm Millipore filter or a 20 μm plankton net, rinsed with distilled water, and dehydrated 
in a series of increasing ethanol concentrations (30%, 50%, 70%, 90%, 95% and 100%), followed by 
critical point drying. Samples were finally mounted on a stub and sputter coated with gold 
palladium. Cells were observed using a JEOL® JSM 6360-LV (Japan) microscope at 15 Kv. Species 
identification was based mainly on original and recent Coolia spp. descriptions [11,15,16,18]. 

5.4. Toxicity Experiments 

The toxicity of selected Coolia spp. strains was evaluated through bioassays using adult 
individuals of the brine shrimp Artemia salina. After cyst hatching, A. salina larvae were kept in 
controlled tanks under constant aeration and fed non-toxic Tetraselmis suecica cells for 20–30 days. 
Then, adult specimens of A. salina were individually placed in wells of cell culture plates containing 
5 mL of autoclaved sea water each. Before each test, plates containing A. salina were acclimated for 
24–48h under the experimental conditions and fed with T. suecica in an amount equivalent to 150 ng 
C ind−1 h−1. During the test, they were exposed to increasing cell densities (i.e., treatments) of Coolia 
spp. and a complementary amount of non-toxic T. suecica cells, in order to maintain a comparable 
food supply over all treatments. Cell density of each strain depended on their cell biovolumes, which 
were calculated from approximate geometrical shapes after measuring 50 cells of each strain [49]. 
Cell biovolume was then converted into carbon biomass, following conversion factors described in 
Menden-Deuer et al. [50] The in vivo toxicity assays aimed at providing quantities of Coolia spp. 
equivalent to 4.7, 9.4, 18.8, 37.5, 75 and 150 ng C ind−1 h−1 for 96 h. The maximum biomass possible 
(according to each culture cell densities at late exponential growth phase), as well as half of the 
maximum, were also used as additional treatments. Maximum Coolia spp. quantities tested were 
equivalent to 965, 800, 750, 575 ng C ind-1 h-1 for C. malayensis, C. tropicalis, C. santacroce, and C. 
palmyrensis, respectively. 

Three cell culture plates were used for each experimental treatment, each containing twelve 
individuals of A. salina. From those, ten individuals were exposed to the toxic microalgae and the 
other two were exposed to the control condition, consisting of non-toxic T. suecica cells only. An extra 
plate containing twelve brine shrimps was used to increase the number of control individuals to 60, 
while 30 individuals were exposed to each treatment containing Coolia cells, adding up to 300 brine 
shrimps in each experiment. Survival of A. salina was evaluated after 1, 3, 12, 24, 48, 72 and 96 h of 
exposure. Individuals were considered dead if completely motionless at the bottom for 10 
consecutive seconds. 

5.5. Toxin Analysis 

Prior to toxin analysis, cell pellets were sonicated in bath ultrasound (Transonic TI-H-15, Elma®, 
Germany) at 45 kHz for 15 min with methanol/water (9:1, v/v). The mixture was centrifuged at 1200 
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g for 15 min. Supernatant was passed through a centrifuge NanoSep filter (0.2 μm Nylon, PALL®, 
UK) and recovered into plastic vials with conical insert. 

Filtered extracts from cell pellets were analyzed using two hybrid systems coupling ultra-high-
performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS), in either 
low- (LR) or high-resolution (HR). 

5.5.1. System A: HR-MS/MS 

System A was composed of a UHPLC system (1290 Infinity II, Agilent Technologies, Santa Clara, 
CA, USA) coupled to a 6550 ifunnel Q-TOF (Agilent Technologies, CA, USA), equipped with a Dual 
Jet Stream® ESI source. The high-resolution instrument was operated in both full scan and targeted 
MS/MS modes. Acquisition was carried out in positive and negative ionization modes, with 
optimized parameter sources. Temperature was set at 250 °C, drying gas flow at 16 L min-1, nebulizer 
gas at 15 psi and sheath gas at 12 L min−1 and 400 °C. Capillary and nozzle voltages were set at 5000 
V and 1000 V, respectively. Two reference masses m/z 121.0509 (purine) and m/z 922.0099 (hexakis 
phosphazine) were continuously monitored during the run. 

The chromatographic conditions were similar to those described for system B in Section 5.5.2 
below, except for the porosity of the Kinetex C18 column used (1.7 μm, instead of 2.6 μm). Mass 
spectra were acquired from 100 to 1700 m/z, with an acquisition rate of 2 spectra s-1. The targeted 
MS/MS mode was applied over m/z 50–1700, with an MS scan rate of 10 spectra s−1 and an MS/MS 
scan rate of 3 spectra s−1. Three fixed collision energies were applied by ionization mode (15, 30 and 
45 eV in ESI+; 30, 45 and 90 eV in ESI−), to obtain an overview of the fragmentation pathways. 
Instrument control, data processing and analysis were conducted using Mass Hunter software v.8.0 
(Agilent Technologies, CA, USA). 

5.5.2. System B: LR-MS/MS 

System B was composed of a UHPLC system (UFLC Nexera, SHIMADZU, Japan), coupled to a 
hybrid triple quadrupole-linear ion-trap API4000 Qtrap mass spectrometer (ABSciex®, Framingham, 
MA, USA), equipped with a TurboV® electrospray ionization source (ESI). The instrument control, 
data processing and analysis were conducted using Analyst software 1.6.2 (SCIEX, CA, USA). 

A linear gradient using water as eluent A and 95% acetonitrile as eluent B, both eluents 
containing 2 mM ammonium formate and 50 mM formic acid, was run through a Kinetex C18 
column, 50 × 2.1 mm, 2.6 μm, 100 Å (Phenomenex, Torrance, CA, USA). The flow rate was 0.4 mL 
min−1, the injection volume was 5 μL and the column temperature was 40 °C. The elution gradient 
was set as follows: 10% B to 95% B from 0 to 10 min, hold at 95% B for 2 min, decrease from 95% to 
10% in 1 min and hold during 3 min to equilibrate. Mass spectrometric detection was performed in 
negative ionization mode using MRM scanning. The m/z transition used is listed in Table 6 for 
Gambierdiscus metabolites and in Table S2 for YTXs toxins, for which certified standards were 
available. The optimized ESI- parameters were set as follows: curtain gas at 25 psi, ion spray at -4500 
V, turbo gas temperature at 500 °C, gas 1 and 2 at 50 psi, declustering potential at -210 V for 
Gambierdiscus metabolites and -120 V for YTXs toxins and an entrance potential at -10 V. 
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Table 6. List of MRM transitions (m/z) used in ESI- to detect MTXs, gambierone toxins and gambieric 
acids on system B (API 4000QTrap). 

Compound MRM transitions (m/z) CE (eV) CXP (eV) 

MTX1 

1689.8 >1689.6 [M-2H]2−/[M-2H]2− −40 −15 
1689.8 > 96.9 [M-2H]2−/[HOSO3]2− −125 −21 

1126.2 > 1126.2 [M-3H]3−/[M-3H]3− −40 −15 
1126.2 > 96.9 [M-3H]3−/[HOSO3]3− −125 −21 

MTX2 

1637.5 > 1637.5 [M-2H]2−/[M-2H]2− −40 −15 
1637.5 > 96.9 [M-2H]2−/[HOSO3]2− −125 −21 

1091.5 > 1091.5 [M-3H]3−/[M-3H]3− −40 −15 
1091.5 > 96.9 [M-3H]3−/[HOSO3]3− −125 −21 

MTX4 
1646.2 > 1646.2 [M-2H]2−/[M-2H]2− −40 −15 
1646.2 > 96.9 [M-2H]2−/[HOSO3]2− −125 −21 

desulfo-MTX1 
1649.8 > 1649.8 [M-2H]2−/[M-2H]2− −40 −15 
1649.8 > 96.9 [M-2H]2−/[HOSO3]2− −125 −21 

didehydro-demethyl- 
desulfo-MTX1 

1641.8 > 1641.8 [M-2H]2-/[M-2H]2− −40 −15 
1641.8 > 96.9 [M-2H]2-/[HOSO3]2− −125 −21 

Gambierone 
1023.5 > 1023.5 [M-H] −/[M-H]− −40 −15 
1023.5 > 96.9 [M-H] −/[HOSO3]− −125 −21 

44-methylgambierone  
1037.6 > 1037.6 [M-H] −/[M-H]− −40 −15 
1037.6 > 96.9 [M-H] −/[HOSO3]− −125 −21 

Gambieroxide 
1193.6 > 1193.6 [M-H]−/[M-H] − −20 −15 
1193.6 > 96.9 [M-H] −/[HOSO3] − −125 −21 

Gambieric acid A 
1055.1 > 1055.1 [M-H] −/[M-H] − −20 −15 
1055.1 > 1037.1 [M-H] −/[M-H-H2O] − −40 −15 

Gambieric acid B 
1069.1 > 1069.1 [M-H] −/[M-H] − −20 −15 
1069.1 > 1051.1 [M-H] −/[M-H-H2O] − −40 −15 

Gambieric acid C 
1183.7 > 1183.7 [M-H] −/[M-H] − −20 −15 
1183.7 > 1165.7 [M-H] −/[M-H-H2O] − −40 −15 

Gambieric acid D  
1197.7 > 1197.7 [M-H] −/[M-H] − −20 −15 
1197.7 > 1179.7 [M-H] −/[M-H-H2O] − −40 −15 

5.5.3. Quantification of Gambierone Toxins in C. Tropicalis 

In order to quantify the MTX and gambierone toxins, a calibration curve of MTX1 was prepared 
from successive dilutions of a standard solution (Wako, Japan) in 50% MeOH, with concentrations 
ranging from 0.2 to 5.0 μg mL−1. Due to the lack of analytical standards, each targeted compound was 
quantified from the MTX1 calibration curve prepared, assuming equivalent molar response. The 
amounts of gambierone toxins present in the C. tropicalis extract were estimated using the MRM 
transition [M−H]−/[M−H]−, whereas the bi-charged molecular anion [M−2H]2−/[M−2H]2− was used for 
MTX1. This was necessary, since the singly charged ion of MTX-1 is out of the mass range effectively 
detected by the instrument (50–2800 Da). 

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/12/5/327/s1, Table 
S1. List of compounds extracted from the Personal Compound Database and Library (PCDL, Agilent Mass 
Hunter software), created by Phycotoxins Laboratory (IFREMER, France) and used for Coolia spp. Screening, 
Table S2: List of MRM transitions (m/z) used in ESI- to detect YTXs on system B (API 4000QTrap), Figure S1. (A) 
LC-HRMS chromatogram of C. tropicalis extract and high resolution full scan mass spectra acquired in negative 
mode on the apex of peaks at (A1) 6.0 min for 44-methyl gambierone isomer and (A2) at 6.6 min for 44-methyl 
gambierone, Figure S2. HRMS/MS spectra of [M-H]- (m/z 1037.4785) for (A) 44-methyl gambierone isomer at 6.0 
min and for (B) 44-methyl gambierone at 6.6 min, resulting from an average of three collision energies (40, 65 
and 90 eV). 
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