FN Archimer Export Format PT J TI El Niño as a predictor of round sardinella distribution along the northwest African coast BT AF López-Parages, Jorge Auger, Pierre-Amaël Rodríguez-Fonseca, Belén Keenlyside, Noel Gaetan, Carlo Rubino, Angelo Arisido, Maeregu W. Brochier, Timothée AS 1:1,4,6;2:3,4;3:1;4:5;5:2;6:2;7:2;8:7; FF 1:;2:;3:;4:;5:;6:;7:;8:; C1 Dpto de Física de la Tierra y Astrofísica, UCM-IGEO, Complutense University of Madrid, Spain Dpto di Scienze Ambientali, Informatica e Statistica, Ca Foscari University of Venice, Italy Instituto Milenio de Oceanografía and Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile Laboratoire d’Ocanographie Physique et Spatiale (LOPS), IUEM, Brest Universit, CNRS, IRD, Ifremer, Brest, France Bjerknes Centre for Climate Research, Univ. of Bergen, Norway CERFACS/CNRS, Climate Modelling and Global Change Team, 42 avenue Gaspard Coriolis, 31057 Toulouse, France Institut de Recherche pour le Dveloppement (IRD), UMMISCO, Sorbonne Universit, Univertis Cheikh Anta Diop, Dakar, Senegal C2 UNIV COMPLUTENSE MADRID, SPAIN UNIV VENICE, ITALY UNIV VALPARAISO, CHILE UBO, FRANCE BCCR, NORWAY CNRS, FRANCE IRD, FRANCE UM LOPS IN WOS Cotutelle UMR copubli-europe copubli-int-hors-europe IF 4.08 TC 5 UR https://archimer.ifremer.fr/doc/00630/74211/73844.pdf LA English DT Article DE ;El Nino;Sardinella aurita;Coastal upwelling;Dynamical oceanography;Atmospheric sciences AB The El Niño Southern Oscillation (ENSO) produces global marine environment conditions that can cause changes in abundance and distribution of distant fish populations worldwide. Understanding mechanisms acting locally on fish population dynamics is crucial to develop forecast skill useful for fisheries management. The present work addresses the role played by ENSO on the round sardinella population biomass and distribution in the central-southern portion of the Canary Current Upwelling System (CCUS). A combined physical-biogeochemical framework is used to understand the climate influence on the hydrodynamical conditions in the study area. Then, an evolutionary individual-based model is used to simulate the round sardinella spatio-temporal biomass variability. According to model experiments, anomalous oceanographic conditions forced by El Niño along the African coast cause anomalies in the latitudinal migration pattern of the species. A robust anomalous increase and decrease of the simulated round sardinella biomass is identified in winter off the Cape Blanc and the Saharan coast region, respectively, in response to El Niño variations. The resultant anomalous pattern is an alteration of the normal migration between the Saharan and the Mauritanian waters. It is primarily explained by the modulating role that El Niño exerts on the currents off Cape Blanc, modifying therefore the normal migration of round sardinella in the search of acceptable temperature conditions. This climate signature can be potentially predicted up to six months in advance based on El Niño conditions in the Pacific. PY 2020 PD JUN SO Progress In Oceanography SN 0079-6611 PU Elsevier BV VL 186 UT 000552124300003 DI 10.1016/j.pocean.2020.102341 ID 74211 ER EF