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Abstract :   
 
There is growing interest in using mechanistic ecosystem models for ecosystem-based management, as 
they have the advantage of capturing both bottom-up and top-down processes as well as system 
interactions from food web structure, spatial constraints, and human activities. However, they have the 
disadvantage of requiring many parameters, many of which are unknown and must be estimated or 
calibrated to available data. Sensitivity analysis (SA) is an important part of simulation model development 
in order to understand model uncertainty and which parameters are more or less influential, but has been 
relatively neglected with Atlantis models due to the large number of parameters and long simulation run 
time. The Atlantis Eastern English Channel (Atlantis-EEC) model has been applied to investigate 
ecosystem dynamics and processes as well as fishery management scenarios. Here we present the 
results of a SA of growth, mortality, and recruitment parameters, which are parameters particularly difficult 
to measure and thus commonly tuned through model calibration. To manage the large number of 
parameters in the model, we used a Morris screening approach. This method can efficiently provide 
information on parameter main effects and interactions/non-linear effects with relatively few simulations. 
We performed an initial SA including all groups on 90 parameters, where we found that the most important 
drivers of system dynamics and biomass across groups were: (1) plankton growth and mortality rates and 
(2) top predator's fixed recruitment and juvenile mortality rates. We then performed a follow-up SA on a 
subset of 61 parameters, excluding top predators and plankton groups from the analysis. We found that 
all parameters were important for system stability, while individual groups’ biomass were generally most 
influenced by their own parameters and a subset of benthic invertebrates. Nonlinear/interaction effects 
were widespread, demonstrating the prevalence of feedback loops in the trophic structure, and the 
importance of bottom-up effects and, to a lesser extent, top-down effects. The information gained from 
this SA provided a better understanding of the model structure. It also allowed us to make 
recommendations on the general Atlantis model calibration process as well as suggesting which 
parameters may be most important for propagation of uncertainty in model scenarios. 
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Highlights 

► Sensitivity analysis of an end-to-end Atlantis model of the Eastern English Channel. ► Morris screening 
analysis with growth, mortality, and reproduction parameters. ► All parameters important for system 
stability. ► Bottom-up effects (plankton and some invertebrate parameters) stronger role than top-down. 
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1 Introduction 49 

Ecosystem models are growing in popularity in fisheries management in tandem with the 50 

rise of ecosystem-based management (EBM), in recognition of the complex ecosystem 51 

interactions that are rarely or only partially incorporated into traditional single-species models 52 

(Curtin & Prellezo 2010, Garcia et al. 2003, Pikitch et al. 2004, Skern‐Mauritzen et al. 2016). 53 

In particular, end-to-end ecosystem models strive to include all major relevant processes 54 

ranging from mechanistic processes like hydrodynamics and nutrient cycling to food web 55 

interactions to human activity in one modeling framework (Fulton 2010). One particular end-56 

to-end ecosystem model is Atlantis (Fulton et al. 2011, Audzijonyte et al. 2019), which has 57 

been implemented across at least 25 ecosystems around the globe with more in development 58 

(Weijerman et al. 2016). Atlantis models have been used to investigate different management 59 

strategies (Fulton et al. 2014, Kaplan et al. 2012, Weijerman et al. 2016), potential impacts of 60 

climate change on ecosystems (Griffith et al. 2012, Marshall et al. 2017, Nye et al. 2013, 61 

Ortega‐Cisneros et al. 2018), and impacts of extreme events such as oil spills (Ainsworth et 62 

al. 2018, Morzaria-Luna et al. 2018). However, a drawback of end-to-end ecosystem models 63 

in general and Atlantis models in particular, is the sheer number of parameters combined with 64 

the long running time which makes robust calibration and evaluation of the model difficult 65 

(Arhonditsis and Brett 2004, Fulton 2010, Rose et al. 2010).  66 

Due to these challenges, sensitivity analyses (SAs) of Atlantis models are rare and have 67 

tended to be local rather than global, meaning they explore small changes around the nominal 68 

values of parameters, e.g. the calibrated model, rather than a more complete exploration of the 69 

parameters space (Iooss & Lemaître, 2015). For example, Ortega-Cisnerosa et al. (2017) 70 

utilized a full factorial design but changed only the growth rate parameter for three plankton 71 

groups to three different values. Sturludottir et al. (2018) likewise examined parameters for 72 

plankton growth, as well as vertebrate recruitment, and oceanographic regime. Kaplan et al. 73 



(2012) modified the fishing mortalities across all fleets and all species by five values as well 74 

as tested removing spatial management. A more comprehensive SA was undertaken by 75 

Hansen et al. (2019) involving four parameters for nine different groups, utilizing primarily a 76 

one-at-a-time (OAT) design centered on baseline values. However, problems with a simple 77 

OAT approach of varying one parameter while holding the rest constant at baseline values are 78 

that is a local approach, thus it presumes model linearity and has also been shown to 79 

inadequately explore the parameter space, particularly as the number of parameters increases 80 

(Saltelli and Annoni, 2010). Additionally, a simple OAT SA cannot identify interactions 81 

among parameters. On the other hand, the full factorial designs used for few parameters and 82 

groups are not scalable to a comprehensive SA of an Atlantis model. Pantus (2007) used a 83 

precursor to Atlantis to examine adaptive screening, where the experimental design is not pre-84 

specified, rather information from each experiment is used to design the next, thus adaptively 85 

exploring the parameter space. However, adaptive screening generally assumes relatively few 86 

parameters (i.e. 10-20% of the total) are responsible for most of the response variance and that 87 

the effects of parameter interactions are small, which are increasingly violated the longer the 88 

model is run for, and thus was not successful when running the model beyond 10 years. 89 

In this paper, we take a global, screening approach to perform a more comprehensive SA 90 

of an Atlantis model for growth, recruitment, and mortality parameters. We chose a Morris 91 

analysis (Morris, 1991), the most complete screening method (Iooss and Lemaître, 2015) and 92 

a recommended alternative to a simple OAT SA for models with long run times that preclude 93 

more expensive variance based methods (Saltelli and Annoni, 2010). We propose that this 94 

approach could be used for existing Atlantis models as well as facilitate performing a SA as 95 

part of model development for new Atlantis implementations. 96 

We performed the SA on the Atlantis Eastern English Channel (Atlantis-EEC) model, 97 

which was developed to investigate the ecosystem dynamics and effects of fisheries in that 98 



system (Girardin et al. 2018). Located between England and France, the eastern English 99 

Channel is a shallow temperate continental shelf sea characterized by strong megatidal 100 

hydrodynamics,  vertical mixing present throughout the year, resuspension of particulate 101 

matter, and significant freshwater and nutrient inputs from rivers, particularly the Seine River 102 

(Bailly du Bois and Dumas 2005, Korotenko et al. 2013). Ecologically the system is 103 

characterized by both high benthic productivity and a strong bentho-pelagic coupling. (Desroy 104 

et al. 2003, Giraldo et al. 2017, Kopp et al. 2015). The species assemblages are structured by 105 

the abiotic habitat and constitute a diversity of species (pelagic, flatfish, gadoids, skates, 106 

catsharks, crustaceans, and cephalopods) exploited by different fishing fleets (Vaz et al. 2007, 107 

Carpentier et al. 2009). 108 

Our goals for the SA are 1) to better understand the internal structure and dynamics of the 109 

Atlantis-EEC model, in particular, the effect on Atlantis model outputs of a change in 110 

parameter inputs, 2) to provide information to aid calibration of new Atlantis models and 111 

potential future automatic calibration efforts (e.g. Fennel et al. 2001), and 3) to determine 112 

which parameters are most influential on Atlantis model output. However, a set of non-113 

influential parameters that can be fixed to nominal values is unlikely to be found for two 114 

reasons:  we evaluate parameters frequently tuned during calibration and thus already known 115 

to be sensitive, and models with feedback loops, such as the trophic network in complex 116 

ecological models, have high levels of interactions and thus all parameters can potentially 117 

influence outputs (Pantus 2007). We hypothesize that the strong bentho-pelagic coupling in 118 

the EEC may be reflected in the SA through bottom-up effects of parameters for benthic 119 

producers influencing benthic and pelagic consumers. 120 



2 Methods 121 

2.1 Model 122 

We performed the SA on the Atlantis-EEC model (Girardin et al. 2018), an 123 

implementation of the Atlantis framework (Audzijonyte et al. 2019, Fulton et al. 2011). 124 

Atlantis is an end-to-end ecosystem model comprising of biophysical, trophic food web, and 125 

fisheries components which uses a set of deterministic, mechanistic equations to represent the 126 

underlying processes of ecosystem dynamics and tracks nitrogen through the system (Fig. 1). 127 

The Atlantis-EEC model covers approximately 35,000 km2 and is spatially structured by 35 128 

polygons. Hydrodynamic forcing is from the integrated output of the MARS3D (Model for 129 

Applications at Regional Scales)  numerical coastal hydrodynamic model (Baily du Bois and 130 

Dumas 2005), and freshwater and nutrient inputs from rivers were also included. The trophic 131 

network is represented by 40 functional groups: 21 vertebrate groups, 16 invertebrate groups 132 

(including 4 plankton groups), and 3 detrital groups (Table A.1). Vertebrate groups are each 133 

subdivided into 10 age classes, while invertebrate groups are considered as biomass pools, 134 

with the exception of cephalopods that have juvenile and adult stages. While the original 135 

model considered multiple fishing fleets organized by fishing activities or métiers, we opted 136 

to simplify this portion of the model by utilizing a single fishing fleet with constant fishing 137 

mortality per functional group. 138 

2.2 Selected parameters 139 

From the thousands of possible Atlantis parameters, we focused our efforts on the 140 

parameters most frequently tuned during the model calibration process (Audzijonyte et al. 141 

2019): those governing growth (C, mum), mortality (mL, mQ), and recruitment (BHalpha, 142 

BHbeta, KDENR) applied across the vertebrate and invertebrate/plankton groups (Table 1). 143 

Even with this restricted list of parameters, the total number was still over 500 parameters 144 

across functional groups and age classes. Due to the long simulation running time (~4 hours 145 



with an Intel i5-6440HQ 2.60 GHz processor), we thus examined ways to further reduce the 146 

number of parameters examined. We now briefly describe how the parameters we selected 147 

function in the Atlantis model, and we direct the interested reader to Audzijonyte et al. 148 

(2019), particularly Supplement 1, for a more complete description of Atlantis model 149 

equations, to Girardin et al. (2018) for how baseline parameter values were determined, and to 150 

Appendix A for more details on the parameters in the SA. 151 

2.2.1 Growth/consumption parameters 152 

The parameters C and mum are used in the model to describe how much prey biomass is 153 

consumed by each predator relative to what is available. Atlantis-EEC uses a modified 154 

Holling type II functional response (Murray & Parslow 1997) to describe predation, and the 155 

amount of biomass for each prey group (i) consumed by a predator (j) is expressed as a 156 

consumption term, CRij: 157 
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where Bi is the biomass of prey i, aij is the availability of prey i to predator j, and Ekj is the 159 

assimilation efficiency of prey k for predator j. Specifically, for predator j, Cj is the clearance 160 

rate, or volume of water searched by an active predator or filtered by a filter feeder, and mumj 161 

is the maximum consumption rate or growth rate, which can be thought of as the inverse of 162 

the handling time. The values for the parameters C and mum are strongly correlated as a 163 

consequence of model construction, where an initial relationship between C and mum was 164 

assumed and only adjusted slightly for some groups as necessary during the model calibration 165 

process (Audzijonyte et al. 2019). We therefore opted to move these parameters together, 166 

using the linear relationship mum = 3 * C for vertebrate groups and the baseline mum value 167 

for invertebrate groups (Appendix A). This means that we are running SA on the “growth” 168 

parameter, i.e. the combined effects of C and mum. For phytoplankton the growth equation is 169 



different; mum is the maximum specific growth rate and is multiplied by the biomass and a 170 

light limitation factor, thus we varied mum directly in this case (Appendix A). 171 

For vertebrate groups with growth parameters defined per age classes, changing them 172 

independently would result in ecologically unrealistic values and require many parameters. 173 

Instead, for each vertebrate group i, we used a function of a single hyperparameter ai based on 174 

allometric relationships between the clearance rate at age x, Ci(x), and the nitrogen dry 175 

weight-at-age of an average individual, Wi(x), as suggested by Audzijonyte et al. (2019):  176 

Ci(x) = ai Wi(x)0.7, where the age x is ℕ ∊ [1, 10].     (2) 177 

We estimated ai by fitting the function to the existing baseline values for C using least squares 178 

(Fig. B.1, Table A.2) and manipulated ai in the SA, thereby reducing 20 parameters per group 179 

(10 age-class values for C and 10 age-class values for mum) parameters per group to 1.  180 

2.2.2 Asymptotic recruitment 181 

Two stock recruitment relations are used in Atlantis-EEC, Beverton-Holt (BH) for all the 182 

fish functional groups and fixed recruitment (a fixed number of pups per adult) for mammals 183 

and birds. The BH stock-recruit relationship is given by  184 
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          (3) 185 

where Sp is the spawn produced, B is the group’s total biomass, and BHalpha and BHbeta are 186 

the BH α and β parameters. To examine its sensitivity, we chose to constrain the SA to the 187 

asymptotic part of the equation (see Appendix A) and investigate only the asymptotic 188 

recruitment parameter, BHalpha, leaving BHbeta fixed. For mammals and birds, recruitment 189 

is defined as 190 

� = +,-.� ∙ρ∙ .          (4) 191 

where KDENR specifies the number of pups per adult, ρ is the proportion of mature 192 

individuals, and N is the total number of individuals. In this case, recruits are calculated as a 193 

number of individuals and an initial size is specified to convert into biomass. 194 



2.2.3 Natural mortalities 195 

Most Atlantis model are calibrated to capture mortality through fishing and predation 196 

mortality, however for some functional groups additional mortality can be used to mimic 197 

other processes not explicitly modeled. For vertebrate groups this additional mortality is 198 

represented as 199 

0 = (12 + 13 .) .         (5) 200 

based on their numbers, .,  and uses stage-specific (juvenile and adult) values, while for 201 

invertebrate groups it is instead based on biomass, B, 202 

0 = (12 + 13 B) B,         (6) 203 

where in both cases mL represents linear additional mortality and mQ represents quadratic 204 

additional mortality. Non-zero mortality is classically used for invertebrate groups to enforce 205 

density dependence due to space limitation. Therefore a quadratic mortality term suitable for 206 

density-dependent processes is defined for invertebrates groups, while the linear mortality is 207 

set to zero. Conversely, for top predators (e.g., large fish, marine mammals, sea birds) and a 208 

few other fish groups with sources of mortality that are not included in the model through 209 

predation and fishing, non-zero linear mortality, and rarely quadratic mortality, are used 210 

(Table 1, Appendix A). For the 13 groups that have a value of zero for mortality in the 211 

calibrated model, meaning all mortality is already accounted for by fishing and predation, the 212 

outcome of changing the value to a non-zero value would be testing the effect of the 213 

parameter outside the range of meaningful values, or, in effect, testing the impact of 214 

decreasing the biomass of that group on the ecosystem. Thus, we did not include mortality 215 

parameters with a baseline value of zero in the SA, and left their value fixed at zero. 216 

2.3 Defining parameter bounds 217 

The approach described above thus allowed us to reduce the number of parameters to 218 

examine in the SA to 90. To determine upper and lower bounds for each parameter in the SA, 219 



we first considered if there were any data available to inform our choice of parameter bounds. 220 

For the BHalpha parameter, we compiled 2018 ICES (International Council for the 221 

Exploration of the Sea) stock assessment data for all species in the model for which stock 222 

distributions in the assessment encompassed the EEC (Table A.3) and assembled the time 223 

series of estimated recruitment and spawning stock biomass (SSB) for each species. For each 224 

species, only the years with SSB above Blim, were retained (as we focused on the asymptotic 225 

part of the stock recruitment relationship). Then, for each year, we calculated the recruitment 226 

error, or the percentage difference in recruitment relative to the average recruitment, over the 227 

entire time series. The 5th and 95th percentiles across all the years were used as the upper and 228 

lower bounds for the percent change from the baseline BHalpha value in the calibrated 229 

Atlantis-EEC model. For functional groups with no assessment available, the same method 230 

was applied using the ICES data for all species combined. 231 

For other parameters (i.e., growth, mortality, and non-Beverton-Holt recruitment), data to 232 

set parameter bounds was unavailable, and we used the upper and lower bounds of -50% and 233 

+100% around the baseline parameter value (Girardin et al. 2018, Table A.4). These bounds 234 

were based on an examination of parameter ranges used in the small number of existing SAs 235 

for Atlantis models (Hansen et al. 2019, Kaplan et al. 2012, Ortega-Cisnerosa et al. 2017, 236 

Sturludottir et al. 2018), as well as a small series of test simulations on key groups identified 237 

by Girardin et al. (2018) to explore model outcomes of different magnitudes of parameter 238 

value changes. In particular, we wanted to avoid parameter values that would frequently lead 239 

to group extinctions which was a problem with larger decreases from parameter baseline 240 

values like -75%.. The doubling and halving of these values allows us to account for the 241 

asymmetric nature of increasing and decreasing by a fixed percentage and was verified in 242 

some preliminary simulations. 243 



2.4 Sensitivity analysis plan  244 

We used a Morris screening analysis (Morris, 1991) as a feasible approach given the 245 

number of parameters we had to analyze, the long-running time of the simulation, and our 246 

access to Datarmor, Ifremer’s supercomputer. The advantage of the Morris method is that one 247 

obtains information for both the main effects/linear effects and the non-linear effects and/or 248 

interactions, although one is not able to distinguish between non-linear effects and 249 

interactions like more comprehensive decomposition-of-variance methods. With the Morris 250 

method, the parameter space is turned into a grid by discretizing the space into a user-defined 251 

number of subintervals. The more subintervals, the finer the evaluation of non-linearities will 252 

be, though possibly at the cost of a thorough exploration of the space. One follows a set of 253 

trajectories through parameter space. Each trajectory starts with a random point in parameter 254 

space, and then each step consists of moving one parameter in turn. From a set of trajectories, 255 

the elementary effects (EE) can be calculated, that is, the changes in the output measure for a 256 

relative change in the input parameter. The standard set of metrics calculated from the 257 

elementary effects (Morris, 1991) are µ i, the mean of the EE (the average change in output 258 

across all changes to the parameter i) which gives the sensitivity of output to input i due to all 259 

first- and higher-order effects, and σi, the standard deviation of EE (the variance in how much 260 

the output changes in response to changes in the parameter i) which indicates interactions 261 

and/or non-linearities. In addition, the metric µ i* is similar to µ i, except the absolute value is 262 

first applied to the EE before the mean is taken (i.e., the average absolute value of change in 263 

output across all changes to parameter i), which is useful for the sensitivity of the parameter 264 

independent of cancelling out effects if the direction of the change in output is not always 265 

consistent (Campolongo et al., 2007). Furthermore, we used the intervals of σ/µ* established 266 

by Sanchez et al. (2014) to classify parameter effects into different zones: almost linear (σ/µ* 267 



< 0.1), monotonic (0.1 < σ/µ* < 0.5), almost-monotonic (0.5 < σ/µ* < 1), and markedly non-268 

monotonic or with interactions (σ/µ* > 1), and these zones are demarcated in the figures. 269 

We performed two Morris SAs, both of which used 50 trajectories (at the high end of 270 

recommended ranges for the number of trajectories; Saltelli et al. 2004, Campolongo et al. 271 

2007), 8 levels for each parameter (including upper and lower bounds with values uniformly 272 

distributed between them), and the recommended grid jump of 4 (how many levels the 273 

parameter changes for a step in the trajectory). The 50 trajectories were selected from a 274 

candidate set of 200 trajectories as the most orthogonal and thereby best spanning the 275 

parameter space (Campolongo et al., 2007). Because computing resources are often limited 276 

and other models have even longer running times, we also considered the impact of using 277 

fewer trajectories (10, 20, 30, and 40 trajectories) by performing a bootstrap test with 100 278 

sampled trajectory sets for each size to compare with the results from all 50 trajectories. We 279 

compared the estimation of µ* and σ for the top five parameters for as well as the agreement 280 

in order of the top ten parameters between each subset and the full trajectory set. 281 

We created the SA plan and calculated the resulting EE using the morris method in the 282 

‘sensitivity’ R package (Iooss et al. 2019). We ran the full set of simulations on the Datarmor 283 

supercomputer. We performed an initial SA (SA1) with the full parameter set of 90 284 

parameters with 4550 simulations. From the results of SA1, we first investigated the crashing 285 

simulations (9 trajectories), then analyzed the Morris metrics (µ, µ*, σ) for the non-crashing 286 

(i.e., complete) trajectories (41 trajectories). Based on the results of that analysis, we 287 

determined that the parameters implicated in the crashing simulations and those with the most 288 

important effects were the parameters of the fixed-recruitment top-predator groups and the 289 

plankton groups (see Table A.4 for a complete list of parameters in each analysis and values 290 

for each level). Thus the complete SA is described in three steps: 1) analysis of parameter 291 

values and combinations with extreme effect, i.e. those that crash the model in SA1 2) 292 



analysis of parameter effects for the trajectories without crashing simulations for SA1, and 3) 293 

analysis of parameter effects in SA2 for the core food web excluding top predator and 294 

plankton groups. 295 

For all the analyses, we ran the simulations for 100 years, enough time for the calibrated 296 

model to reach a steady-state, and then took as outputs the average biomass for the last 10 297 

years of the simulation (years 91-100) for the 40 groups in the model. Note that not all 298 

parameter combinations in the SA allow the system to reach a steady-state, and we also 299 

analyzed the system stability as discussed below. For the 21 vertebrate groups, we also 300 

examined the average number of individuals for the last 10 years of the simulation. These 301 

outputs are used during calibration and offer good insight into the system state. In order to 302 

summarize the effects of a parameter for the system in addition to its effect on each group 303 

individually, we examined total biomass (excluding detrital and bacteria groups) and total 304 

numbers for vertebrates. Note that this does weight more massive or abundant groups higher, 305 

but total biomass/numbers is a commonly used metric and we also report results for individual 306 

groups. Finally, we also looked at the stability of the system by examining how many groups 307 

achieved equilibrium in the last ten years of the simulation, an important criterion for model 308 

calibration. Any group that had a biomass < 0.1 t (functionally extinct) in the last ten years 309 

was defined to be non-stable, as well as all groups in crashing simulations. For the rest, we fit 310 

a linear model to the last ten years of biomass values for each group, and defined stability as 311 

the regression line staying within ±5% of the mean biomass of the last ten years. This criteria 312 

is more flexible than simply examining the significance of the slope coefficient (possibly 313 

significant even for very small changes in biomass) or a strict window approach (frequently 314 

not met by plankton and recycling groups which exhibit cyclic behavior even at equilibrium), 315 

but still detects groups that continue to increase or decrease at the end of the simulation. Note 316 

that we are simply looking for any steady-state, not that the groups reach equilibrium at a 317 



specific value as in model calibration. We examined the influence of parameters on system 318 

stability by calculating the Morris metrics on the output of the percent of groups stable in the 319 

simulations. All analysis was performed using R 3.6.0 (R Core Team 2019). We used Atlantis 320 

version trunk rev 6290. 321 

3 Results 322 

3.1 Step 1: Crashing simulations and stability in SA1 323 

Crashing simulations. Of the 4550 simulations in SA1, 244 simulations crashed, affecting 324 

9 of the trajectories. In Atlantis, simulations crash when any flux reaches a fixed threshold. In 325 

our simulations, the cause of the crash was the same in all cases, an accumulation of too much 326 

detrital matter to be processed in the epibenthic layer, which was due to a population 327 

explosion in some groups and extinction in others. We determined that the crashes were due 328 

to a combination of low juvenile linear mortality rate and high reproduction rate for toothed 329 

cetaceans (CET) (Appendix B). With no density dependence or trophic control for this top 330 

predator, which uses fixed recruitment, this leads to a population explosion.  331 

Stability. An average of 69% (range 0-95%) of groups were stable across all simulations 332 

(including those that crashed which were considered unstable) , and in 6% of simulations 333 

there were no groups stable (Fig. 2). Like with the results for the crashing simulations,  334 

cetacean juvenile mortality and recruitment rates were extremely influential for determining 335 

system stability (Fig. 3c). The juvenile mortality and recruitments rates for seabirds (SB) and 336 

seals (SXX) were also influential for system stability, as were phytoplankton (PP) and 337 

zooplankton (ZOO) growth rates. 338 

3.2 Step 2: Trajectories without crashes in SA1 339 

Parameters that had strong main effects (high µ* values) also tended to have strong 340 

interaction and/or nonlinear effects (high σ values), both for total biomass and numbers (Fig. 341 



3) and for individual groups (Fig. B.2). Generally seabirds, seals, and especially toothed 342 

cetacean parameters as well as those of phytoplankton and zooplankton had the strongest 343 

effects (Fig. 3), including important effects across many groups (Figs. 4, B.2). While all 344 

parameters influenced at least one group’s biomass, most groups’ biomass was strongly 345 

affected by a small subset of parameters (Figs. 4, B.2). Recruitment parameters, generally that 346 

of the same group, were also important to explain individual vertebrate groups’ numbers (Fig. 347 

B.3, B.4, Appendix B).  348 

We next discuss the effects of the most influential parameters, those of plankton and fixed-349 

recruitment top predators, on biomass. For all other groups, the parameter effects can be 350 

broadly divided into three categories 1) those with moderate to strong effects across many 351 

groups’ biomass,  primarily consisting of the growth and mortality rates for benthic 352 

invertebrates; 2) those with strong effects on their own group but no other groups, which was 353 

true for many parameters, generally growth and mortality rates for invertebrates and growth 354 

and recruitment rates for vertebrates; and finally, 3) those with weak or little effect, mostly 355 

vertebrate mortality rates (other than top predators with fixed recruitment), top predator 356 

growth and adult mortality rates, and some primary production parameters (Fig. 4). These 357 

other groups are examined in more detail in SA2. 358 

3.2.1 Plankton production parameters.  359 

The growth rate parameters of phytoplankton and zooplankton had strong effects on nearly 360 

all groups’ biomass, demonstrating bottom up effects (Fig. 4, Fig. B.2). The direction of the 361 

effect was consistent: increasing the phytoplankton growth rate had a strong positive effect, 362 

and that of zooplankton a strong negative effect (Fig. 4, center panel). In fact, the only 363 

groups’ biomass not strongly influenced were the bird and mammal top predators using fixed 364 

recruitment that were driven solely by their own parameters, as well as cephalopods (CEP) 365 

and refractory detritus (DR) biomass, which were mostly affected by seabird and cetacean 366 



parameters. The effects of zooplankton mortality rates on biomass were also broad, though 367 

less consistent in direction of effect within some groups (i.e. µ small compared to µ*, 368 

indicating the sign of the effect varied across simulations for that group). Carnivorous (ZOC) 369 

and gelatinous (ZOG) zooplankton parameters, as well as phytoplankton’s mortality 370 

parameter, generally had little effect across groups’ biomass. The effects of lower trophic 371 

level parameters on was stronger on biomass than vertebrate numbers (Appendix B). 372 

3.2.2 Top predator parameters.  373 

The recruitment and mortality parameters of top predators with fixed recruitment (seabirds, 374 

seals, and particularly toothed cetaceans) strongly influenced the biomass of nearly all groups 375 

(Fig. 4, B.2). The only groups relatively unaffected by these parameters were each other’s 376 

biomass, and that of planktons and scallops (SCE). Furthermore, these effects are likely 377 

understated due to the removal of trajectories with crashing simulations, which were found to 378 

be due to specific toothed cetacean parameter combinations. This interplay between 379 

parameters could play a role in the strong interaction/nonlinear effects (large σ) observed. The 380 

direction of the effect (µ) varied by group. While model crashes were only observed from 381 

toothed cetacean parameters with low mortality and high recruitment, some combinations of 382 

sea bird and seal parameters also caused their biomass to increase exponentially in some 383 

simulations  and correspondingly many of their prey species went extinct. The juvenile 384 

mortality parameter appears to be the most sensitive. In the case of juvenile toothed cetacean 385 

mortality parameters, any increase above the baseline value always resulted in their own 386 

extinction, while decreases from the baseline value resulted in a range of outcomes from 387 

extinction to exponential growth. The situation was similar but less extreme for sea bird and 388 

seal parameters, and the direction of the effect was less consistent. The effects of these 389 

population explosions and resulting extinctions can also be seen through the importance of top 390 

predator recruitment and mortality parameters on vertebrate numbers (Appendix B). 391 



 392 

3.3 Step 3: Core food web in SA2 393 

Removing the most influential parameters from SA1 (those of top predators with fixed 394 

recruitment and plankton, Table 1) focused the SA on the parameters for the core of the food 395 

web with the system generally in a stable state, i.e. without the extinctions and exponential 396 

growth that characterized many simulations in SA1. For total biomass of the system,  the 397 

growth rates and, to a lesser extent, mortality rates of benthic invertebrates had the strongest 398 

influence, while total vertebrate numbers were primarily driven by the parameters of the most 399 

numerous groups (Fig. 5). We next discuss  the influential parameters for system stability and 400 

groups’ biomass in more detail. There were fewer influential parameters for vertebrate 401 

numbers than for biomass, and a group’s own recruitment rate was the most important 402 

(Appendix B). 403 

3.3.1 Stability.  404 

Stability was considerably higher in SA2 than SA1 with an average of 95% (range 80-405 

100%) groups stable,  and all 40 groups were stable in12% of simulations (Fig. 2). With the 406 

narrower range of stability in SA2, there was a gradient of effect of the various parameters on 407 

the system stability, though deposit feeder mortality was the most influential while Clupeidae 408 

(CLU) quadratic mortality the least (Fig. 5).  Thus, all the parameters had some influence on 409 

the stability of the system in non-linear and/or interacting ways.  410 

3.3.2 Biomass.  411 

The most influential parameters on total biomass were the growth rates of benthic 412 

invertebrates such as echinoderms (ECH), bivalves (BIV), deposit feeders (DEP), scallops, 413 

and suspension feeders (SUS) (and to a lesser extent some of these groups’ mortality rates) 414 

(Fig. 5), and these same parameters are also important across numerous individual groups’ 415 

biomass (Figs. 6, B.5). The biomasses of plankton and recycling groups, which did not have 416 



their parameters modified in SA2, were strongly influenced by nearly every parameter, while 417 

the direction of effect for these parameters was generally inconsistent (Fig. 6) and with strong 418 

non-linear/interaction effects (Fig. B.5).  Groups differed in how linear or non-linear the 419 

impact of influential parameters was on their biomass, likely due to different positions in the 420 

food web (Fig. B.5). For example, the impact of most parameters was clearly non-monotonic 421 

or with interactions/non-linearities for the biomass of cephalopods, echinoderms, lobsters 422 

(LBE), Pollack (POL), suspension feeders, and whelk (WHE). On the contrary, the biomass 423 

of pelagics and their predators, that is, Clupeids, mackerels, sparidae, cetaceans, sea birds and 424 

seals,  responded to parameters in a more linear way, probably because of the weaker 425 

influence of benthic compartments.  426 

Most groups’ biomass was primarily influenced by between two and ten parameters, their 427 

own and those of several other groups (Figs. 6 and B.5). The other group’s parameters were 428 

generally those of the more abundant vertebrate and invertebrate groups, and were frequently, 429 

but not always, prey of the affected group. Groups’ biomass being influenced by their 430 

predators’ parameters, on the other hand, was more rare, and only tended to occur with the 431 

biomass of groups at the lowest tropic level. Finally, there were a handful of groups affected 432 

almost solely by their own parameters (Clupeidae, mackerels (MAC), scallops, and sharks 433 

(SHK)). These groups (except for sharks) have a plankton/detritus diet in common, the 434 

parameters of which were not changed in SA2. However, suspension feeders share a similar 435 

diet but their biomass was also influenced by their predators’ parameters. 436 

The food web interactions can be seen through the direction of the effect (Fig. 6, µ 437 

columns). For example, bivalve’s growth rate had a generally positive impact on other 438 

groups’ biomass, except for phytoplankton (prey) and suspension feeders (competition). 439 

Similarly, deposit feeder’s growth rate had a generally positive effect on other groups’ 440 

biomass except for their prey and competitors, while the growth rate of echinoderms almost 441 



universally negatively affected other groups’ biomass (except phytoplankton). For nearly all 442 

vertebrate groups’ biomass, as well as larger invertebrates like shrimp (SHP), lobsters, and 443 

cephalopods, the groups’ parameters strongly influenced that same group’s biomass, but had 444 

little effect on the biomass of other groups (excepting plankton and recycling groups 445 

influenced by all or most parameters as noted above). The parameters for Clupeidae, and to a 446 

lesser extent whiting (WHG), both of which are numerous in the system, had a strong 447 

influence on the biomass of top bird and mammal predators, for which they are an important 448 

food source, but little influence on their benthic prey. Interestingly, only seal biomass was 449 

also influenced by a number of other fish groups’ parameters, reflecting diet differences. 450 

Mortality parameters were generally less influential than growth rate.  451 

3.4 SA 1 and SA2 summary 452 

To summarize the most important results of the SA, strong main effects of parameters 453 

tended to go hand in hand with strong interaction and/or nonlinear effects, and all parameters 454 

influenced system stability. The strongest effects were due to fixed recruitment top predators 455 

(particularly the juvenile mortality and reproduction rates) and plankton (particularly 456 

phytoplankton and zooplankton growth rates). There was also high sensitivity to benthos 457 

parameters, particularly growth rate,  across nearly all groups. Each group’s biomass tended 458 

to be highly sensitive to 2-10 parameters, their own and more commonly their prey than their 459 

predators. Vertebrate numbers were most often linearly influenced by a group’s own 460 

recruitment rate. 461 

 462 

 463 

 464 



3.5 Number of trajectories 465 

3.5.1 SA1. 466 

In general, µ*and σ estimates for the most influential parameters for most groups in SA1 467 

were robust with respect to the number of trajectories (Figs. B.8, B.9). Exceptions were 468 

parameters affecting fixed-recruitment top predators, phytoplankton, bacteria, and detrital 469 

groups, where smaller estimations of effect size were likely with fewer trajectories. 470 

Furthermore, interaction/nonlinear effects of the recruitment and mortality parameters of 471 

fixed-recruitment top predators were smaller for numerous groups. Perhaps more important is 472 

the relative ordering of the most important parameters, which was in agreement on average of 473 

82% for µ* and 72% for σ even for only 10 trajectories. Across all groups and numbers of 474 

trajectories, the agreement in ordering the most influential parameters was higher for µ*than 475 

σ, demonstrating the increased difficulty in estimating the non-linear/interaction effects (Fig. 476 

B.10).  477 

3.5.2 SA2. 478 

The error with estimating SA metrics with fewer trajectories was greatly reduced in SA2 479 

with greater system stability (Figs. B.11, B.12). The agreement for ordering the most 480 

influential parameters was generally quite good, except for some bacteria, detrital, and 481 

plankton groups whose parameters were not included in SA2 (Fig. B.15). Across all groups, 482 

the agreement averaged 87% for µ and 80% for σ for 10 trajectories, increasing to 95% and 483 

93% respectively for 40 trajectories. 484 

 485 

4 Discussion 486 

While SA has long been recognized as an important part of ecological model development 487 

(Scott 1996, Shaeffer, D.L. 1980, Thornton et al. 1979), it has generally been neglected for 488 



Atlantis models (but see Hansen et al. 2019, Kaplan et al. 2012, Ortega-Cisnerosa et al. 2017, 489 

Sturludottir et al. 2018) due to computational challenges with long run times and technical 490 

challenges with the large number of parameters. We demonstrate the feasibility of a large-491 

scale SA on a complex ecosystem model and illustrate a number of ways to accommodate a 492 

large number of parameters. First, even if computationally feasible, the sheer number of 493 

parameters in Atlantis means a complete SA on all parameters would be uninterpretable, and 494 

thus some pre-selection of parameters must take place. In this paper we focused on the 495 

growth, recruitment, and mortality parameters most frequently adjusted during calibration, but 496 

other approaches are possible, such as examining the diet matrix (Morzaria-Luna et al. 2018), 497 

choosing parameters to determine where the most improvement could be found through 498 

improved data collection (LeBauer et al. 2013), or with an eye to uncertainty analysis to 499 

quantify the impact of parameter uncertainty on output variability (Cariboni et al. 2007). 500 

Another important technique we utilized was collapsing many-valued age-structured 501 

parameters with a function utilizing a hyperparameter that was manipulated in the SA. 502 

Additionally, we moved correlated parameters together, which both reduced the number of 503 

parameters to consider in the SA and maintained ecological coherence among the set of 504 

parameters. Using a Morris screening SA allowed us to perform a global analysis with 505 

relatively few simulations and thus differentiate effects as approximately linear, monotonic, or 506 

nonlinear/interactions. Finally, like Morzaria-Luna et al. (2018), our analysis would not have 507 

been possible without access to supercomputer resources, and we suggest these resources are 508 

generally essential to carrying out SAs of complex ecosystem models. Furthermore, we 509 

suggest that these advances imply that new Atlantis model implementations should 510 

incorporate SA in the model development, as suggested by modeling guidelines (Cariboni et 511 

al. 2007) and which have already started being carried out (Hansen et al. 2019). 512 



4.1 Interesting insights about the Atlantis-EEC model. 513 

Our results highlight a difficulty, raised by Patus (2007), that finding parameters that are 514 

less sensitive and thus can be ignored in models that contain cyclic feedbacks like Atlantis is 515 

perhaps unrealistic. Our results generally confirm this, bearing in mind that we selected the 516 

parameters most frequently tuned during calibration and thus already known to be sensitive. 517 

There could certainly be insensitive parameters among the many remaining parameters in 518 

Atlantis. While there are perhaps only a handful of more influential parameters for any given 519 

group, the effects were almost never strictly linear and frequently show evidence of 520 

nonlinear/interaction effects. In addition, every parameter was influential for at least one 521 

group, illustrating why all parameters were important for system stability. Although in SA1 522 

there were some growth and mortality parameters that had little effect on biomass across all 523 

groups (Fig. 4) and a subset of those that had little effect on numbers (Fig. B.3), these 524 

parameters did still affect system stability. Furthermore, for those parameters that were also 525 

included in SA2, all appear to influence biomass, at least interact with numbers, and 526 

especially contribute to system stability (Fig. 5). With that caveat, the least influential 527 

parameters were adult mortality and growth rates for vertebrates with fixed recruitment, 528 

juvenile mortality rate for some vertebrates with BH recruitment, cephalopod growth rate, 529 

growth and mortality rates for gelatinous zooplankton, and phytoplankton mortality rate. The 530 

lack of influence of the phytoplankton mortality rate was particularly striking given the strong 531 

effects of phytoplankton growth rates and of both growth and mortality rates for zooplankton.  532 

The importance of both top-down and bottom-up effects is evident with the most 533 

influential parameters. These include those of top predators with fixed recruitment (i.e. 534 

toothed cetaceans, sea birds, seals) and illustrate a structural issue with the Atlantis-EEC 535 

model. These top predators are not density-dependent either through their recruitment or 536 

mortality, allowing them to increase exponentially. That is, they reproduce through pups 537 



rather than a self-limiting BH recruitment function, and, like other vertebrates in the model 538 

with the exception of Clupeidae, they have no quadratic mortality. Furthermore, they are not 539 

impacted by the fishery and experience little predation themselves. These groups are thus very 540 

sensitive to their parameterization, particularly the reproduction rate and the juvenile 541 

mortality rate, which can quickly shift the population from extinction to unrealistic 542 

exponential growth. To dampen these effects, different values of starvation mortality, 543 

currently underutilized in Atlantis models (Pethybridge et al. 2019), should be explored in the 544 

Atlantis-EEC model to better represent competition among top predators and the effects of 545 

limited food. In addition, unfished top predators modeled with Atlantis could be controlled by 546 

a quadratic mortality term and/or a modified fecundity using the ratio of reserve to structural 547 

nitrogen. Additionally, the lack of starvation mortality likely explains the decoupling 548 

observed between biomass and numbers in vertebrates: biomass and number do not react the 549 

same way. Numbers are primarily determined by a group’s own reproduction parameter (and 550 

top predator parameters in SA1 which drove extinctions), while biomass is determined by 551 

individual weights that depend on growth rates and prey abundance. Thus, it is possible to 552 

have large numbers of individuals at below normal weights who do not die at increased rates. 553 

This makes numbers less sensitive to trophic network effects than biomass.  554 

Bottom-up control was emphasized by the other extremely sensitive parameters, the 555 

growth rates of phytoplankton and zooplankton. Hansen et al. (2019) also found the strongest 556 

effects in response to changing the growth rates for zooplankton groups. While the SA 557 

performed by Ortega-Cisneros et al. (2015) only included the growth rate of phytoplankton 558 

and zooplankton, they also observed large effects throughout the food web, particularly on 559 

phytoplankton and zooplankton themselves and small pelagic fish, though large pelagic fish 560 

were less sensitive. Sturludottir et al. (2018) found a strong response to phytoplankton growth 561 

rate but not macrozooplankton growth rate, though other zooplankton groups were not 562 



included. This sensitivity to plankton dynamics has also been found in other ecosystem 563 

models (Steele & Ruzicka 2011), reflecting the importance of both primary producers to 564 

bottom-up forcing, as well as the role of zooplankton in linking trophic levels (Carlotti & 565 

Poggiale 2010, Rose et al. 2010). However, this importance of plankton dynamics also 566 

highlights a challenge of parameterizing end-to-end ecosystem models given data limitations 567 

for plankton communities. This is further complicated by the fact that, for reasons of the 568 

relatively coarse spatiotemporal scale, the plankton dynamics are represented with less detail 569 

in comparison with existing NPZ models (Baretta et al. 1995, Butenschön et al. 2016, Kishi et 570 

al. 2007, Schrum et al. 2006). 571 

The universal positive effect of a higher phytoplankton growth rate on all groups is 572 

unsurprising, but the opposite universally negative effect of a higher zooplankton growth rate, 573 

even for zooplankton itself, is striking and counterintuitive. There are several possible 574 

reasons. First, Atlantis does not explicitly model the larval stage for fish (the option for 575 

phytoplankton and/or zooplankton abundance to affect recruitment is not utilized in the 576 

Atlantis-EEC model), which depend heavily on zooplankton (Last 1978a, 1978b). However, 577 

zooplankton makes up the majority of the diet (80-99%) for mackerels, Clupeidae (which 578 

both migrate outside the system), carnivorous zooplankton, and gelatinous zooplankton, as 579 

well as a significant portion of the diet (5-20%) for Mulgilidae, shrimps, and zooplankton 580 

itself. More likely, a higher zooplankton growth rate causes the zooplankton to increase and 581 

consume all the phytoplankton which then cannot regrow (i.e., the extreme case of Lotka 582 

Voltera dynamics: no oscillation). This would cut off the pelagic pathway, and could cut off 583 

the benthic pathway in the ecosystem, as many benthic invertebrates are planktivores, and 584 

phytoplankton is particularly important in the diet of suspension feeders and scallops. Finally, 585 

an increase in the zooplankton growth rate might divert energy from the detrital-benthic 586 

pathway by consuming plankton that would otherwise die and so could contribute the 587 



negative response seen across groups. Even in relatively simple NPZ models, where multiple 588 

functional forms are used for zooplankton grazing (e.g. Eq. 1), this relationship is known to be 589 

problematic and a strong determinant of system dynamics (Franks 2002). 590 

Examining the direction of the effects (µ) of different parameters elucidates the complex 591 

food web dynamics captured in the Atlantis-EEC model. The inconsistent direction of effects 592 

of top predator parameters demonstrates indirect effects, that is, negative effects on their 593 

prey’s biomass, but positive effects on the biomass of their prey’s prey. While fixed-594 

recruitment top predators do appear to structure the entire ecosystem in the sense of a trophic 595 

cascade (Paine 1980, Ripple et al. 2016) in SA1, this is not the case under more stable 596 

conditions in SA2 where we saw weaker effects of upper trophic-level predators’ parameters 597 

on other groups’ biomass in the system. For example, the parameters of the more abundant 598 

predators, such as whiting and other Gadidae (GAD), had little effect on their benthic prey’s 599 

biomass. Rather, the most influential parameters were those of the invertebrate benthic 600 

groups, particularly the growth rates, thus confirming the bottom-up dynamics of the system. 601 

The SA thus supported our hypothesis of important effect from benthic parameters based on 602 

the strong bentho-pelagic coupling in the system and this would be interesting to confirm with 603 

a more thorough validation analysis of the model. The EEC ecosystem is a shallow 604 

continental shelf sea driven by benthic productivity (Dauvin & Desroy 2005, Desroy et al. 605 

2003, Garcia et al. 2011). The food web structure is comprised of benthic and pelagic 606 

pathways, and the benthic-pelagic coupling increases in shallow coastal areas where both 607 

benthic and pelagic sources are easily available (Kopp et al. 2015). Benthic sources make up 608 

the majority of the diet for all trophic groups, ranging from just over 50% for even pelagic 609 

piscivorous fish to 100% for groups such as benthic predators and demersal piscivorous fish 610 

(Giraldo et al. 2017). Furthermore, this importance of benthos to EEC ecosystem functioning 611 



has also been found with a variety of modeling approaches (Daskalov et al. 2011, Girardin et 612 

al. 2018, Travers-Trolet et al. 2019).  613 

4.2 Implications for other Atlantis models.  614 

Although some insights are specific to the precise formulation of the Atlantis-EEC model 615 

(Girardin et al. 2018), such as its trophic and physical structure, there is also learning that 616 

could apply to other Atlantis implementations. New Atlantis implementations continue to be 617 

developed (Weijerman et al. 2016), and calibration of these models is a challenging 618 

undertaking. The results of this SA can provide additional information to complement existing 619 

advice for how to approach calibration (Audzijonyte et al. 2019, Pethybridge et al. 2019). 620 

While we were unable to find a simple list of parameters with minimal effects across all 621 

groups, this is unsurprising given that we focused on a subset of the most frequently 622 

calibrated parameters (Pethybridge et al. 2019) and the known feedback interactions present 623 

in Atlantis through the trophic structure (Pantus 2007). However, there were still differences 624 

in the strength of effect among parameters. One important distinction, particularly when 625 

calibrating models, is that between parameters that have a strong main effect on the outcomes 626 

of many or nearly all groups versus those parameters whose main effect is primarily on the 627 

group itself. While the ubiquity of nonlinear/interaction effects means there are no parameters 628 

that are strictly limited to only influencing their own groups, there are clear differences in the 629 

degree of interactions.  630 

The strong contribution of the plankton parameters to system stability and the 631 

determination of most groups’ biomass suggests a useful approach is to first calibrate a 632 

simplified NPZ model (Pethybridge et al. 2019), which was successfully applied for the 633 

calibration of the Atlantis-EEC model (Girardin et al. 2018). While the representation of 634 

lower trophic levels in Atlantis is necessarily coarse given its spatial and temporal resolution 635 

(Pethybridge et al. 2019), it is still likely that a subset of these groups will be highly 636 



influential for the entire system, though which subset appears to be model-dependent (Ortega-637 

Cisneros et al. 2017, Hansen et al. 2019, Sturludottir et al. 2018). Further, the large influence 638 

of fixed-recruitment top predator parameters on system stability despite those groups’ 639 

comparatively small biomass suggests that it is essential to set parameters for these groups 640 

approximately correctly early in the calibration process. There was hardly any interaction 641 

between fixed-recruitment top predator and plankton parameters, suggesting the lowest and 642 

highest trophic levels could be calibrated sequentially. 643 

Once the highest and lowest trophic levels are stabilized (i.e. SA2), many parameter 644 

interactions fall into the monotonic or almost monotonic zone for individual outputs (though 645 

not total system biomass or stability). One surprising discovery was the relatively localized 646 

and monotonic effect of manipulating BH recruitment (BHalpha), with only the group itself 647 

affected and no other parameters contributing in most cases. In these groups, generally fish,  648 

nonlinear/interaction effects were more prevalent with growth and mortality parameters. In 649 

general, growth rates were more important than mortality rates for determining biomass, 650 

though mortality rates appeared important for controlling system stability. For vertebrate 651 

groups, this may be because most mortality is captured through predation and fishing 652 

mortality. While mortality rates were more important for invertebrate groups, they were still 653 

less important than growth rates, and this may be due to natural mortality rates being low for 654 

invertebrates in the baseline model. For context, nearly all vertebrate mortality rates (that 655 

were not zero) were above the 1e-5 day-1 threshold Pethybridge et al. (2019) consider high 656 

additional mortality, while nearly all invertebrate mortality rates, other than plankton, were 657 

below the threshold. Groups whose parameters were important to other groups tended to be 658 

the most abundant benthic invertebrates and planktivorous fish. While it is unclear how much 659 

these results depend on the specific trophic network and environment of the Atlantis-EEC 660 

model, we can make some preliminary suggestions on the order in which to tackle groups 661 



within the context of other advice on calibrating Atlantis models (Audzijonyte et al. 2019, 662 

Pethybridge et al. 2019). That is, 1) calibrate the plankton and recycling groups, perhaps as a 663 

simplified NPZ model, 2) ensure reasonable (avoiding extinction or exponential growth) 664 

mortality and recruitment rates of fixed- or constant-recruitment groups, generally top 665 

predators, 3) adjust growth rates of non-age-structured groups, 4) adjust growth rates of age-666 

structured groups, focusing on high-abundance groups, 5) adjust mortality rates as needed for 667 

stability, 6) adjust BH recruitment to match numbers, 7) continue to iteratively fine tune 668 

groups. Furthermore, if resources are available, we suggest that once reasonable starting 669 

points for parameters are identified, a SA, even with few trajectories, can be very useful for 670 

calibration efforts. 671 

An important consideration for performing a SA on an Atlantis model is what resources are 672 

available given the long simulation running times. Our results indicate that useful information 673 

can still be obtained even from many fewer trajectories than the 50 we used here. While some 674 

form of parallelization would still be essential, this may not necessarily require access to a 675 

supercomputer. There are several considerations with using relatively few trajectories in a 676 

highly parameterized and complex model suggested by our analysis. Most importantly, 677 

interaction/nonlinear effects are likely to be underestimated, particularly with very small 678 

trajectory samples. In general, while the effect sizes may vary with smaller numbers of 679 

trajectories, the approximate ordering of parameters was still fairly accurate. These issues 680 

may be accentuated if the system frequently becomes unstable in the SA simulations (i.e. 681 

groups exploding or going extinct, crashes), so that repeating the SA in that context may not 682 

give consistent results. 683 

While a SA generally provides information on how much each parameter influences the 684 

output, an uncertainty analysis (UA) focuses rather on how much the results are influenced by 685 

the uncertainty of the inputs. UA comprises a broader context than a SA; for example, Link et 686 



al. (2012) list six major categories of uncertainty in ecosystem models: natural variability; 687 

observation error; inadequate communication among scientists, decision-makers and 688 

stakeholders; model structural complexity; outcome uncertainty; and unclear management 689 

objectives. UAs of complex ecosystem models are also relatively rare. UAs can highlight how 690 

uncertainty in parameter specification translates to uncertainty in model outputs (Morzaria-691 

Luna et al. 2018), and cross-model comparisons can give insight into the effects of 692 

uncertainty in process specification (Fulton et al. 2003, Smith et al. 2015). Investigating 693 

model uncertainty is a current focus of the Atlantis community (Weijerman et al. 2015). Our 694 

results suggest that one possible starting point would be to include uncertainty in the plankton 695 

dynamics, as these tend to be data poor (particularly zooplankton dynamics and 696 

phytoplankton species composition) but also influential to system stability and dynamics. 697 

Zooplankton are a key feature of end-to-end ecosystem models linking lower and upper 698 

trophic levels, as compared to NPZ models which focus on biogeochemical cycling or 699 

multispecies fish models with simplified representations (Rose et al. 2010). Other parameters 700 

to consider in a UA scenario could be determined from uncertainty based on the data pedigree 701 

(Pethybridge et al. 2019) combined with information from a SA like the one presented here. 702 

This analysis could be limited to or weighted by the key groups depending on the scenario 703 

investigated (e.g. commercially important or threatened species). This would allow comparing 704 

the magnitude of impact on output of model uncertainties and management alternatives, as 705 

well as propagating uncertainty in the analysis. 706 

4.3 Future directions  707 

While comprehensive, the current SA is still only a first step in understanding the 708 

sensitivity of the Atlantis-EEC model to its input parameters. Here we covered the most 709 

frequently calibrated growth, mortality, and recruitment parameters, which are not known 710 

precisely but for which some insight is available. Other parameters which could be crucial but 711 



which are rarely changed in Atlantis models, such as assimilation efficiency or environmental 712 

response functions like temperature dependent growth, would be interesting to explore. Future 713 

analyses could also take into account how the fishing fleets are parameterized and how the 714 

predator-prey diet availability matrix is defined. Earlier work has already demonstrated how 715 

species life history traits drive responses to fishing pressure (Kaplan et al.2012). Furthermore, 716 

an uncertainty analysis of the diet availability matrix showed great variation in the biomass 717 

and catch predicted as well as provided a possible framework for conducting a SA of the diet 718 

availability matrix (Morzaria-Luna et al. 2018). Finally, the sensitivity to model structure, 719 

such as which functional response or recruitment relationship is used, could be important. 720 

We considered the direct outputs of biomass and vertebrate numbers as well as system 721 

stability, but future analyses could also include additional outputs like size-at-age for 722 

vertebrates, realized diet, or consider the outputs spatially rather than aggregated. Here our 723 

aim was two-fold: to gain insight into model functioning and to provide guidance for 724 

calibration. Therefore we used biomass and numbers as our outputs of interest. In order to 725 

more precisely inform an automated calibration, the sensitivity of the objective function (OF) 726 

could also be investigated. Indeed, 1) depending on the formulation of the OF, other 727 

parameters than those affecting absolute biomass and numbers may be shown to be influential 728 

and 2) it is worth exploring the sensitivity of alternative formulations of the OF beforehand to 729 

ensure responsiveness. Automatic calibration has been successfully implemented for other 730 

ecosystem models such as OSMOSE (Duboz et al. 2010) and NEMURO (Rose et al. 2007), 731 

but has not yet been attempted for an Atlantis model. A successful automatic calibration 732 

framework for Atlantis models would provide advantages such as reducing the time necessary 733 

to calibrate the model and providing an objective common ground for calibrating different 734 

implementations of the model. Given the complexity and highly-parameterized nature of 735 

Atlantis, substantial uncertainty may remain in the parameters that should be characterized, 736 



and a unique set of parameter values may not be obtained (Janssen & Heuberger 1995). 737 

Furthermore, a sequential calibration approach, like that used with OSMOSE, may be helpful. 738 

Conducting SAs across other Atlantis model implementations would allow better 739 

understanding of whether parameter sensitivities are due to structural design of the Atlantis 740 

model, locale-specific environmental or trophic network effects, or perhaps even common 741 

trophic structures across models. SAs of Atlantis models, including this one, have consistently 742 

found plankton growth parameters to be important drivers of biomass across groups (Hansen 743 

et al. 2019, Ortega-Cisneros et al. 2017, Sturludottir et al. 2018). In particular, we recommend 744 

the Morris screening method (Morris 1991) as well-suited to the complexity and long running 745 

time of Atlantis models. It provides the ability to gain information on nonlinear/interaction 746 

effects with no linearity assumptions of the model but with the number of simulations 747 

required still on the order of a simple OAT analysis (Saltelli & Annoni 2010), and has been 748 

successfully applied to other end-to-end marine ecosystem models (Morris et al. 2014). More 749 

and more thorough SAs across a variety of Atlantis models may also allow the simplification 750 

of some model processes (Fulton et al. 2003, Van Nes & Scheffer 2005). 751 
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 766 

Tables 767 

Table 1: Parameters included in the SA applied across 35 vertebrate and invertebrate/plankton groups (that is, 768 
omitting detritus and bacteria groups), see Table A.4 for a complete list of parameters and their values used in the SA 769 
and Table A.1 for a complete list of groups. 770 

Parameter Meaning Min bound Max bound Notes 

C clearance rate, 

similar to a 

search volume 

-50% baseline 

value 

+100% baseline 

value 

For vertebrate 

groups, ai controls C 

across age classes 

Mum maximum 

consumption rate 

-50% baseline 

value 

(invertebrates) 

3*C (vertebrates) 

+100% baseline 

value 

(invertebrates) 

3*C (vertebrates) 

Moved 

synchronously with 

C (note PP only has 

mum and no C) 

BHalpha controls the 

asymptote of the 

stock-recruit 

relationship 

(Beverton-Holt 

recruitment)  

5th percentile of 

percent changes 

from mean 

recruitment 

biomass times 

baseline value 

95th percentile of 

percent change 

from mean 

recruitment 

biomass times 

baseline value 

For fish, sharks, rays 

BHbeta controls how 

quickly the 

asymptote of the 

stock-recruit 

NA NA Not included in SA 



relationship is 

reached 

(Beverton-Holt 

recruitment) 

KDENR number of new 

recruits arriving 

each year (fixed 

recruitment) 

-50% baseline 

value 

+100% baseline 

value 

For seabirds and 

marine mammals 

(CET, SB, SXX) 

mL Linear mortality 

(mortality in 

addition to 

fishing and 

predation) 

-50% baseline 

value 

+100% baseline 

value 

For top predators 

(SXX, CET, SB, 

SHK, RAY, LBT), 

other fish (CLU, 

POL) and primary 

production (PP, 

ZOO, ZOC, ZOG) 

Single value for 

invertebrates, 

juvenile and adult 

values for 

vertebrates and CEP. 

mQ Quadratic 

mortality, used to 

enforce density 

dependence 

-50% baseline 

value 

+100% baseline 

value 

For invertebrate 

groups (CRA, WHE, 

ECH, SHP, LBE, 

SCE, SUS, BIV, 

DEP) and CLU 



(juvenile and adult 

values, but adult 

value is 0) 

 771 

2 772 

     

     

     

 773 

 774 

Figures 775 

Fig. 1 The main submodels making up the Atlantis-EEC model. On bottom, the 776 

hydrographic submodel comprising climate, oceanography, and biogeochemistry. In the 777 

middle, the ecology submodel, which was the target of the SA, comprising 40 different 778 

groups, each with its own population dynamics and trophic connections (see Table A.1), and 779 

shown here organized by guilds. On top, the human impacts submodel represented by the 780 

fishing fleet. 781 

Fig. 2 Proportion of groups stable in each simulation in SA1 and SA2. 782 

Fig. 3 Relationship between µ* vs. σ for total biomass (left), total vertebrate numbers 783 

(center), and stability (right) in SA1. Lines demarcate zones σ/µ*=0.1 (almost linear, dashed), 784 

σ/µ*=0.5 (monotonic, dotted), σ/µ*=1 (almost monotonic, dashed-dotted), with the upper 785 

triangle being non-linear/interactions. For biomass and numbers, values are shown on a log-786 

log scale. 787 

Fig. 4 Heat map of the metrics µ* (left), µ (center), and σ (right) for the effects of 788 

parameters on the biomass of each group in SA1.Values are normalized in [0,1] ([-1,1] for µ) 789 

for each group by dividing each parameter’s metric value by the maximum for the group. 790 



Guilds have been identified through colors (left hand side) valid both for input parameter 791 

(rows) and output biomass (columns). Heat map were realized using BiocManager package 792 

(Gu et al. 2016).Fig. 5 Relationship between µ* vs. σ for total biomass (left), total vertebrate 793 

numbers (center), and stability (right) in SA2. Lines demarcate zones σ/µ*=0.1 (almost linear, 794 

dashed), σ/µ*=0.5 (monotonic, dotted), σ/µ*=1 (almost monotonic, dashed-dotted), with the 795 

upper triangle being non-linear/interactions.  796 

Fig. 6 Heat map of the metrics µ* (left), µ (center), and σ (right) for the effects of parameters 797 

on the biomass of each group in SA2.Values are normalized in [0,1] ([-1,1] for µ) for each 798 

group by dividing each parameter’s metric value by the maximum for the group. Guilds have 799 

been identified through colors (left hand side) valid both for input parameter (rows) and 800 

output biomass (columns). Heat map were realized using BiocManager package (Gu et al. 801 

2016). 802 
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