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Abstract :

Based on satellite and in situ data, the dynamic characteristics and vertical structure of a surface
intensified mesoscale dipole recently expelled from the South East Madagascar Current (SEMC) is
described for the first time. The dipole was surveyed 250 nautical miles south of Madagascar between 14
and 23 November 2016, during west-east and south-north transects carried out over the northern
Madagascar Ridge. The dipole consisted of two counter-rotating vortices of similar size (100 km) and
intensity (0.7 f), and an intense southwestward jet (150 cm s-1) in the frontal region between the two
eddies. The cyclonic eddy was lying on the western side of the anticyclonic eddy. With azimuthal velocities
reaching 100 cm s-1 at the surface and decreasing slowly with depth (40 cm s- 1 at -600 m), this MAD-
Ridge dipole was defined as a highly non-linear (Ro~0.7) isolated eddy-type structure (cB ~11cms —1
and U/cB ~ 0.7) capable of trapping and advecting water masses over large distances. The enhanced
concentration of chlorophyll-a found in the cyclone relative to the anticyclone could be tracked back to the
spin-up phase of the two eddies and attributed to eddy-pumping. The eddy cores were located above the
pycnocline (1026.4 kg m-3), within the upper 600 m, and consisted of varieties of Subtropical Underwater
(STUW) found within the SEMC. The STUW found in the anticyclone was more saline and oxygenated
than in the cyclone, highlighting mixing with the inshore shelf waters from the southeastern coastal
upwelling cell off Madagascar. Observations suggest that the dipole interacted strongly with the chaotic
bathymetry of the region, characterized by a group of five seamounts lying between -240 m and -1200 m.
The bathymetry blocked its westward advection, trapping it in the vicinity of the seamount for more than
4 weeks, so enhancing the role of the eddy-induced velocities in stirring the surrounding water masses.
Squeezed between the southern Madagascan shelf and the northern flank of the anticyclone, two
filament-like dynamic features with very different water-mass properties could be observed on the south-
north transect: i) one filament highly concentrated in chlorophyll-a demonstrating the capacity of the eddy
to export shelf water offshore; ii) intrusions of a more southern-type of STUW generally found south of the
South Indian Counter Current (SICC) recirculating on the external flanks of the anticyclone. Although the
observed circulation and hydrography were largely constrained by the presence of the mesoscale eddy
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dipole, unmistakable fine-scale dynamics were also observed in the vicinity of the MAD-Ridge seamount,
superimposed onto the mesoscale eddy flow.
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1. Introduction
1.1 Context

Seamounts are ubiquitous in the World’s Oceangetent years, advances in satellite
altimetry have allowed >14 000 seamounts with d@icarextension exceeding 1000 m to be
spotted (Kitchingman et al., 2007). According tovélle and Mohn (2010), >100 000 tall
seamounts still remain uncharted as a consequénimitations in the resolution of satellite
altimetry. The proportion of seamounts that havd treir environment monitored is also
extremely low, even though seamounts are knownldg prucial roles in structuring the
ecology of the oceans, and more recently, for thalmerability to human exploitation (Clark
et al., 2010; Schlacher et al., 2010). Seamourt®fen seen as key habitats for marine life,
even more so in oligotrophic waters where they @asidered as hotspots for life and
biodiversity (Genin and Boehlert, 1985; Dower et 4B92; Rogers, 1994; Mouriiio et al.,
2001). In addition, many are located in Areas Belydlational Jurisdiction (ABNJ) where
there is little regulation, leaving them targetgdrdustrial fisheries (Marsac et al., 2020) and
sometimes resulting in the total collapse of tisbdry (Koslow, 1997; Clark, 2001; Pitcher et
al., 2010).

There seems to be general consensus in the litertitat the associated with seamounts
are linked tightly to the dynamics of oceanic clation. At least two of today's general
concepts arose in the literature of the 1980s @804, when interest in seamount biology

started to rise. The first states that there isem®ed primary productivity and chlorophall-
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(hereafter chlk) around seamounts because of the enhanced véditicalf nutrients towards
the euphotic layer. The second is that currentsirmtoseamounts favour the retention of
organic matter and organisms, which contributethéospecificity of the ecosystems, isolated
from the surrounding environment, and shelterimgstricted and unique biodiversity (Genin
and Boehlert, 1985; Dower et al., 1992; Boehled dundy, 1993; Comeau et al., 1995;
Mourifio et al., 2001; Genin, 2004). However, theas been little tangible evidence to sustain
these concepts (Genin and Dower, 2007; Rowden,&(dl0).

1.2 Influence of seamounts on the ocean circulation

Theoretical and idealized modelling has helpedndeustanding the physical processes at
play when a tidal or non-tidal flow encounters anlated seamount. For instance, Garrett
(2003) found that steep seamounts, located in afestsong tidal flow, act as stirring rods for
the ocean where the energy from lunar and solatioguic tides is converted into an internal
wave field, commonly referred to as the internahrzlinic) tide. Internal waves then
propagate into the ocean interior inducing motiafisthe density surfaces (isopycnals).
Whether this internal wave field breaks locallyfar away, such dissipation generates sites of
intense vertical turbulent mixing that contribute the local stratification and nutrient
enrichment of surface layers. Non-tidal flows inging on a seamount may also generate
internal waves, commonly referred to as Lee wavdee latter will also either dissipate
locally or radiate away depending on the charasties of the flow and the topography
(Nikurashin and Ferrari, 2010). When the non-titlalv is characterized by low Rossby
numbers, it will deviate anticyclonically aroundetlseamount. In some conditions, this
anticyclonic flow may even remain trapped over bstacle, constituting a feature known as a
Taylor cap (or Taylor column; Huppert, 1975). Tloenfation of a Taylor column is also
accompanied by the detachment of a cyclonic edalyrttay remain trapped in the vicinity of
the obstacle or advected away (Huppert and Bry&d6;1Royer, 1978; Verron and Le
Provost, 1985; Herbette et al., 2003). Oceaniceriisrinduced by intense mesoscale eddies
enter this category of non-tidal flows. Taylor cag@ produce large uplift of the interior
isopycnals (Dower and Mackas, 1996), which coulibeice phytoplankton blooms. They can
also be long-life features facilitating the retentiof particles and biota near the seamount

summit (Mullineaux and Mills, 1997).

1.3 The northern Madagascar Ridge
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In the South West Indian Ocean (SWIO), the 15004kngy Madagascar Ridge is an
elongated aseismic plateau that extends from gheftthe southern Madagascar shelf all the
way down to 35°S (Sinha et al., 1981). It separitedMozambique and Madagascar basins,
two ocean basins of mid- to late Cretaceous age,typically rises from abyssal depths (-
5000 m) to between 1500 and 2500 m of the seacsu(fag. 1). On its southern portion (at
33°12’'S), the Walters Shoal, a seamount almosthiegcthe sea surface, is its most
prominent feature. On its northern portion, justittoof the Madagascan shelf, the ridge
widens and becomes a rough plateau composed eastt five seamounts, which have never
been monitored.

The northern Madagascar Ridge is a productive negiohighly complex and turbulent
dynamics. It is influenced by cold filaments, higlebncentrated in chd; detaching from the
adjacent southern Madagascar coastal upwelling @alitieharms and Machu, 2000; Quartly,
2006; Quartly et al., 2006; Ramanantsoa et al.82D&marcq et al., 2020). It is also located
in the very energetic retroflection region of theugh East Madagascar Current (SEMC)
(Pous et al., 2014; Vianello et al., 2020), whidbwk south along the east coast of
Madagascar, transporting around 35 $f warm, saline water from the subtropical South
Indian Ocean (Siedler et al., 2009). It origindiesn the bifurcation, at 20°S, of the Indian
Ocean South Equatorial Current (SEC) (DiMarco gt24102) and forms the northern part of
the western boundary current of the South Indiaea@csubtropical gyre. At the southern tip
of Madagascar, the dynamics of the SEMC becomellyhigcpmplex with three possible
modes (Quartly et al., 2006; Ramanantsoa et aRQR0d) an early retroflection mode in
which the SEMC veers eastwards several hundre#goohetres north of the southern tip of
Madagascar (~23°S); ii) a canonical retroflectioada in which the SEMC overshoots the
southern tip of Madagascar, flowing south, befonally veering east; iii) a third mode in
which the SEMC continues to flow west following tbeuthern Madagascan shelf edge. The
last two modes contribute to the formation of isemmesoscale eddies or dipoles that
propagate westwards over the Madagascar Ridge @amdrds the Agulhas Current (De
Ruijter et al., 2004; Nauw et al., 2008; Siedlealet 2009; Halo et al. 2014). Ridderinkhof et
al. (2013) showed that, south of Madagascar, thessoscale eddies often take the form of
large dipoles, among which some may remain stroogigh to subsequently trigger an early

retroflection of the Agulhas Current.

! Sverdrup (Sv) = 10m* s*
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1.4 Previous cruises on the northern Madagascag®id

A few research cruises had previously taken plaeg the northern Madagascar Ridge. In
2001, the ACSEX hydrographic cruise (Agulhas Curi®aurces Experiment) consisted of
four transects perpendicular to the Madagascar #mat captured the SEMC as well as an
anticyclonic and cyclonic eddy dipole (De Ruijterae, 2004; Nauw et al., 2008). In 2005,
the Madagascar Experiment (MadEx) highlighted thes@nce of intensified currents at all
depths of the water column (Quartly, 2006; Quaetiyal., 2006). In September 2008, eight
across-shore transects carried out on board theDRWridtjof Nansenalong the eastern
Madagascan coast, emphasized the complex dynamihs aorthern and southern branches
of the East Madagascar Current (Voldsund et all,7R00ne year later, the same vessel
returned to the area and surveyed the south and eeasts of Madagascar within the
framework of the Agulhas Somali Large Marine Ectsys(ASCLME) programme (Pripp et
al., 2014). Evidence of coastal upwelling was foalmhg the southeast coast of Madagascar
and at two sites on its west coast, Cap Saint AaddENosy Be Island (Alvheim et al., 2009).
In November/December 2009, a multidisciplinary seuwas conducted over a group of
seamounts of the SWIO, whose summits lay at depthated between -100 m and -1250 m.
The objective of that programme was to gain knog#edn the pelagic ecosystems around the
seamounts and to determine the dominant physicaiepses at play (Read and Pollard,
2017). Five of the seamounts were located oveBStheh West Indian Ridge and one over the
southern Madagascar Ridge, close to the Walteral§Rwmgers, 2016). Results showed that
oceanic currents around the seamounts were linké#tktinternal wave field originating from
the tidal flow, or to the presence of mesoscalaesdd\lthough Taylor caps were detected at
a few locations during that survey (Pollard and Re&#17), their existence was intermittent

and did not influence the observed circulation aydrography.

1.5 The MADRIdge project

In 2016/2017, an international programme (the MA@ project) was designed to
monitor the ecosystems in the vicinity of shalloeasounts in the SWIO (Fig. 1). The
International Union for Conservation of Nature (INCand the French Institut de Recherche
pour le Développement (IRD), together with partnéns France, South Africa and
Madagascar, carried out three multidisciplinaryeegsh cruises that surveyed three shallow
seamounts lying in three very different dynamic immments (Roberts et al., 2020). The
study describes the physical (currents and hydpbghaand biogeochemical (oxygen and
fluorescencein situ data collected during the MAD-Ridge Leg 1 expeditihat focused only
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on one of the three seamounts: an unnamed seantioeirgafter named MAD-Ridge, located
on the northern Madagascar Ridge. The work heres @mproviding knowledge of the
underlying dynamics within this very turbulent emmviment, focusing specifically on the role
of the bathymetry in constraining the circulatiodehydrography. The situ survey offered
an unique opportunity to characterize in detailudaze-intensified mesoscale eddy dipole
that had been freshly expelled from the SEMC aayest trapped in the vicinity of the MAD-
Ridge seamount during the whole cruise. Our ohjestare to describe in detail the synoptic
conditions in place during the MAD-Ridge Leg 1 seiiand to analyse how the conditions
may have influenced the nature of the flow-topobyamteractions and the environmental

response in term of clal-concentration.

1.6 Outline

Section 2 below describes the MAD-Ridge Leg 1 euiscusing on the vertical profiling
of the physical (currents and hydrography) and @atpemical (oxygen and fluorescenire)
situ data, and their subsequent validation and caldraf he satellite data (sea surface height
and chla) and the methods used to track mesoscale eddigseimegion are also briefly
explained. Section 3 then highlights the presenaéng the survey of a surface-intensified
coherent mesoscale cyclonic/anticyclonic dipole efled from the SEMC. The vertical
structure of the dipole is characterized in terrhyadocities, water mass properties and its
impact on the vertical distribution of chl-and nutrients. Fine-scale turbulent dynamic
features such as filaments, which superimpose ¢tmtodominant flow induced by the
mesoscale eddy dipole, are described in Sectiohh® observations are discussed in
Section 5 in the light of theoretical work on edgBamount interactions and recent progress in
the understanding of the variability of the SEMGnaHy, Section 6 summarizes our
observations and discusses the important role gléyethe northern Madagascar Ridge in
Global Ocean circulation by governing aspects afneativity between the SEMC and the
Agulhas Current.

2. Data and Methods
2.1 The MAD-Ridge cruise

The MAD-Ridge Leg 1 cruise took place between 8 &&d November 2016 (doi:
10.17600/16004800) on board the FWitea It focused on the MAD-Ridge seamount at
27°29'S, 46°16’E. The cruise consisted of two padeular transects of ~150 nautical miles

that crossed the summit of the seamount (Fig. B West-east transect was carried out
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during the period 14-18 November, and the soutlhntansect from 19 to 23 November.
Each station along the transects consisted of aiivity-temperature-depth (CTD) and
lowered acoustic Doppler current profiler (L-ADC#rtical profiling down to -1000 m.
Stations were every 15 nautical miles outwards fthenseamount, and at intervals reduced to
5 nautical miles over the slopes and summit ofgbé@mount. The west-east transect (45°-
47°30’E, at 27°30’S) had 15 stations, the southintvansect (28°17’S - 25°40’S, at 46°15’E)
16 stations. The northernmost station of the meniali transect was located on the outer edge
of the southern Madagascan continental shelf on848 m isobath. Ship acoustic Doppler

current profiler (S-ADCP) measurements were cadié@long the whole cruise track.

2.2 CTD and nutrients data

In situ vertical profiles of temperature, salinity, dissad oxygen and fluorescence were
collected using a Seabird SBE 911+ CTh€quipped with a Wetlabs ECO FL fluorometer.
The CTD-Q probe had two sensors for temperature, salinity dissolved oxygen. The
vertical profiles were made from the surface toL60 Seawater samples were collected at
different depths (up to 11 samples per cast) tibrede the salinity (measured on board using
a Portasal salinometer and OSIL normal seawat@g)gen (measured on board using the
Winkler method) and fluorescence (filtration on twband phytoplankton pigment analysis at
the laboratory using High Pressure Liquid Chrometplhy) sensors. Nutrients (NONO,
PO, and Si(OH)) were determined by the classical colorimetrichrodt(Oudot et al., 1998)
on samples collected at each station. CTD-@libration was performed using the
CADYHAC software from IFREMER (Kermabon et al., Z)1Conservative temperature and
absolute salinity were calculated according to TeOS-10 equations, and the vertical
stretching term of the potential vorticity (PV) wasrived asf|N*g, with f the Coriolis

parameterN the Brunt-Vaisala frequency agdhe constant for gravity (Talley et al., 2011).

2.3 In situ current measurements

The RVAnteahas a 75 kHz RDI Ocean Surveyor hull mounted S-RD&hich allows for
continuous vertical profiling of the ocean currerdtong the ship’s track. Velocity
components were time-averaged over 2 min. Thecantesolution (bin size) was set to 16
m, with a maximum measurement depth down to -60Ume. S-ADCP data were processed
using the CASCADE software from IFREMER (Le Botagt 2011). A tidal correction was
applied using the TPX08-atlas (Egbert et al., 2008 final S-ADCP product consisted of a
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2-km horizontal resolution set of vertical profilies the zonali and meridional components
of the velocity vector.

Two 300 kHz RDI Workhorse (upward and downward ra¢ed) L-ADCPs were attached
to the CTD frame to measure the zonal and meridlicoraponents of the velocity through the
water column at each CTD station, with an 8 m ealtbin-size resolution. L-ADCP data
were processed on board, then calibrated aftecrthise using a software developed by IFM-
GEOMAR/LDEO (Thurnherr, 2014). The L-ADCP failed stiations 2 and 3. Despite the
coarser horizontal resolution of the L-ADCP sampl{r25 km for the L-ADCP vs. 2 km for
the S-ADCP), the vertical structure of the velodiglds given by the S-ADCP and L-ADCP
were similar (Supplementary material Fig. S1). Henihe S-ADCP data are used in the
analysis.

2.4 Altimetry data

Daily interpolated merged delayed time altimetryadgridded at ¥4° resolution, produced
by Ssalto/Duacs and distributed by the Copernicasifé Environment Monitoring Service
(CMEMS, http://marine.copernicus.eu/) were useddscribe the surface mesoscale synoptic
conditions over the northern Madagascar ridge. MEddy Kinetic Energy (EKE) was
derived from Sea Level Anomaly (SLA) data over egdaportion the SWIO (Fig. 1) as

follows:

- 1 —

EKE = 5 (uz +v'%), (1)
where ug; and v'y; are the zonal and meridional components of théasergeostrophic
current anomaly, and thetand for a linear time average operator from 199%015. Further,
Absolute Dynamic Topography (MADT) data were usedcompute the absolute surface

geostrophic currents, relative vorticity and theubd-Weiss quantify(Okubo, 1970; Weiss,
1991).

2.5 Ocean surface colour and chkatellite data

Daily 4-km resolution MODIS ocean colour data pded by NASA
(https://oceancolor.gsfc.nasa.gov/) were processguioduce composite 3-day images of the
chl-a surface distribution.

’> The Okubo-Weiss quantity,, measures the local influences of the shear/staéénagainst the relative
vorticity. It is calculated by subtracting the tiata vorticity ¢ = (OxVgs - ayugs)2 from the deformation rate
0= (OxUgs - Oy Vg9® + (OxVgs + By Ugd® : Ak = O - {-.
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2.6 Eddy tracking and dipole occurrence

Seven-day SLA products at ¥° resolution were useddnitor the long-term eddy activity
in the region over the period 1993-2016 and toristatistics on the presence of surface-
intensified mesoscale eddy dipoles in the regiaidi&s were tracked using the algorithm
developed by Chelton et al. (2007). The method is®f finding SLA extrema sitting
inside closed SLA contours (Chelton et al., 200&shkh et al., 2011; Halo et al., 2014). Once
an eddy is identified, the eddy centre coordinates recorded. The method was further
adapted to: i) discard weak eddies that have Sltfema <10 cm in amplitude; ii) only retain
eddies potentially interacting with the seamouttie-typical eddy radius in the area being 90
km [Halo et al., 2014], eddies found farther frone seamount summit were discarded; iii)
distinguish single eddies from dipoles. Dipoles aveliagnosed when a cyclone and an
anticyclone could both be observed during the s&muy period, <180 km from the
seamount summit, and when the maximum velocityhm frontal region between the two
eddies was at least 1.5x the velocity found oretltidy periphery. For each dipole detected, a
“dipole strength” (DS) was computed as an estintditéhe gradient of SLA in the frontal
region, subtracting the minimum SLA found withiretbyclone (SLAin) from the maximum
SLA found within the anticyclone (SL#&, and dividing the difference by the distance
between the two eddy centreg{gt DS = (SLAnax— SLAmin) / (Ck/ad-

2.7 Bathymetry

The bathymetry of the MAD-Ridge seamount was sugdeyn board using the two single-
beam echo-sounders (12 and 38 kHz) mounted on tieARtea The echo-sounder
measurements differed significantly from the ETOB@nd GEBCO 3bproducts based on
satellite altimetry. The MAD-Ridge seamount sumwmits indeed found 6 km farther south
than expected. In addition, although the seamoestired the sea surface in ETOPO 1 and
GEBCO 30, it was found at -240 m during the cruidee SRTM (Shuttle Radar Topography
Mission) bathymetry product which showed the searhai the correct position just 150 m
below the sea surface, is used in the followingdisplaying the bathymetry of the area.

According to then situ data, the seamount summit consists of a 20-km woiaé plateau,

slightly elongated along a south-north axis, tHahges steeply from -240 m to the seafloor at

*ETOPO 1 : doi:10.7289/V5C8276M
4 GEBCO 30: doi:10.5285/a29¢5465-b138-234d-e053-8ic88400b9)
® SRTM: https://topex.ucsd.edu/WWW _html/srtm30_gits
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-1600 m (Fig. 2). It should be stressed that theDMRidge seamount is not an isolated
structure; it is surrounded by four deeper sumsittsated between -600 m and -1200 m. The
detailed topography of these neighbouring seamauassnot monitored during the cruise.

2.81In situ geostrophic velocities
The components of the geostrophic velocity perpaidr to the west-east and south-north
transects were calculated integrating verticalgytthermal wind equation:
avl -1 1 1
= — A (—) .3)
dp [ Bx; \p
v, is the component of the geostrophic velocity pediauilar to each segment separating two

CTD vertical profilesp the pressurdf, the Coriolis parametenx,, the segment length and
A(%) the variation of specific volume over the segmértie right side of Eq. (3) was

computed from the TEOS-10 Gibbs equation of stai@guconservative temperature and
absolute salinity. Eq. (3) was then integratediwally from a pressure of reference. This
pressure of reference was calculated for each s#gasethe pressure at which the vertical
shear of the S-ADCP velocity component perpendictdathe segment balanced the right-
side term of Eg. (3). A horizontal low-pass Lanchtier was applied to both the S-ADCP
and temperature and salinity data prior to thegiratton, to remove spurious signal associated
with non-geostrophic dynamics. The cut-off wave bemwas set to 1/20 ki a value ~3
times less than the Rossby radius of deformatiomdan the region (Chelton et al., 1998).
Ageostrophic velocities were calculated by subingcthe calculated geostrophic velocities

from the non-filtered S-ADCP velocity data.

3. Characteristics of a strong surface intensified mesoscale eddy dipole

A map of surface EKE, a proxy for mesoscale tunbcgein the ocean, provides robust
evidence that the MAD-Ridge seamount is located fiegion characterized by a high level of
turbulent mesoscale activity, with EKE values raggbetween 63@nd 800 crhs? (Fig. 1).
Although such levels of EKE are about 3x less tise found in the most energetic western
boundary current systems (Pilo et al., 2015), theeyhigher than in most parts of the ocean

and suggest the presence of highly variable syogptditions.

3.1 Surface signature and coherence of the mesosdaly dipole

10
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The cruise took place when a surface-intensifieticyaeionic/cyclonic eddy dipole was
present over the northern Madagascar Ridge (Figl't3 anticyclone was centred over the
seamount, with its cyclonic counterpart lying oswestern flank. Both eddies were roughly
the same size, with a radius of approximately 100 &nd of similar amplitude. Within the
anticyclone, the maximum values of SLA and surfiaative vorticity were >35 cm (Fig. 3)
and of the order of -0f7(f ~ -6.6 x 10’ s%) (Fig. 4). Similar but opposite values were found
within the cyclone, with minimum values of SLA bele35 cm and surface relative vorticity
of the order of +0.7. The frontal region between the two eddies wasatherized by intense
southwestward geostrophic jet-sustaining velociti#s0 cm & (Fig. 3), which highlights the
extreme intensity of the mesoscale dipole. Usingeddy-tracking algorithm, theortices
could be traced back to 26 October 2016, coincielitg the time when the SEMC started to
subdivide into two branches as seen in the sur@egive vorticity maps (Fig. 4). The west-
flowing branch followed the shelf edge, whereassbiethwest-flowing branch detached itself
from the coast at 25°S, 47°E. The southward flow wlaserved until 27°S, where the SEMC
started to veer westwards. Cyclonic vorticity depeld on the inshore side of the current, and
anticyclonic vorticity strengthened on the offsheide. On 2 November 2016, the dipole was
fully formed, although it was still embedded withihe SEMC. While strengthening, it
detached itself from the SEMC and propagated saghwwards the MAD-Ridge seamount.
From9 to 23 November 2016, the southwestward propagatiaheflipole slowed, and the
dipole stayed in the vicinity of the seamount farotfull weeks. By 30 November, the
cyclonic eddy had moved slightly southwest andahgcyclone had elongated notably in a
northeast-southwest direction. Another cyclonicyedduld be observed on the eastern flank
of the anticyclone. On 7 December 2016, the antcye split into two eddies. One stayed
trapped over the seamount, but the most intensecongnued to form a dipole with the
original cyclone. The dipole then accelerated atstswestward propagation. It was tracked
until 24 December 2016 (not shown) when both edfiiiedly dissipated, and another similar
dipole began to interact with the MAD-Ridge seantotience, the west-east and south-north
transects of Leg 1 provided a unigue opportunitguovey a strong mesoscale eddy dipole

freshly expelled from the SEMC and interacting wiite northern Madagascar Ridge.

3.2 Vertical structure of the mesoscale eddy digoleus on azimuthal velocities
The ship-mounted S-ADCP measurements provide additinformation on the vertical
structure of the currents within the dipole. Thestameast transect crossed the entire

anticyclonic eddy through its centre and captuhedsoutheastern portion of the cyclone (Fig.
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3). The agreement between the low-pass spatidierdd S-ADCP currents and the surface
geostrophic currents derived from altimetry sholat the dipole is accurately located by the
altimetry (Fig. 3), and lends confidence in thdigbof the low-pass Lanczos filter to retrieve
the geostrophic part of the currents from the S-ARDdata. The vertical structure of the flow
confirms that the dipole was surface-intensifiedy(/). Down to -400 m, the mesoscale
circulation was in total accord with the existené¢he mesoscale eddy dipole: clockwise and
anticlockwise circulations were observed within tyelone and anticyclone, respectively.
The highest velocities were found in the southwastiwyet that lay within the frontal region
between the two eddies (stations 5 and 6), witheshbove 150 cnitsit the surface and still
as high as 70 cni'sat -600 m. On the flanks of the dipole, velocitieare slightly slower, but
still as high as 100 cni'sn the upper 100 m of the water column, and ofditer of 70 cm'’s

! at - 400 m (Fig. 5a, €).

Between the two transects, the anticyclone moveavalthe seamount while being
stretched along a southeast-northwest axis (Sugplary Fig. S2). Hence, the south-north
transect only captured one arc of the anticycl@udy in which the flow was mostly to the
southwest, with velocities of the order of 80-180<'. Nevertheless, south of 27°S, the flow
veered anticlockwise to the east, confirming thaécgolonic rotation. Subsurface velocities
were also weaker, not exceeding 40 ¢hbelow -400 m. Geostrophic velocities computed
from the vertical profiling of density confirm thasserall circulation pattern (Fig. 6).

3.3 Vertical structure of the mesoscale eddy dipioleus on the hydrography

Additional characteristics on the vertical struetaf the two eddies is provided by time
situ temperature, salinity, oxygen and ehtfata collected during the two transects (Fig.d an
8). The vertical stretching term of the potentiarticity highlights the squeezing and
stretching of the isopycnals and provides extrarmftion on the process of formation of a
water mass (Talley et al., 2011).

The doming of the isopycnals (black contours) ig. Fi and 8 allows accurate location of
the core of the anticyclone (X1) and the south&nkf of the cyclone (X2). Considering the
average vertical density profile found in the MADGERe region, the 1026.4 kg hisopycnal
was hereafter selected as the pycnocline that stgsathe surface stratified waters from the
slightly deeper non-stratified waters’®&l10* s2). On the west-east transect, the curvature of
this pycnocline clearly showed the presence ofréase-intensified mesoscale eddy dipole.
This isopycnal depth is found at -400 m within @&ticyclone, and at -300 m within the

cyclone (Fig. 7). The south-north transect onlyeisécted the southwestern portion of the
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anticyclone. At stations 17, 18 and 19 (south ef $eamount), the depth of the pycnocline
was similar to that (-400 m) observed within thei@mlone on the west-east transect
(stations 11-15). The rise of the pycnocline nasththe seamount and adjacent to the
southern Madagascan shelf edge is in accord withnttensified westward flow observed on
the northern flank of the anticyclone (Fig. 8).

The cores of these two eddies were located abogeptitnocline. At such depths,
azimuthal velocities are at their highest (Fignsl &), and the water mass properties differed
substantially whether they belonged to the antmyel(X1), cyclone (X2) or the frontal zone
between the two eddies (Fig. 7). Surface watersdowithin the cyclonic eddy were on
average 0.6°C cooler and 0.1 g'kgore saline than those within the anticyclonic edthyis
difference is even more visible when considering #alinity maximum centred on the
1026.0 kg it isopycnal: the salinity was 0.3 gkdigher in the anticyclone (36 gkeat
stations 13, 14 and 24) than in the cyclone.

3.4 Water mass properties within the mesoscale dgbje

Water mass properties can be investigated by ptptthie CTD vertical profiles on two
diagrams, conservative temperature (CT) vs. abeokalinity (SA) (Fig. 9a, b) and
conservative temperature vs. dissolved oxygen (Bilg. 9c). Profiles are grouped into three
classes, depending on whether they were collectétinnmthe cyclonic eddy, within the
anticyclonic eddy or within the frontal zone inWwetn the two eddies. This classification was

made using altimetry data.

3.4.1 Below the pycnocline, within the depth raofjAntarctic Intermediate Water (AAIW):

Between -800 m and -1000 m, for waters heavier th@27.0 kg ri¥, the signature of
AAIW is clearly visible (Fig. 9a, b), with a minimuin salinity falling below 34.6 g kband
a minimum in temperature <10°C (Emery and Meinck®86). These properties match
observations carried out within the Agulhas Currennfirming the widespread nature of this
water mass in the SWIO (Beal et al., 2006).

Within this depth range too, the isopycnals weil deflected, mirroring the surface-
intensified dipole. However, the fact that all getets reported on the CT/SA and C}/O
diagrams for that depth range are superimposeeépartent of their location in the dipole
(Fig. 9), is an indication that the isopycnal vaaas of temperature, salinity and oxygen were

weak. The low values of geostrophic velocities (efr0s') at those depths (Fig. 6) confirm
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the belief that these water masses did not belonthé core of the eddies forming the

mesoscale eddy dipole, but rather were being emttldby the surface eddy cores.

3.4.2 Below the pycnocline, within the depth raofj8outh Indian Central Water (SICW):

On both transects, just below the eddy core, betwiee 1026.4 kg if and 1026.7 kg i
isopycnals, South-East Indian Sub-Antarctic ModeewéSEISAMW) was identified on all
the vertical CT/SA-profiles (Hanawa and Talley, 200Vithin that depth range, we observed
no spatial variation of temperature, salinity orygen on any given isopycnal (Fig 9). The
characteristics in temperature (10-15°C) and sgli(84.7—35.3 g kg) are similar to the
heavier range of central waters commonly found iwithe subtropical gyre of the SWIO
(Emery and Meincke, 1986; Sprintall and Tomczalg2tBeal et al., 2006). In addition, we
observed high oxygen concentration of >2080l kg* (Fig. 9¢c) and low potential vorticity
values (Fig. 7d and 8d). This helps to identify en@ccurately this water mass as the
SEISAMW, a heavy variety of Sub-Antarctic Mode WateAMW), formed within the deep-
winter mixed layer of the South East Indian Oceldanawa and Talley, 2001). New et al.
(2007) have identified SEISAMW over the Mascareifegau on the southern side of the
SEC. These observations suggest that the SEMCpterd this water mass, ensuring a
connection between the Mascarene plateau and ttieeno Madagascar Ridge.

3.4.3 Above the pycnocline, within the depths rapig8outh Tropical Underwater (STUW)
and Tropical Surface Water (TSW)

The STUW, characterized by salinity >35.5 g'kgnd a high potential vorticity of
~150 x 10'* s* (Hanawa and Talley 2001; Nauw et al., 2006), carséen in all the MAD-
Ridge CTD profiles above the pycnocline between1626.4 and 1024.8 kg frisopycnals
(Fig. 7 and 8) and on the CT/SA diagram (Fig. 9)afTwater mass constituted the core of
both eddies forming the mesoscale eddy dipole. Nlesless, there was some indication that
the anticyclonic eddy core (X1 in Fig. 7 and 8) taomed less-altered STUW than anywhere
else. Indeed, extremely high values of salinity§(s8kg") were observed on the west-east
transect at station 13, on 18 November, east oséaenount (X1 in Fig. 7), and then a few
days later on 21 November, at stations 23-24 josthnof the seamount when the eddy had
moved onto the seamount summit (X1 in Fig 8).

We now attempt to backtrack these properties tofah@ation of the dipole within the
SEMC. As already mentioned, maps of surface redatorticity suggest that the cyclone was

generated inshore of the SEMC, whereas the antiogolvas formed on its offshore side (Fig.
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4). The similarity between the CT/SA profiles iresithe cyclonic eddy and those observed on
the southern continental shelf of Madagascar dutieg ASCEX cruise (de Ruijter et al.,
2004) adds weight to this assumption. The obsedifdrence in salinity between the two
eddies was attributable to an existing cross-shoadient of salinity within the SEMC itself
that can be linked to the water mass propertiegb@fSEC. The latter transports a mixture of
Tropical Surface Water (TSW) and Sub-Tropical StefaVater (STSW) west, right across
the Indian Ocean, the STSW being much more satiag the former, and on the southern
side of the SEC (New et al., 2005, 2007). The dansart of the STSW subducts under the
Tropical Front to form some kind of intra-thermo&i waters commonly referred as Sub-
Tropical Underwater (STUW; O’Connor et al., 200Phis water mass is reported to be about
0.2 g kg* more saline than the TSW. When the SEC flows twemMascarene plateau, water
masses are partially mixed, which smooths out tfferdnce in salinity (New et al., 2007).
Nonetheless, water masses on the southern edpe &HC remain more saline than that on
the northern edge. When the SEC splits into twmddras, as it approaches Madagascar, its
southern part forms the southern branch of the EMA flows south along the Madagascan
coast, known as the SEMC. It is made up of STSW3hdW, but the offshore waters are
more saline than the inshore ones. As the SEMCsflsauth along the eastern Madagascan
coast, the offshore entrainment of fresh Madagasteif water into the SEMC and its
subsequent mixing with the waters within the curreginforce the cross-shore salinity

gradient, agreeing with the water masses obseritbihwhe eddy cores.

3.5 Impact of the mesoscale eddy dipole on chlearartrient distribution

Three-day composite maps of satellite sea surféat@ concentration show enhanced
phytoplankton concentration within the cyclone (FAig). This fits with the widely spread
paradigm that the uplift of isopycnals within cyeés brings more nutrients into the euphotic
layer, enhancing primary production (McGillicuddyas., 1998; Oschlies and Gargon, 1998;
Lévy, 2008). The vertical distribution of chl-along the west-east transect confirms this
enhancement in the surface layer, accompanied bypéft of the Deep Chlorophyk:
Maximum (DCM), following the upward doming of theopycnals induced by the cyclonic
eddy (X2 on Fig. 7). The DCM within the cyclone ¢ckad 0.40 mg mat -55 m at station 3,
but only 0.20 mg mMwas measured at -125 m at station 14 in the ahiogc

The daily evolution of satellite cla-concentration within both eddies was calculateerov
their lifetime, from 27 October to 24 December 2QE6y. 11). The corresponding cal-

concentration was extracted from the centre of bedbies and smoothed with a 3-day-
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window moving average to account for missing datused by cloud cover. The
concentration of ché& within the cyclone clearly increased during thénsgp phase of the
eddy when the eddy pumping mechanism that upliftsients towards the euphotic zone is
meant to be at its maximum (Lévy, 2008). The cotra¢ion then decreased, but still
remained higher than within the anticyclone by edst 0.05 mg i until mid-December
2016.

Although linking the distributions of nitrates aoll-a is beyond the scope of this paper, it
is worth mentioning that the vertical distributiof nitrate along the two transects is also
clearly constrained by the presence of the dip&ig.(12). The 1024.0 kg fisopycnal
separates the nutrient-depleted surface layers th@mutrient-rich subsurface waters, while
following a remarkable, classic eddy shape.

4. Evidence of small-scaleturbulence
In addition to the presence of a strong mesosaddy dipole, the analysis of the MAD-
Ridge Leg 1 dataset reveals a series of indicatsts of fine-scale turbulent dynamics in the

region during the cruise.

4.1 Fine scale undulations of the isopycnals

Fine-scale structures, smoothed out when consmi¢hia balanced geostrophic flow (Fig.
6a, b) are clearly visible on the west-east andhsonarth 2-km horizontal resolution S-ADCP
transects (Fig. 5). The most striking example waghe vicinity of the seamount, on its
western side during the west-east transect, whexerias of upward (stations 5 and 7) and
downward (stations 4, 6 and 8) undulations of ismjay depth can be seen (e.g. X3 in Fig. 7)
Deviations are of 30 m magnitude and are greatdbieadepth of the seamount (-240 m) for
the 1025.5 kg i isopycnal. These perturbations have a strong sigag>40 cm 39) in the
non-geostrophic velocity field (Fig. 6¢), reinfangithe southward velocity of the flow.

4.2 Sharp horizontal density front within the fralreone of the dipole

The frontal region that separates the two eddieth@fdipole was characterized by sharp
horizontal gradients of temperature and salinityhi@ 150-m-thick surface layer (Fig. 7). On
the west-east transect, between stations 4 andd6Gse@parated by just 35 km, the vessel
thermosalinograph, which samples water 2 m belavsta surface, reported a 1°C increase
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in temperaturtand a 0.15 g ki decrease in salinifyover 6 h (not shown). Such variations
cannot be explained by the net local surface hedffr@eshwater fluxes and must therefore be
linked to the intrinsic properties of the two eddiee. the presence of warmer, more saline
water within the anticyclone than in the cyclonée®retical studies predict that non-linear
processes associated with a turbulent mesoscalefetidi can lead to the enhancement of a
pre-existing horizontal density gradient within therface mixed layer, and in turn generate
sub-mesoscale ageostrophic instabilities and stxamtical velocities (McWilliams, 2016).
The coarse resolution of the CTD casts during Weettansects does not allow any diagnosis
of frontogenesis (Capet et al., 2008) nor vertiedbcities though inversion of the-equation
(Pollard and Regier, 1992; Legal et al., 2007; Relet et al., 2019). However, the frontal
region between the two eddies showed high posiualees of the Okubo-Weiss quantity, of
the order of 1.7 x I6°s? a marker for areas characterized by growth ofzbatal tracer
gradient (Okubo, 1970; Weiss, 1991).

4.3 Vertical tilting of the anticyclonic eddy

The anticyclonic eddy was not made of a homogengosgive vorticity core when the
west-east transect (14—18 November 2016) was sdngplg. 4). On 16 November 2016,
several poles of positive vorticity were seen witthe +20 cm SLA, used here to identify the
boundary of the anticyclone. According to altimettye second part of the west-east transect
crossed two of these poles (Fig. 4). One was cgminethe seamount summit at stations 7, 8
and 9 on 16 November whereas the other one comhadid a maximum of salinity noted
farther west at stations 13, 14 and 15 on 18 Noeemibhe downward doming of the
pycnocline (1026.4 kg 1) observed at those stations confirms this pict&ig. 7). A close
look at the vertical structure of the isopycnalengl this west-east transect reveals that the
anticyclone was slightly tilted vertically towartlse west, with deeper isopycnals below the

eastern pole at station 13 than below the westaai station 8.

4.4 Entrainment of southern STUW waters

The CT/SA and CT/@ diagrams (Fig. 9) show that, at station 28 (bladks), the
properties of the subsurface water correspondingddsotherms 17-22°C (between -250 m
and -100 m) differed significantly relative to amy the other stations sampled. These

subsurface water masses were 0.2 §kmre saline and 40 pmol kgnore oxygenated than

® The temperature increases from 23.8°C to 24.8°C.
’ The salinity decreases from 35.35 g'kg 35.2 g kg.
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the other stations. The DCM (Fig. 8) was also weak®l deeper (0.30 mgirat -133 m)
than at the two neighbouring stations on eithee,sjdst 15 miles away. Station 29 to the
north had a DCM of 0.80 mgfat -50 m, whereas station 27 to the south had sl BfX.35
mg m?® at -80 m. The World Ocean Atlas annual climatol¢g4OA18) shows that such type
of more saline and more oxygenated STUW is foungtrs@f the South Indian Counter
Current (SICC) between 30°S and 35°S. This morehson type of STUW was also
observed near the MAD-Ridge area, in a cross-sharesect carried out off the eastern
Madagascan shelf at 25°N in 2008 (Voldsund e®all 7, their Fig. 8 and 9). Its presence was
identified 200 km offshore, beyond the SEMC, witlaimorthward flow of southern waters.
The location of station 28 beyond the northern edfehe anticyclone but south die
southern Madagascan slope, in a narrow regiorvohgtwestward velocity (Fig. 3), suggests

that a filament of this southern type STUW wasangd there by the anticyclonic flow.

4.5 Detachment of coastal filaments with high surfageaccontent

The 3-day composite image of chlfor 20—-22 November 2016 (Fig. 10) shows that a
patch of water highly concentrated in ehlwas sampled at stations 29, 30 and 31 during the
south-north transect (red line). The elongatednfént-like shape of this patch, along with the
evolution of the absolute surface geostrophic vueéscin the area (Fig. S2), suggest that it
was torn off from the enriched coastal shelf watgfrshe South-East Madagascar coastal
upwelling cell (Ramanantsoa et al., 2018), theneathd onto the northern Madagascar
Ridge In situdata show indeed that the DCM was stronger anfiiostea than at any other
station of the survey (0.74 mg°nat -73 m at station 31; Fig. 8).

5. Discussion
Based on satellite anioh situ data, we have described for the first time theadyic

characteristics and vertical structure of a sudatensified mesoscale dipole recently
expelled from the SEMC (Fig. 1 and 2). The dipalesisted of two counter-rotating vortices
of similar size (100 km) and intensity (0.7 f), aad intense southwestward jet (150 ¢th s
lying in the frontal region between the two eddiEg). 3 and 4). CTD and S-ADCP vertical
profiling revealed that the cores of the two edd@sing the dipole were located above the
1026.4 kg m* isopycnal, within the upper 600 m (Fig. 5, 6, ™a). Observations also
provide evidence that, close to the seamount, doade dynamics superimpose onto the

mesoscale eddy field
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5.1 Overall circulation and hydrography: the dommaole of the mesoscale eddy

A non-linear isolated eddy-type structure has ttiength to remain coherent over an
extended life, trapping water masses within itsecand advecting them over long distances
(McWilliams and Flierl, 1979; Chelton et al., 200 Bddies associated with high Rossby
numbef (Ro>0.1) are generally considered non-linear. They miag be defined as isolated
when their azimuthal velocities decrease fasten thl (r being the distance to the eddy
centre) away from their core (Morel and McWillianig97). Obtaining a reliably accurate
estimate of the azimuthal velocity according rtas usually difficult because of coarse
resolution in the observations, background noisd, tae fact that eddies are rarely observed
as purely axisymmetric features, but rather elesdjateformed shapes. A cruder but more
reliable estimation of the capacity of an eddyraptwater masses was proposed by Chelton et
al. (2007) and relies on its ability to resist @iggon into planetary Rossby waves. This ability
may be measured by the ratio of the maximum aziatutelocity () over the eddy
propagation speedcf). The eddy propagation speed is here estimateitheazonal phase
speed of planetary Rossby WaVQS(ﬁRdZ, with Ri=NH/|f| the Rossby deformation radius,
the Brunt-Vaisala frequency, an@ the meridional gradient of the Coriolis parameter
(Sutyrin and Morel, 1997). With maximum relativertraity values of the order of 0.%,|
azimuthal velocities >70 cm’swithin the upper 600 m layer and a stratificatidrtte order
of N2~7x10° s, the MAD-Ridge dipole classifies itself as a highbn-linear isolated eddy-
type structureds ~ 11 cm " andU/ ¢z ~ 0.7).

Hence, during the MAD-Ridge Leg 1 cruise, the damtion, hydrography and primary
production over the northern Madagascar Ridge \eggely dominated by the signature of a
surface-intensified mesoscale eddy feature. Themmatsses found within the cyclonic and
anticyclonic eddy cores corresponded to the wassses at the formation site, i.e. a mixture
of coastal upwelled waters from the southeastermldgascar upwelling cell and STUW
found within the SEMC. In addition, the distributiof chl-a within the dipole was originally
generated during the spin-up phase of the two eddigward eddy pumping within the
cyclonic eddy led to enhanced primary productiohjclw was then advected by the dipole
onto the ridge (Fig. 10).

However, our study shows that these dipoles wereertttan just intense and long-life

coherent structures. The strong induced velocdles entrained and stirred the surrounding

¥ The Rossby numbdro= U/(f|L) is a non-dimensional parameter computed as the ohtthe non-linear terms of the
momentum equations over the Coriolis terms. Foeddly-like structurelJ andL correspond to the eddy radius and the
maximum azimuthal velocity, respectively. The rdtl. is sometimes replaced by the maximum relativeisitytin the
eddy core.
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wates masses. Chlpatches were torn off from the South East Madagaszastal upwelling
cell onto the northern Madagascar Ridge, along wittrusions of nearby southern
Madagascan shelf waters originating from southhefSICC.

5.2 Influence of the bathymetry on the eddy flow

The mesoscale eddy-dipole was observed in theityianfi a tall and shallow seamount,
whose summit lies 240 m below the sea surface nvitie isopycnal layer where the cores of
the eddies resided. Therefore, the dynamics anitewo of the dipole would be expected to
be strongly influenced by the seamount, and monemgdly by the chaotic bathymetry of the
northern Madagascar Ridge, itself made up of ségeemounts lying between -1200 m and -
240 m (Fig. 2). A series of observations, describeldw, support this hypothesis.

Surface-intensified mesoscale eddies typically-geipagate westwards at the zonal phase
speed of the planetary Rossby waves, and dipolegwan propagate faster because of their
mutual advecting effect (Hogg and Stommel, 1988).tHe absence of bathymetry, the
mesoscale eddy dipole should have therefore beennmavest at a speed >10 km day
However, it remained trapped in the vicinity of geamount for more than 4 weeks. Only an
eastward barotropic flow or some topography-induetdct could have in theory inhibited
the westward propagation of the eddy (Morel, 198&ndermeirsch et al., 2001). Hence, Iin
the absence of the former, the dynamic influencéheftopography must be responsible for
the trapping of the eddy above the seamount. A seatnmay in fact slow down the
propagation of an eddy (Herbette et al., 2003hinpresence of chaotic topography, eddies
can even remain trapped in the area for severaksv@iRichardson and Tychensky, 1998;
Herbette, 2003; Sutyrin et al., 2011).

The interaction of a mesoscale eddy with a seamdawburs its erosion through
filamentation and may lead to its vertical or horital splitting (Herbette et al., 2003, 2005).
Erosion is always accompanied by the deformatio@fvortex, and results from an external
shear induced by the formation of two extra vodjca cyclone that detaches from the
seamount and an anticyclone that forms over themgeat as a Taylor cap (Herbette et al.,
2003). Maps of surface relative vorticity show thia¢ shape of the mesoscale eddy dipole
kept evolving during the cruise. The anticyclonidg was notably deformed between 9 and
23 November (Fig. 4), which may have resulted thi® multiple poles of positive vorticity
observed within the +20 cm SLA closed contour. &#hces in the vertical structure of the
flow between the two transects also highlightedeta@ution of the eddy. The dipole intensity

was weaker at depth on the south-north transeat dhathe west-east transect about 4 days
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earlier (Fig. 6). In addition, there was verticitirtg of the dipole vertical structure. These
observed deformations are similar to results obkthiftom idealized simulations of an eddy
encountering a seamount (Herbette et al., 2003%;290tyrin et al., 2011) and tend to support

our hypothesis that the dipole studied here was fiaie scale, influenced by the seamount.

5.3 The northern Madagascar Ridge: a region chaggzed by highly complex circulation
5.3.1 Mesoscale variability and retroflection c€tSEMC

The 1993-2016 time-series of daily SLA allowed astrack the presence of cyclones,
anticyclones and dipoles over the northern MadagaRadge (Section 2.6 above). Dipoles
were found in the area >38% of the time, singlelayes and anticyclones about 25% and
30%, respectively (not shown). Although the stréngt the MAD-Ridge dipole @Suap -

Ridge= 0.32 cm krit) was among the strongest of the time-sed®&s£ 0.20 + 0.06 cm km

! and DS € [0.07,0.50 ] cm km?), the analysis demonstrates that such surfacesified

dipolar eddies are not exceptional in the area. itwhern Madagascar Ridge is in fact
characterized by high values of mean EKE. Previooik attributed this intense variability to
the passage of intense mesoscale eddies travéiingeast to west, coming either from the
nearby SEMC or from the SWIO (Quatrtly et al., 20B&jderinkhof et al., 2013; Halo et al.,
2014). A recent study based on SLA data showedntlugh of the variability in circulation in
the region was related to three retroflection rexgginof the SEMC (Ponsoni et al., 2016;
Ramanantsoa et al., 2020). A preliminary analyia B-year current-meter time-series from
two moorings deployed on the eastern and westemkdl of the MAD-Ridge seamount
confirmed that the variability of the circulationar the northern Madagascar Ridge is largely
dominated by the retroflection modes of the SEM@p(iblished data).

When the retroflection is in a canonical mode, tpaimilar to that surveyed during the
MAD-Ridge cruise are expelled from the SEMC. Swfaelative vorticity showed that the
dipole surveyed during the MAD-Ridge cruise resiilfeom the coupling between a large
patch of cyclonic vorticity that was formed on smutheastern tip of Madagascar, forcing the
SEMC to flow south. This cyclonic patch later déked from the current after forming a

dipole with an anticyclonic vorticity patch of tiEMC (Fig. 4).
5.3.2 Influence of sub-mesoscale dynamics:

Our results have shown that sub-mesoscale dynam#&s superimpose the dominant

mesoscale eddy-driven flow. Some fine-scale unauiatof the isopycnals were also evident
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on the eastern side of the seamount along the egssttransect (X3 in Fig 7). Although there
is evidence that they were induced by eddy-topdgrapteractions, they could also be the
signature of: i) sub-mesoscale features generatdteifrontal region between the two eddies;
i) internal tidal/Lee waves radiating away frometlseamount after being generated by
tidal/geostrophic flow impinging over the seamo(Mikurashin and Ferrari, 2010). There is
evidence too that the northern Madagascar Ridgé&ldoe an area of intense internal tide
generation (Arbic et al., 2010; A. Koch-Larouy, gecomm.) and that the steepness of the
MAD-Ridge seamount could make it a candidate ftermal tide dissipation (Hosegood et al.,
2019. Nonetheless, no direct influence of the seamounthe vertical distribution of chd-
was observed along the two transects (Fig. 6 and’'f7¢ DCM was even found slightly
deeper over the summit (-150 m at station 8) thathe slopes of the seamount. Even if these
undulations corresponded to internal waves, thelugen of the CTD vertical profiles along
the two transects was too coarse to capture tlohipass of vertical mixing events which by
essence act at very local and small scales. Threlséar local overturning cells through the
determination of the Thorpe scale in the CTD vaftmrofiles (Dillon, 1982; Finnigan et al.,
2002) might have provided evidence of vertical mgxi but was beyond the scope of this

work.

5.3.3 The ghost Taylor column effect

The presence of Taylor columns above seamounts sséenbe a deeply anchored
theoretical concept for biologists looking for anpiact of the seamount on the distribution of
the lower trophic components of pelagic ecosystefesylor columns may indeed be
generated on top of a seamount by mesoscale eddmsever, one still queries their
effectiveness in impacting primary production aadilftating retention of organisms in the
context of a rapidly changing environment.

The time-scale of this biological response vs.tilme-scale of ocean circulation variability
is an essential aspect of the problem. Althougis generally admitted that phytoplankton
responds within a day or two to the presence ofients within the euphotic layer, the
response of zooplankton is delayed by several wggkgain and Boehlert, 1985; Genin and
Dower, 2007). The 1993-2016 time-series of surfgeestrophic velocity computed from
altimetry at the MAD-Ridge seamount was used torede the probability of Taylor column
occurrences using velocities <30 cih @& a proxy (see Appendix). Results show that this
threshold was met only 27% of the time over thegoet993-2016 (not shown). In addition,
the time-scale (~10 days) of eddy variability ie tiegion (de Ruijter et al., 2004; Nauw et al.,
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2008; Halo et al., 2014; Ramanantsoa et al., 2@2@)ms too short to trigger a biological
response of the zooplankton at the seamount (Ammageet al., 2020; Noyon et al., 2020).
Only 17 incidences of low velocity events laste® ®2ys within the 23-year time-series.

6 Summary and conclusions

The dipole surveyed during the MAD-Ridge cruisegimrated from the SEMC when the
latter was in a canonical retroflection mode. Inksa mode, intense long-life coherent dipoles
are expelled from the SEMOhe cruise highlighted the fact that these dipatsracted
strongly with the complex bathymetry of the northéadagascar Ridge. By blocking eddy
propagation and favouring its erosion, the topolgyapontributes to the stirring of the
surrounding water masses by the strong eddy-indueledtities, which themselves contribute
indirectly to the mixing of water masses in theioegand their subsequent westward
advection by non-linear isolated eddies. As sudttiesdwill continue their journey towards
the Agulhas Current (Siedler et al., 2009), thetmean Madagascar Ridge is concluded to
play a key role in World Ocean circulation. In pautar, because fresh, cool upwelled water
is usually found at the southeastern tip of Madegiawhen the SEMC overshoots southwards
(Dilmahamod et al., 2019; Ramanantsoa et al., 2080)e of this water mass is expected to
be exported within the Agulhas Current (Beal et2006, 2011).

The mesoscale variability in the region is largebnstrained by the variability of the
SEMC (Ramanantsoa et al., 2020). Eddies are threrefgpected to encounter the northern
Madagascar Ridge when the SEMC is in the canonétedflection mode (34% of the time)
or early retroflection mode (13% of the time). Whive SEMC continues westwards (no
retroflection, 53% of the time), the northern Madscar Ridge sits between the SEMC and
the SICC, with limited mesoscale eddies. Currepttwaphy interactions may only then
determine the circulation and hydrography of thggae.

We stress that a biological signature resultingnfra Taylor column effect is unlikely at
the MAD-Ridge seamount because of the intense roaosariability there. These results
are consistent with observations reported by Reatl Rollard (2017), who described the
circulation and hydrography around six seamourtatid over the South West Indian Ridge,
in the vicinity of the Agulhas Return Current, area also characterized by the frequent
passage of strong mesoscale eddies.

Further, using satellite-derived chl- Demarcq et al. (2020) could not identify any
phytoplankton signature over the MAD-Ridge seamoiiiose authors showed that ehl-

variability in the region was dominated by filamendrn off from the coastal upwelling cells
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and advected in the vicinity of the seamount byriesoscale and sub-mesoscale dynamics.
Therefore, in the vicinity of seamounts where tlieutation is dominated by large mesoscale
variability, the distribution of ch& is expected to be governed by the mesoscale doldy f
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Appendix
A Taylor cap at the MAD-Ridge seamount

When a geophysical flow encounters a seamountgsedlisolated anticyclonic circulation
can grow and remain trapped above the seamount gufrns feature is commonly referred
as a Taylor cap or a Taylor column (Huppert, 13H&ppert and Bryan, 1976). In a situation
of moderate stratification, like that found ovee thorthern Madagascar ridge during leg 1, the
conditions for a Taylor cap to grow resumeHg(H R,) > 2 andR, < 0.15, wherdH+ is the
height of the seamounH the bottom depthR,=U/(f L) the Rossby number, U the flow
velocity, f the Coriolis parametet, the seamount radius (White et al., 2007; Chapnmah a
Haidvogel, 1992; Sutyrin et al.,, 2011). Considerthg characteristics of the MAD-Ridge
seamountl({ = 27.5 km andHt = 1400 m,H = 1600 m) and its latitude (27°30’S), one finds
that the most constraining condition relates to sineallness of the Rossby number, so

requiring the velocity of the flow to be <30 cf. s
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Figure Legends

Fig. 1. Mean (1995-2015) surface eddy kinetic enéEKE) of the western Indian Ocean
with contours (1000 and 3000 m) of the satellitRT&) bathymetry superimposed (solid
grey). The black box indicates the area in whictsaseale eddies was tracked. The three
seamounts surveyed during the broader MADRIidgeeptagre represented: Walters Shoal,
south of Madagascar, La Pérouse, north of Réurstand (yellow circles), MAD-Ridge
seamount, northern Madagascar Ridge (red circlégckBarrows schematize the major
features of the oceanic circulation in the regidgulhas Current (AC); Mozambique Channel
Anticyclonic Eddies (MCAE); South Equatorial Curte(6EC); North East Madagascar
Current (NEMC); South East Madagascar Current (SEMBOuth Indian Counter Current
(SICC).

Fig. 2. (a) Satellite (SRTM) bathymetry with thecddion of the eastvest and soutimorth
transects surveyed during the MAD-Ridge Leg 1 eruiBhe two transects intersect at the
MAD-Ridge seamount. Positions of the CTD and fluoeter vertical profiles (stations) are
superimposed (black dots). An index is given toheeast (yellow boxes). (b) Same as (a),
zooming in over the seamount summit. The SRTM battyy has been replaced by one
resulting from optimal interpolation of echo-sountdathymetry data collected on board the
RV Anteaduring the cruise. Casts 8, 21 and 22 are loca¥ed the summit (depth ~240 m),
whereas casts 7, 9, 20 and 23 are located ovetdpes of the seamount (depth ~650 m).

Fig. 3. (Top) Weekly average sea level anomaly (Bdéscribing the mesoscale eddy field in
place during the MAD-Ridge Leg 1 cruise, with geoghic currents (vectors) calculated
from satellite ADT superimposed: (top left) 16 Nouger 2016; (top right) 20 November

2016. The location of the two transects (blackdsbhes) is superimposed on the altimetry
maps. The trajectory of the cyclone and anticycltorening a mesoscale eddy dipole (thin
black lines with dots) is superimposed from 29 ®etao 24 December 2016, with positions
of the eddy centres reported every 7 days (ddsxtdm) Low-pass filtered S-ADCP surface
current along the wesgast (bottom left) and soutfiorth (bottom right) transects. The west

east and soutimorth transects were undertaken between 14 andoy8riber and 19 and 23

November 2016, respectively.

Fig. 4. Maps (from 16 October to 14 December 2@E&urface geostrophic relative vorticity
(s) over the northern Madagascar Ridge calculatech faeeekly satellite absolute dynamic
topography (ADT). The 20 cm SLA contours delimifithe cores of the anticyclonic and
cyclonic eddies forming the mesoscale eddy dipmesaperimposed (solid white).
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Fig. 5. Vertical sections of S-ADCP data along thesteast (14-18 November, left) and
south-north (19-23 November, right) transects, with igmsity (kg nT) contours
superimposed (solid black). Vertical sections idelithe current magnitude (a, b), and its
zonal u-component (c, d) and meridional v-compon@nt f). Iso-contours of current
magnitude (solid white) are superimposed everyrBGtfrom-1 m ' to 1 m &. Indices of
the CTD-fluorometer profiles (stations) are reportn the top x-axis and superimposed as
black dashed vertical lines. The seamount is alpersmposed (black filled).

Fig. 6. Vertical sections of geostrophic (a, b) agkostrophic (c, d) current components
along the west-east (488 November) (left) and southorth (1923 November) (right)
transects, with iso-density (kg hcontours superimposed (solid black). The meridion
component/zonal u-component is shown for the-gaesit and soutinorth transects.

Fig. 7. Vertical sections of conservative tempeag{iC), absolute salinity (g Ky, dissolved
oxygen (umol kg), potential vorticity (x10-11Y and chla (mg ni®), along the weseast
transect (stations-15), with iso-density (kg i) contours superimposed (solid black). The
blue triangle at 46.25°E refers to the seamounitidééd dashed lines indicate the position of
the CTD vertical profiles. Station indices are néed on the top x-axis. Note the reduced
vertical scale (8600 m) used for potential vorticity and chlimportant features described in
the text are reported: X1: anticyclone (STUW + héghinity + high Q); X2: cyclone (STUW
+ high chla); X3: vertical deviations of the isopycnals; X4&ygen hotspot within the SICW.

Fig. 8. Same as Fig. 7, for the nedbuth transect. X1: Anticyclone (STUW + high saimnt
high &); X5: subsurface oxygen hotspot; X6: high aMadagascar Shelf-enriched waters);
X7: vertical undulations of isopycnal depth.

Fig. 9. (a, b) CT-SA diagram, with iso-density (k) contours superimposed (solid black)
for all CTD casts of the MAD-Ridge Leg 1 cruise.(h), the dots’ colour indicates whether
the CTD cast was within the cyclonic eddy (bluatishs 24), the anticyclonic eddy (red,
stations 813 and 1626), the frontal region in between the two eddmgeén, stations-7),

or a non-classified region (grey). Station 28 ightighted in black dots. In (b), the colour
scale represents the depth of measurement. Wateseshare identified: TSW = Tropical
Surface Water, STUW = Subtropical Underwater, SAMMSub Antarctic Mode Water,
SEISAMW = South East Indian Sub Antarctic Mode WakAIW = Antarctic Intermediate
Water. (c) Same as (a) for a C-@agram.

Fig. 10. 3-day composite (20—22 November 2016) miapatellite chla with geostrophic
current vectors superimposed (black arrows). Theatipas of the anticyclonic (AC) and
cyclonic (C) eddy centres are also superimposedietisas the two transects surveyed during
the MAD-Ridge Leg 1 cruise (solid black and redheTred portion of the southorth
transect corresponds to timesitu fluorometer profiles that showed high @toncentrations
when integrated vertically.

Fig. 11. Comparative evolution of sea level anonf8lyA) at the centre of the cyclonic (blue)
and anticyclonic (red) eddies, and their respecthaximum satellite ché& concentrations
(green dotted/solid for the cyclone/anticyclonespextively) from 25 November to 25
December 2016, including the MAD-Ridge cruise peribhe increase of cla-concentration
during the growing phase of the cyclone suggeptsytoplankton response to eddy pumping.
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Fig. 12. Vertical sections of nitrate concentrat{pmol kg*) along the (a) wesgast and (b)
south-north transects, with iso-density (kg3ncontours superimposed (solid black). Dashed
vertical lines indicate the position of the CTD tieal profiles and black dots show the
sampling depths. Station indices are reported erndp x-axis.

Supplementary material

Fig. S1. (a, b) L-ADCP and (c, d) S-ADCP currentgmgude for the weseast (left) and
south-north (right) transects, with iso-density (kg®yrcontours superimposed (solid black).
The 50 cm $ and 100 cmS contours are overlaid (solid white). (e, f) Maguai¢ of the
difference between the L-ADCP and S-ADCP currerttos. Vertical dashed lines indicate
the position of the CTD profiles. Station indices eeported on the top x-axis. White-shaded
areas indicate missing data. Note that there weile ADCP profiles at stations 2 or 3.

Fig. S2. Daily maps of absolute surface geostrophitent magnitude (colour scale), with
current vectors superimposed. (a) 29 October 26,2 November 2016, (c) 19 November
2016, (d) 26 November 2016, (e) 3 December 20361qfDecember 2016. The wesast
and southnorth transects are superimposed (solid black).
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