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Abstract :   
 
Atlantic bluefin tuna (Thunnus thynnus) (ABFT) frequently engage in surface basking and foraging 
behaviour that makes them detectable from afar. This behaviour is utilized for the development of 
fisheries-independent abundance indices based on aerial surveys, although changes in the surface-
feeding dynamics of ABFT are not yet accounted for. We investigated the daytime surfacing behaviour of 
ABFT at different temporal and vertical resolutions based on 24 individuals (117–158 cm fork length), 
tagged with pop-up archival tags in the Gulf of Lion, NW-Mediterranean Sea between 2015 and 2016. 
The results suggest that ABFT remain usually <2 min continuously within the visible surface (0–1 m) 
during daytime. ABFT presence in the 0–1 and 0–20m layers varied over time and between individuals 
but showed a seasonal decline towards autumn with the breakdown of thermal stratification. Furthermore, 
the rate of surfacing events was highly correlated with the time spent in the 0–20m layer. Geolocation 
estimates confirm a strong site fidelity of ABFT during the aerial survey period (August– October) in the 
Gulf of Lion. Our results support the choice of the survey region and period, but related indices should 
account for the seasonality of ABFT surface behaviour [i.e. the time spent in the 0–20m layer. 
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Introduction 44	
Atlantic bluefin tuna Thunnus thynnus (ABFT) are a highly migratory, opportunistic predators 45	
that can forage throughout the water column to depths greater than 1000 m. Despite their 46	
physiological capabilities, ABFT prefer the epipelagic zone, where they frequently feed on 47	
schools of small epipelagic fish such as sardines and anchovies (Lutcavage and Kraus, 1997; 48	
Fromentin and Powers, 2005; Bauer et al., 2017). This behavior facilitates the detection of 49	
tuna schools from afar and led to the use of spotter planes in tuna purse-seine fisheries 50	
(Farrugio, 1977; Basson and Farley, 2014). Like fisherman, scientists also exploit the fact that 51	
ABFT are visible at the surface by conducting scientific aerial surveys to count tuna schools 52	
with the objective of obtaining a fisheries-independent abundance index. Several aerial 53	
surveys are conducted in different regions worldwide, such as in Australia on southern 54	
bluefin tuna (Thunnus maccoyii; Eveson et al., 2018) as well as on ABFT in the northwestern 55	
Mediterranean sea (Bauer et al., 2015a; Fromentin, 2003). Since variations in the vertical 56	
behaviour (i.e. changes in the “surface availability”) of tunas can significantly affect the 57	
number of schools observed at the sea surface (Bauer et al., 2015b), accounting for this 58	
variability is a key step to provide a robust abundance index. 	59	
 60	
Several studies have sought to determine the factors driving the vertical behaviour of bluefin 61	
tuna (Walli et al., 2009; Galuardi and Lutcavage, 2012; Marcek et al., 2016; Bauer et al., 62	
2017, Eveson et al., 2018). Archival tagging data from the Atlantic Ocean have demonstrated 63	
that the vertical behaviour of ABFT is influenced by the thermal stratification of the water 64	
column (Brill et al., 2002; Walli et al., 2009; Galuardi and Lutcavage, 2012). Similar 65	
relationships were demonstrated in other oceans for Southern and Pacific Bluefin tuna 66	
(Kitagawa et al., 2007;	Eveson et al., 2018). Recently, 24h-depth frequency data from tagging 67	
studies conducted in the Gulf of Lion (northwestern Mediterranean Sea) showed that ABFT  68	
mature ABFT (124–255 cm fork length vs 110-135 cm length at maturity Fromentin and 69	
Powers, 2005; Farley and Ohshimo, 2018) gradually moved from surface layers to deeper 70	
waters as winter approached and the waters became less stratified (Bauer et al., 2017). 71	
These results confirmed the suitability of the aerial survey period (late summer–autumn) in 72	
this region to maximize the chances of observing ABFT schools at the sea surface. However, 73	
one of the main limitations of this study was the low resolution of the available data sets, 74	
mainly consisting of 24h presence rates in predefined depth layers that impeded a fine-scale 75	
analysis of the vertical behavior of ABFT and its drivers. Using high-resolution depth data 76	
(five individuals, 179-227 cm fork length) and a recovered Mk10 tag (160 cm fork length), 77	
Bauer et al. (2017) identified an inversion in the diel vertical behaviour in the Gulf of Lion 78	
area where aerial surveys were conducted, with higher presence rates between 0-10 m 79	
during the day in summer and during the night in winter. However, the significance of this 80	
depth layer for surfacing behavior remained unclear and the resolution of the available data 81	
was insufficient to provide an adequate estimate of the proportion of time spent in the 82	
visible surface layer (0-1m; surface availability), as a proxy of feeding behavior and the 83	
duration of surfacing events.	84	
 85	
Higher-resolution depth time series data is required to identify and explain changes of 86	
juvenile ABFT presence visible surface layer (0-1m; surface availability) and thus the related 87	
variability in the number of schools observed during subsequent aerial surveys. Like other 88	
near-coastal areas of high biological productivity, the Gulf of Lion has been identified as a 89	
key nursery ground for ABFT (Royer et al., 2004; Druon et al., 2011), where large quantities 90	



of maturing and adolescent ABFT (length  at  maturity is 110-135 cm; Fromentin and Powers, 91	
2005; Farley and Ohshimo, 2018) are seen at the surface. Mature ABFT are also present in 92	
the area but less abundant and not participating in the surface foraging (Bauer et al., 2015a).	93	
Former tagging experiments in this region only yielded (few high-resolution) vertical 94	
behavior data of mature ABFT (> 160 cm fork length) due to the physical constraints of 95	
tagging with early pop-up archival tag models (Fromentin and Lopuszanski, 2014; Bauer et 96	
al., 2015a; Bauer et al., 2017). Accordingly, the horizontal movements and vertical dynamics 97	
of maturing and adolescent individuals, which constitute the majority of the tuna schools 98	
spotted by plane surveys, remain unknown. Filling this knowledge gap is a crucial step to 99	
characterize the surface availability of juveniles and improve abundance indices of ABFT 100	
from aerial surveys in the Gulf of Lion. 	101	
In the Atlantic Ocean, ABFT is managed by the International Commission for the 102	
Conservation of Atlantic Tunas (ICCAT). The regulatory measures adopted by ICCAT in the 103	
2000’s for the ABFT rebuilding plan have introduced extensive changes in the spatio-104	
temporal patterns of the ABFT fisheries, thus significantly affecting the fisheries-dependent 105	
indices traditionally employed for the assessment of the eastern Atlantic and Mediterranean 106	
bluefin tuna stock (ICCAT, 2013 ; Fromentin et al., 2014). Consequently, the ABFT stock 107	
assessment require alternative abundance indices based on fisheries-independent data, as 108	
well as reliable methods for estimating the degree of confidence of such indices. In this 109	
respect, aerial surveys of ABFT schools, coupled to novel assessment methodologies, are 110	
now considered vital alternatives to fisheries-based abundance estimates (Walli et al., 2009; 111	
Bonhommeau et al., 2010).	112	
In this study, we investigated the surfacing behavior of ABFT (117–158 cm fork length) based 113	
on high-resolution electronic tagging data collected during the aerial survey season in the 114	
Gulf of Lion (northwestern Mediterranean Sea). Our objectives were to i) quantify and 115	
compare potential indicators of juvenile ABFT daytime surfacing behavior based on different 116	
temporal resolutions and depth layers ii) identify related temporal patterns, iii) characterize 117	
the environmental factors that can drive these patterns, and iv) address the relevance of 118	
these indicators for the design and correction of ABFT aerial surveys. 119	
 120	

Material and Methods 121	
Tag programming 122	
To study ABFT behavior, we used miniPATs, pop-up satellite archival tags by Wildlife 123	
Computers (https://wildlifecomputers.com). These tags can record depth and temperature 124	
time series (denoted below as DepthTS and TempTS, respectively) at a temporal resolution 125	
of 3 to 5 s (depending on the predefined deployment duration) and a vertical resolution of 126	
0.5 m. Based on this data, the tag calculates and stores additional data products such as PAT-127	
style Depth-Temperature profiles (PDT), time at depth data (TAD), time at temperature (TAT; 128	
Wildlife Computers, 2016). After pop-up, the tags transmit user-defined data products and 129	
subsets from the recorded data sets. All our tags were configured to transmit the following 130	
data products: daily light curves, DepthTS and PDT. In order to maximize data coverage of 131	
the transmitted datasets, we decreased the temporal resolution of the DepthTS and PDT 132	
data after the first tagging campaign in 2015 from 150 s to 600 s and 6h to 24h, respectively 133	
(Table 1). For both years, deployment durations were set to 150 and 90 days during spring 134	
(April–May) and summer (August-September), respectively, in order to cover the aerial 135	
survey period in the Gulf of Lion (August–October). 	136	



 137	
Electronic tagging 138	
Electronic tagging operations were conducted during two periods:  August-September 2015 139	
and April-September 2016. Tagging trips were conducted during these specific temporal 140	
windows in order to target ABFT in the study area. 141	
 142	
Tunas were caught on rod and reel using bait and artificial lures on board sport fishing 143	
vessels. Captured ABFT were carefully landed onto a wet vinyl mat, where their eyes were 144	
immediately covered with a wet cloth and their gills continuously irrigated by placing a hose 145	
pumping seawater in the fish's mouth. The hook was then removed and the fork length 146	
measured. Only ABFT individuals in good condition (e.g. without any previous injuries) with a 147	
preferred fork length between 110 and 160 cm were tagged. The miniPATs (Wildlife 148	
Computers, https://wildlifecomputers.com) were rigged with a 12 cm stainless steel cable 149	
and a large Domeier anchor. The tags were inserted at the base of the second dorsal fin, 150	
between the pterygiophores using a stainless steel applicator. A keeper strap was used to 151	
immobilize the tag by placing an additional plastic anchor, approximately 20 cm toward the 152	
caudal end of the first anchor. Prior to use, tethers, tag applicators and anchors were 153	
disinfected with a 8% povidone-iodine solution (Betadine). After tagging, the fish were 154	
released head first back into the sea and the deployment location and time noted. A social 155	
media campaign (https://www.facebook.com/marine.biologging) was initiated after the 156	
2016 tagging campaign to increase the chance of tag recovery.	157	
 158	
Data analysis 159	
Geolocation estimates 160	
The tagging data was automatically uploaded to the Wildlife Computers Data Portal 161	
(http://my.wildlifecomputers.com/data/). For all tags, geolocations were processed using 162	
Wildlife Computer GPE3 algorithm, which is available on the data portal (Wildlife Computers, 163	
2015). This algorithm is based on a gridded hidden Markov model which incorporates light 164	
level and Sea Surface Temperature (SST) data of the tags as well as SST (NOAA Optimum 165	
Interpolation SST V2 High Resolution; http://www.esrl.noaa.gov/psd) and bathymetry 166	
reference data (NOAA ETOP01 global relief model, Bedrock version; Amante and Eakins, 167	
2009). Additional model inputs included the tag deployment and pop-up locations/times as 168	
well as an estimate of the typical traveling speed of the tagged animal. For the tag pop-up 169	
location, we used the first ARGOS location estimates transmitted (class 1–3, (Service Argos, 170	
2005). By contrast, transmitted and (when available) recovered DepthTS data were used to 171	
estimate the tags' time of release (last DepthTS time record prior to pop-up and 172	
transmission start). Different traveling speeds (2.1, 3.1 and 4.1 km h-1) were tested, in 173	
accordance with available literature values (Wardle et al., 1989; Lutcavage et al., 2000). The 174	
selection of the optimal speed was done based on a model score produced by the GPE3 175	
software, with higher AIC scores indicating better fits to the observed data. Model outputs 176	
included maximum likelihood tracks as well as the different likelihood areas (50, 80, 95 and 177	
99%) for the animal position (Wildlife Computers, 2015).The maximum likelihood tracks 178	
were used to assess the residency of ABFT in the study region and their habitat utilization 179	
based on kernel densities that were generated with the kde2d-function of the  "MASS"  R-180	
package (Venables & Ripley, 2002).	181	
	182	



 183	
Environmental data 184	
Three major indicators for the thermal-structure of the water column were estimated using 185	
the sensor data of the miniPATs: daily thermocline depth, thermocline gradient as well as 186	
the thermal stratification index, following the approach used by Bauer et al. (2015c) 187	
implemented in the R-package “RchivalTag” (Bauer, 2018). To do so, PAT-style Depth-188	
Temperature profiles (PDT) or, when available, recovered Depth-Temperature time series 189	
data were used (See Supplementary material for detailed description). A comparative 190	
analysis on the accuracy of the three indicators obtained from PDT and Depth-Temperature 191	
time series data from the recovered tags (Figure S1) revealed that the stratification index 192	
was particularly robust for days when the tagged individuals vertical profile was ≥ 88 m. We 193	
therefore estimated the stratification index from PDT profiles, or (if available) recovered 194	
Depth-Temperature time series data, that met this requirement in the subsequent analyses. 195	
Missing values in the time series of the stratification index were estimated by applying an 196	
exact cubic regression spline, using the function “spline” of the standard R-package “stats” 197	
(Forsythe et al., 1977, R Core Team, 2017). 	198	
 199	
Vertical behavior 200	
The analysis of ABFT vertical behavior focused on daytime DepthTS data from the Gulf of 201	
Lion region that is most relevant for the aerial surveys (Bauer et al., 2015a), see Figure 1. For 202	
this purpose, we selected only DepthTS data recorded between the time of sunrise and 203	
sunset, whose corresponding daily position estimates were located within 3–6°E and 41.5–204	
44°N. To account for temporal and regional changes in the timing of sunrise and sunset 205	
during the deployment periods, we estimated the timing of both events per day and tag by 206	
applying the function “get_DayTimeLimits” of the R-package “RchivalTag” (Bauer, 2018). 207	
Only complete daily DepthTS (i.e. DepthTS without any transmission gaps during daytime) 208	
were considered in the subsequent analyses. For the physically recovered tags, the entire 209	
DepthTS recorded at resolutions of 3 to 5 s within the study region could be used for the 210	
analysis. 	211	
 212	
Since we obtained DepthTS data in different resolutions (high-resolution data for the 213	
recovered tags and 600 s resolution DepthTS for all the remaining tags), the analysis of 214	
vertical behavior of ABFT was structured over two different temporal scales. First, we 215	
characterized the vertical behavior of ABFT through the combined 600 s DepthTS datasets 216	
from the unrecovered (but transmitted) DepthTS data as well as the recovered tagging data, 217	
the latter being resampled at 600 s to ensure homogeneity among datasets. Then, a fine-218	
scale analysis was conducted from the high-resolution recovered tags, considering a 219	
common resolution of 15 s, by subsampling the 3-5 s resolution data for all the recovered 220	
tags. Finally, using the recovered tags, we studied the relation between the fine-scale 221	
behavior characterized at a resolution of 15 s and the occupation of the water column 222	
obtained at 600 s resolution.  223	
 224	
 225	
Vertical behavior - all tags (600 s resolution)	226	
 227	



We analyzed the monthly daytime presence rate of ABFT at different depths based on the 228	
merged data sets of 2015 and 2016. We estimated the monthly average proportion of time 229	
that ABFT spent within different depth bins (0, 10, 20, 50, 200, 300, 400, 600, 1000 and 230	
>1000 m) during daytime as well as its standard deviation from the related daily data of each 231	
individual. The temporal evolution of daytime presence in the 0-20m layer (named Near-232	
Surface Layer, NSL) was further analyzed based on the daily average of individual daytime 233	
presence rates in the 0-20m layer (named Near-Surface Layer, NSL). Daily presence rates 234	
were estimated for each tagged individual considering the percentage of vertical positions 235	
located within the NSL layer during daytime. Daily presences rates were averaged and their 236	
standard deviation estimated over different individuals present during the same day in the 237	
study region. The same analysis was conducted for the 0-10m layer, see the Supplementary 238	
Material. 239	
 240	
Fine-scale vertical behavior - recovered tags (15 s and 600 s resolution)	241	
 242	
The fine-scale analysis of vertical behavior of ABFT focused on the time spent in the 0-1 m 243	
layer, termed visible surface layer (VSL), as a proxy for surface availability. We therefore 244	
estimated daily presence rates of ABFT in the VSL with the same procedure as used to 245	
estimate daily average presence rates in the NSL (see 2.2.3.1). We then calculated the 246	
continuous bouts of time spent by each individual within a given depth layer. This approach 247	
has been used to estimate residence and absence times for acoustically tagged individuals 248	
around instrumented sites (Robert et al., 2013; Capello et al., 2015). Each time an ABFT 249	
individual was present within the same depth layer, its continuous residence time (CRT) was 250	
incremented by an amount of time corresponding to the temporal resolution of the data. By 251	
contrast, if ABFT moved out of the layer, the respective CRTs ended. Following this 252	
definition, the CRTs recorded for the Visible Surface Layer (VSL, 0-1m), named CRTVSL, were 253	
estimated. 	254	
 255	
Since the surface availability of individual ABFT could differ to that of tuna schools, we aimed 256	
at calculating the continuous residence time of tuna schools in the visible surface layer 257	
(called CRT 

VSL
 school) as a proxy of the school visibility from an airplane. A feeding tuna school 258	

can be interpreted as the sum of feeding individuals, both tagged and non-tagged. In such an 259	
event, single individuals may dive below the VSL while others remain inside so that the 260	
entire school remains visible for a longer period than the tagged individual. To account for 261	
this, we considered that if a tagged individual was present in the VSL, with time gaps smaller 262	
than Δt = 1 min, the school was still visible at the surface and its CRT VSL

 school incremented. 263	
Conversely, if the tagged individuals left the VSL layer for a time interval larger than Δt, the 264	
duration of the respective CRT 

VSL
 school is ended. The idea of adding a time gap Δt is similar to 265	

the concept of Maximum Blanking Period (MBP, Capello et al. 2015), where brief absences, 266	
below a given threshold (the MBP), are not accounted in the CRT estimates, namely the 267	
school is considered to still be present in this layer.	268	
 269	
Given that both high-resolution data from recovered tags and transmitted lower-resolution 270	
data were available, we tested how the time series data at high resolution (15 s) translates 271	
into lower resolution data sets (600 s). We therefore considered, for each position of a 272	
recovered tag in the 0-1m layer at time t, two random vertical positions at time t-α and t-α + 273	
600 s, with α being a random number sampled over the set of discrete values {15s, 30s, 45 274	



s,…., 600s}. We then drew the cumulative curve on the frequency of these vertical positions 275	
to obtain the occupation rates of different depths within the 600 s interval around the 276	
surfacing events of ABFT. Moreover, we estimated the CRTs in the Near-Surface Layer 277	
(CRTNSL, 0-20 m) and the Deep Layer (CRTDL, >20 m) based on the subsampled 600 s 278	
recovered-tag data sets. Figure 2 provides a schematic view of the different CRTs used to 279	
characterize to the vertical behavior of ABFT and Table S1 resumes the resolution used to 280	
estimate the CRTs for each layer. 	281	
 282	
The similarity between CRTs of different layers was tested per month using the Kruskall-283	
Wallis test of comparison, using the “kruskal.test” of the R-package “stats” (R Core Team, 284	
2017). Finally, Pearson's product-moment correlation coefficients were calculated using the 285	
function “cor” of the R-package “stats” (R Core Team, 2017) to investigate the correlation 286	
between the number of surfacing events (i.e., the number of CRTVSL) and the time spent in 287	
the 0-20m layer (i.e., the duration of the CRT 

NSL).	288	

 289	

Results 290	
Tagging data 291	
A total of 24 tags were deployed between 2015 and 2016 mainly maturing and adolescent 292	
ABFT (117–158 cm fork length; Table 1). Only 8 of the 24 tags remained attached to the fish 293	
until the end of their intended deployment period (90-150 days). Actual deployment 294	
durations ranged from 2 to 151 days with an average of 50.8 days ± 40.2 SD (Figure 3). Three 295	
tags from 2016 had deployment durations of less than one week (#15P0983, #15P0985, 296	
#15P0986) due to hardware failure. In addition, two tags (#14P0821 and #14P0825) from the 297	
2015 tagging trip provided only 1–4 days of complete DepthTS data, despite rather short 298	
deployment durations of 44–51 days, due to the specific tag configuration applied. DepthTS 299	
data from these 5 tags was not used in the subsequent analyses. Out of the 24 deployed 300	
tags, seven were physically recovered (Table 1), providing the complete archived time series 301	
data at a resolution of 3–5 s. Nineteen tags provided more than 7 days of complete DepthTS 302	
data (i.e. without transmission gaps) (Tables 1 and S2).	303	

	304	
Residency in the Gulf of Lion 305	
The tracks obtained using a speed of 4.1 km h-1 in the GPE3 model performed generally 306	
better than the 2.1 and 3.1 km h-1 models, both on transmitted and recovered datasets 307	
(Table S3). Only tag 15P0983 showed a better performance of the 2.1 km h-1 model. Based 308	
on the maximum likelihood tracks, the study zone encompassed the high density area of the 309	
tags' geolocations (Figure 4) corresponding to 63.5% of all tag gelocations recorded during 310	
both years (Figures 3 and S2). Fish tagged since August in 2016 showed a higher residency in 311	
the study area than those tagged during the same period in 2015, accounting 80.5% ( ± 21.0 312	
SD) vs 51.8% (± 37.4 SD) on average, respectively. In fact, 13 of 14 ABFT tagged during 313	
August 2016 spent > 50% and 5 of them 100% of the time in the Gulf of Lion. In contrast, 314	
only 2 out of the 6 ABFT tagged in 2015 showed a similar preference and remained the 315	
entire deployment period of their tag (45-46 days) in the Gulf of Lions. All four ABFT tagged 316	
during the spring season (end of April 2016) left the Gulf of Lion shortly after tagging for at 317	
least one month. Only two of these fish kept their tag until mid-September (the intended 318	



end of deployment) and returned twice to the Gulf of Lion during this period (Figures 3 and 319	
S2). No tagged tuna left the Mediterranean Sea towards the Atlantic and only one fish left 320	
the western Mediterranean during the study (Figures 4 and Figure S2). This fish (#14P0823) 321	
was tagged during spring 2016 and ultimately moved to the Eastern Mediterranean basin, 322	
where the tag surfaced between Malta and Libya. 	323	
 324	
Vertical behavior from all tags 325	
Monthly presence rates in the water column 326	
The proportion of time spent by ABFT at different depth strata showed a clear temporal 327	
trend (Figure 5). The occupation the 0-10m depths increased from spring (April) to summer 328	
(July), remained stable during July-September and then decreased in autumn (October), 329	
attaining the lowest values in November. The occupation of the depths between 10 and 20 330	
m was less pronounced and did not show clear temporal changes, whereas the depths below 331	
20 m showed an opposite trend relative to the 0-10m, with the time at depth first 332	
decreasing from spring to summer, then increasing from summer to autumn.	333	
 334	
Time series of daily presence rates in the NSL  335	
For both 2015 and 2016, the daily presence rates of ABFT in the NSL (0-20 m) attained 336	
maximum values (>90%) during the summer (July-September) and showed a sharp decrease 337	
between September and October (Figure 6), in parallel with the decline of the thermal 338	
stratification index. The sensitivity analysis with a more restrictive NSL (0-10m) revealed a 339	
similar trend and relationship to the thermal destratification (Figure S3). 	340	
 341	

Fine-scale vertical behavior from recovered tags 342	
Six of the seven recovered tags were present in the study zone during the period August-343	
October (Figure 2). We therefore focused the high-resolution data analyses on this dataset 344	
during both study years, 2015 and 2016. 	345	
 346	
Surface availability: presence rates and duration of residency in the VSL 347	
The daily presence rates of the seven recovered tags within the 0-1 m layer (VSL) showed 348	
during both years a high variability over time and between individuals, generally ranging 349	
between 0 and 60% apart from few extreme values (>80%) attained during August of both 350	
years (Figure 7). Presence rates in the VSL decreased from summer to autumn, in parallel 351	
with the decline of the thermal stratification index. This simultaneous decline was 352	
particularly visible in October 2016, when the presence rates and thermal stratification index 353	
both dropped abruptly. 	354	
 355	
The average time spent continuously in the 0-1m layer (CRTVSL) ranged between 1 and 2 356	
minutes (Table 2). Although, there was no clear temporal trend (Figure 8), pairwise Kruskall-357	
Wallis tests demonstrated significant differences in the average CRTVSL between months and 358	
years (p<0.05), except for September and October in 2016. Similarly, daily average durations 359	
of CRTVSL demonstrated a high temporal variability for both years and no clear temporal 360	
trends (Figure S4).	361	
 362	



The estimated time that ABFT schools spent continuously at the surface (CRTVSL
School), ranged 363	

between 3 and 6 minutes during all months of the study period (Table 2). Overall, the 364	
duration of CRTVSL

School were longer than that of CRTVSL, indicating that subsequent surfacing 365	
events occurred. The Kruskall Wallis test of comparison on the monthly CRTVSL

School 366	
demonstrated that there were significant (p<0.05) differences between years and months 367	
(except for August and October in 2015), but no clear temporal trends were found (Figures 8 368	
and S4). 	369	
 370	
Presence at other depth layers recorded at lower resolutions 371	
The analysis of ABFT presence in the VSL relative to that of other depth layers revealed that 372	
>90% of all depth records within a temporal window of 600 s around individual surfacing 373	
events were located between 0–20 m (Figure 9). 	374	
 375	
During both years, the time spent continuously in the 0-20 m layer (CRTNSL) was significantly 376	
different over different months (Kruskall-Wallis test, p<0.05), except for August and 377	
September in 2015 (Figure 10 and Table 2). In 2015, the average CRTNSL ranged between 1.9 378	
hours (September) and 0.5 hours (October). In 2016, the average CRTNSL values ranged 379	
between 2.6 (August) and 0.9 hour (October). A decreasing temporal trend in CRTNSL towards 380	
October was particularly clear in 2016, both on a monthly and daily basis (Figures 10 and S5). 	381	
The average residence times in the Deep Layer (> 20 m, CRTDL) showed opposite trends to 382	
that of the NSL. Accordingly, the CRTDL increased towards October, accounting 0.9 and 1.1 383	
hours in 2015 and 2016, respectively (Table 2, Figures 10 and S5). Minimum monthly average 384	
values of 0.3 and 0.4 hours for the CRTDL were recorded during September (2015) and 385	
August (2016), resptectively. Pairwise Kruskall-Wallis tests demonstrated significant 386	
differences in the average CRTDL between months and years (p<0.05), except for August and 387	
September in 2015 and 2016.	388	
 389	
The sensitivity analysis with a more restrictive NSL (0-10m) and therefore larger DL (>10m) 390	
revealed similar trends in the average residence times (Table S4, Figures S6-7) and test 391	
results of monthly comparisons, although absolute estimates were of a smaller magnitude. 	392	
 393	
Correlation between subsequent CRTs, surface events and time spent in the 0-20m layer 394	
Subsequent CRTs were weakly correlated irrespective of the reference layer and showed no 395	
apparent relationship. Accordingly, Pearson's product-moment correlation coefficients of 396	
subsequent CRTs in the VSL accounted 0.28 and 0.31 for individual tunas and tuna schools, 397	
respectively. Similarly, the correlation coefficients of subsequent CRTs in the NSL and DL 398	
accounted for 0.16 and 0.19 respectively.	399	
 400	
By contrast, CRT durations of individual tunas in the NSL were highly correlated to the 401	
number of surface events (Figure 11, S8). On a monthly basis, correlation coefficients 402	
between the daily CRTNSL durations of the recovered tags and the respective number of 403	
surface events accounted for 0.81, 0.69 and 0.89, from August to October, respectively. The 404	
corresponding data of the tuna schools showed a constant increase in the linear correlation 405	
between the CRT durations in the NSL and number of school surface events from August to 406	
October, accounting for 0.68, 0.85 and 0.93.	407	
 408	
 409	



Discussion 410	
In this study, we investigated the site fidelity and vertical behavior of maturing and 411	
adolescent ABFT in the Gulf of Lion. In comparison to previous electronic tagging studies 412	
conducted in the same region (Fromentin and Lopuszanski, 2014), our study focused on 413	
smaller individuals (FL < 160 cm). The ABFT individual size ranges considered in this study 414	
(117-158 cm FL) are commonly found in the study region and are thus highly relevant for 415	
aerial surveys. However, so far there was no knowledge on their vertical behavior and site 416	
fidelity. 	417	
 418	
This study demonstrated that the majority of the tagged tuna spent a large proportion of 419	
time within the Gulf of Lion, where they were tagged, in particular during the aerial survey 420	
season (August—October). This result is consistent with what was previously found for 421	
mature ABFT individuals (Fromentin and Lopuszanski, 2014). The consistency of the site 422	
fidelity of ABFT along different size ranges and years is highly relevant for the robustness of 423	
the abundance indices obtained through aerial surveys. Namely, our results indicate that 424	
variabilities in the size distribution of ABFT individuals will not affect the indices. 	425	

The analysis of the monthly time at depth profiles demonstrated a strong seasonal pattern in 426	
the ABFT vertical behavior, consistent with the findings of previous multi-year PSAT tagging 427	
studies conducted on larger individuals (Bauer et al., 2017). The optimized deployment 428	
periods and transmission settings chosen allowed us to obtain complete depth time series 429	
and allowed the characterization of the vertical behavior of multiple individuals on a daily 430	
basis. In this respect, the temporal evolution of daily presence rates of ABFT in the Near 431	
Surface Layer (NSL, 0-20m) showed a seasonal trend that followed the thermal 432	
destratification of the water column, with high presence rates in the summer, where tuna 433	
spent up to 80-90% of the time in 0-20 m layer. Remarkably, the daily presence rates in the 434	
NSL showed a high variability, even among consecutive days. Moreover, large daily standard 435	
deviations were estimated over different individuals, thus revealing a high variability in the 436	
ABFT vertical behavior, both at the intra and inter-individual level. Such variability may be 437	
related to local environmental conditions, local availability of prey, or to the physiology of 438	
ABFT themselves. Marcek et al. (2016), showed that juvenile ABFT in the west-Atlantic 439	
Ocean apparently spent more time below the thermocline with increasing lunar 440	
illumination during night-time, but not during daytime.  It is further noteworthy to recall 441	
that surface presence of ABFT is composed of various behavioral types, including foraging 442	
behavior and horizontal migrations (Lutcavage and Kraus, 1997). Future studies could explain 443	
our findings through the use of new-generation tags that can measure the physiology and 444	
vertical behavior of tagged individuals at the same time.	445	
Remarkably, during aerial surveys conducted over consecutive weeks or even days, it is not 446	
uncommon to encounter a similar degree of variability in the number of tuna schools 447	
spotted by the plane. In this respect, the high degree of inter-individual and temporal 448	
variability found in this study suggests that changes in the visibility conditions due to the sea 449	
state (i.e. waves vs flat surface) constitute only one of the components of the system’s 450	
variability.  451	
 452	
From the 24 tags deployed, seven (29.1%) tags were recovered. The high resolution of the 453	
depth sensors of the tags (vertical resolution: 0.5 m; accuracy +/- 1%) and the high 454	



temporal resolution of the recovered tags (<5 s) allowed the first in-depth analysis of ABFT 455	
vertical behavior in the study region. For this purpose, surfacing events, identified through 456	
the presence of recovered tags in the visible surface layer (0-1 m, VSL), were taken as a 457	
proxy for surface feeding. Our results showed that despite a high variability over time and 458	
between individuals, the presence in the VSL clearly dropped during October, following 459	
the decline of the thermal stratification index from summer to autumn. On the other 460	
hand, monthly and daily averaged continuous residence times (CRTs) in the VSL showed no 461	
such trend or seasonality. On average, CRTs of individual ABFT and tuna schools in the VSL 462	
lasted 1-2 minutes for all months, which is comparable with what was expected from 463	
boat-based observations of surfacing ABFT during tagging trips. School-related CRTs in the 464	
VSL were longer than that of individuals (3-6 min), indicating that subsequent surfacing 465	
events occurred.	466	

The analysis of the high-resolution DepthTS data of the recovered tags allowed us to link 467	
different temporal and spatial scales. First, it demonstrated that 90% of the vertical 468	
positions sampled within a temporal window of 10 min around individual surfacing events 469	
were located within 0-20 m. Furthermore, we show a high correlation between the 470	
number of surfacing events (i.e., the number of CRTVSL) and the residence times in the 0-20 471	
m layer, (CRTNSL). The latter showed a decreasing trend in duration between summer and 472	
autumn. A similar decline was observed in the combined daily presence rates in the NSL of 473	
all tags and the thermal destratification of the water column. As such, the decrease in the 474	
surface availability of tuna from summer to autumn can be explained by means of 475	
residency in the 0-20m layer (that affect the number of surfacing events) rather than by 476	
the continuous times spent in the 0-1m layer. This implies that the time spent within this 477	
layer can provide a good proxy for the presence rates in the VSL. Moreover, lower-478	
resolution depth time series obtained from transmitted data can already provide sufficient 479	
information to evaluate the actual surface availability of ABFT in the region. These results 480	
strengthen previous findings by Bauer et al. (2017) on ABFT and Eveson et al. (2018) on 481	
SBFT that used the time spent in the NSL as a proxy for the surface availability. 	482	

Accordingly, the apparent absence in temporal trends in the CRTVSL (0-1m) likely means 483	
that the presence of ABFT at the visible surface corresponds to instantaneous events, 484	
probably related to foraging activity. On the other hand, the temporal trends observed for 485	
the CRTs in the NSL (0-20m) and DL (>20m) may reflect the existence of two behavioral 486	
states (“near the surface” and “deep”), associated with two different feeding strategies of 487	
tuna, foraging at the surface and deeper as indicated earlier by Bauer et al. (2017). These 488	
behavioral states may be triggered by the seasonal oceanographic conditions that can 489	
affect the presence of forage at the surface (Saraux et al., 2014). 	490	

Similarly it is important to consider the habitat use and function when relating surface 491	
presence and surface feeding activity. In nursery areas such as the Gulf of Lion and the Great 492	
Australian Bight, juvenile tuna schools are almost exclusively detected during surface 493	
foraging events while conducting aerial surveys (Bauer et al., 2015a; Eveson et al., 2018). In 494	
such areas, surface presence and feeding activity are therefore linked. By contrast in some 495	
regions, such as the “Tuna Alley” in the Great Bahama Banks (Lutcavage and Kraus, 1997), large 496	
adults are migrating at the surface presumed to be on their northerly migration and not 497	
actively engaged in feeding as ABFT in the Gulf of Lion (Bauer et al., 2015a). Therefore, in other 498	
regions the relationship between surface activity and behavior should be investigated 499	



further to identify those factors driving surface behavior in those other regions. Other 500	
sensors incorporated into PSATs, such as accelerometers and sonars, could help to 501	
distinguish the different behaviours of ABFT and identify feeding events during surface 502	
presence periods (Jorgensen et al., 2015; Lawson et al., 2015). Such an application would 503	
further facilitate the quantification of surface feeding events and their duration.	504	

 505	

The apparent relation between a decline in the thermal stratification and different ABFT 506	
surface presence indicators has strong implications for ABFT aerial surveys, conducted in the 507	
same study area since 2000 (Bauer et al., 2015a). Derived ABFT abundance estimates are 508	
currently not corrected by their surface availability. Such a correction is of overall 509	
importance since a large fraction of survey repetitions is being conducted during the 510	
destratification period. In case of cetaceans, this is usually done by applying average (CRT) 511	
durations of surfacing and submergence (Bauer et al., 2015b). Similar approaches that 512	
account for the time spent by ABFT in the visible surface and its possible temporal and 513	
inter-individual variability should be incorporated in the derivation of the abundance 514	
indices for ABFT based on aerial surveys data. In this respect, further research directions 515	
could explore the use of empirical models, that incorporate the vertical behavior of 516	
ABFT schools based on the vertical dynamics found herein and provide the number of 517	
schools spotted at the sea surface along the aerial surveys transects. These models 518	
would allow evaluating the sensitivity and robustness of the abundance indices with 519	
respect to the inter-individual, daily and seasonal variability found herein. Moreover, 520	
they could allow testing the effectiveness of different aerial survey sampling strategies 521	
(transect characteristics; number of surveys, temporal spread of the surveys). Finally, 522	
these models would allow standardizing the derived abundance indices accounting for 523	
the seasonal effects. In this respect, our results, in conjunction with external data on the 524	
thermal stratification in the Gulf of Lion (i.e. from future deployments of oceanographic 525	
data buoys or validated ocean models; Hu et al., 2009) will further help us to address these 526	
effects in upcoming or even past survey years.	527	
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Table 1: Tag deployments metadata for the 24 pop-up archival tags deployed during 2015 (n=6) and 2016 (n=18) in the Gulf of 
Lions. France. The * symbol indicates prematurely released tags with deployment durations of less than 15 days that transmitted 
DepthTS at 300 s resolution unless the originally programmed resolution was higher.  

 

# Tag ID 
Fork 

length 
(cm) 

Deployment Release Days at 
Liberty 

DepthTS 
resolution 

(sec) 

TS 
resolution 

(sec) 
set 

Date Longitude Latitude Date Longitude Latitude 
1 14P0818 127 2015-08-05 06:48 4,84 43,24 2015-09-09 17:40 8,61 40,89 36 600 3 recovered 
2 14P0814 144 2015-08-05 14:15 4,84 43,24 2015-09-27 12:00 6,43 39,17 53 600 600 transmitted 
3 14P0813 131 2015-09-10 09:24 4,87 43,25 2015-10-25 20:00 4,93 42,93 46 600 600 transmitted 
4 14P0824 130 2015-09-10 09:55 4,87 43,25 2015-10-25 22:20 4,18 43,11 46 600 3 recovered 
5 14P0825 140 2015-09-25 09:00 5,12 43,25 2015-11-14 20:00 4,97 43,15 51 150 150 transmitted 
6 14P0821 141 2015-09-25 11:45 5,12 43,25 2015-11-08 02:37 4,76 43,03 44 150 150 transmitted 
7 14P0823 120 2016-04-17 10:57 3,27 42,43 2016-09-11 12:10 13,51 34,79 147 600 600 transmitted 
8 14P0819 117 2016-04-17 12:57 3,26 42,4 2016-09-15 15:45 3,13 41,65 151 600 600 transmitted 
9 14P0815 129 2016-04-22 07:45 3,1 42,66 2016-05-04 11:46 3,42 38,24 12 300 5 recovered 

10 14P0816 132 2016-04-22 09:51 3,08 42,69 2016-05-30 07:00 2,95 40,81 37 600 600 transmitted 
11 15P0986 140 2016-08-03 08:55 5,2 43,14 2016-08-09 18:50 6,72 41,09 6 300 300 transmitted 
12 15P0983 146 2016-08-03 12:00 5,2 43,14 2016-08-06 17:00 5,1 41,67 3 300 300 transmitted 
13 15P0985 156 2016-08-03 12:25 5,2 43,14 2016-08-05 13:15 5,08 40,94 2 300 300 transmitted 
14 15P1019 146 2016-08-07 08:00 5,2 43,13 2016-08-19 18:05 4,68 42,67 12 300 300 transmitted 
15 15P1022 153 2016-08-07 14:45 5,2 43,13 2016-09-03 17:20 4,93 42,89 27 600 600 transmitted 
16 11P0584 142 2016-08-25 08:30 5,18 43,14 2016-11-23 21:54 5,01 43,31 91 600 5 recovered 
17 11P0587 144 2016-08-26 12:50 5,16 43,14 2016-11-24 22:10 5,05 43,16 91 600 600 transmitted 
18 11P0279 147 2016-08-26 13:39 5,16 43,14 2016-09-29 12:00 4,74 43,35 34 600 600 transmitted 
19 13P0243 147 2016-08-26 14:36 5,16 43,15 2016-11-16 00:30 6,75 40,94 82 600 3 recovered 
20 15P1025 125 2016-08-28 08:40 4,77 43,23 2016-11-26 20:00 3,9 41,7 90 600 600 transmitted 
21 15P0984 158 2016-08-28 15:00 4,23 43,23 2016-10-19 14:01 4,37 43,24 52 600 3 recovered 
22 15P1023 128 2016-08-31 10:00 4,74 43,23 2016-09-19 15:00 4,79 41,44 19 600 600 transmitted 
23 15P1024 135 2016-08-31 11:00 4,74 43,23 2016-10-16 01:01 4,55 43,2 46 600 3 recovered 
24 15P1016 130 2016-08-31 12:30 4,74 43,23 2016-10-12 12:20 8,57 41,62 41 600 600 transmitted 



	

	

Table 2: Monthly average of daytime CRTVSL, CRTVSLschool, CRTNSL and CRTDL 
recorded for the recovered tags. Values in brackets report the standard deviation. 
 

Year Month CRTVSL 
(min) 

CRTVSLschool 
(min) 

CRTNSL 
(h) 

CRTDL 
(h) 

2015 
August 2.1 (4.2) 5.7 (21.8) 1.6 (2.2) 0.6 (1.0) 
September 1.1 (1.5) 3.5 (6.0) 1.9 (2.7) 0.3 (0.4) 
October 2.2 (3.7) 4.9 (8.4) 0.5 (0.5) 0.9 (1.1) 

2016 
August 1.7 (5.9) 4.6 (16.7) 2.6 (4.0) 0.4 (0.7) 
September 1.8 (4.4) 4.7 (13.1) 1.1 (1.9) 0.5 (0.9) 
October 1.5 (3.1) 4.8 (9.1) 0.9 (1.7) 1.1 (1.8) 

 
 
  



	

	

 

 
 
Figure 1: The Gulf of Lions, North Western Mediterranean Sea. The green and blue 
dots indicate the tag deployment locations for year 2015 and 2016, respectively and 
the yellow lines show the aerial survey transects. The dotted black rectangle denotes 
the study area. Maps were generated using the “plotmap”-functions of the R-
package “oceanmap” (Bauer, 2019). 
 
 
 
 
 
 



	

	

 
Figure 2: Schematic illustration of the 3 different depth layers (VSL: Visual surface 
layer; NSL: Near-Surface Layer; DL: Deep Layer) and related CRT examples of 
individual fish and tuna schools that were used to study the vertical behavior of  ABFT.  
 
 
 
 



	

	

 
Figure 3: Temporal coverage (green) of DepthTS data per deployed tag. Data 
gaps due to transmission loss are shown in red. Blue bars indicate the periods 
spent inside the study area of the Gulf of Lions. Bold serial numbers indicate 
tagging data used in the analyses. 
 
 
 
 



	

	

  
Figure 4: a) 80% Surface probability maps for each tag based on the most 
likely of the assumed travel speeds. b) Combined kernel densities of all tags 
deployed during 2015 and 2016. Maps were generated using the “plotmap”-
and “v”-functions of the R-package “oceanmap” (Bauer, 2019). For 
individual tracks see Figure S2.  

 
 
 
 
 
  



	

	

 
Figure 5: Average monthly percentages of the time at depth and its standard 
deviation (error bars) obtained from the daytime DepthTS data of all tags at 600 s 
resolution. Histograms were generated using the “hist_tad”-function of the R-
package “RchivalTag” (Bauer, 2018).  
 

 
 
  



	

	

 
 

 
 
Figure 6: Average daily presence rates recorded in the 0-20m depth layer (NSL) 
from all tags (blue dots) and its standard deviation (error bars) as well as the thermal 
stratification index (orange) in 2015 (left) and 2016 (right). 
 
 

 
Figure 7: Average daily presence rates recorded in the 0-1 m depth layer (VSL) for 
the recovered tags (blue dots) and its standard deviation (error bars) as well as the 
thermal stratification index (orange) in 2015 (left) and 2016 (right). 
 
 
 
 
 
  



	

	

 

 
 
Figure 8: Boxplot of daytime CRTVSL (top) and CRTVSLschool (bottom) recorded 
between August and October for 2015 (left) and 2016 (right). 
 
  



	

	

 
 
 
 

 
 
Figure 9: Cumulative curves of the depth records surrounding surface presence 
events (0–1 m) within a randomly allocated interval of 600 s based on the DepthTS 
from recovered tags.  
 
  



	

	

 
 
 

 
Figure 10: Boxplot of daytime CRTNSL (top; 0-20m) and CRTDL (bottom; >20m) 
recorded between August and October for 2015 (left) and 2016 (right). 
  



	

	

 
 
Figure 11: Relationship between the continuous residence times in the 0-20 m layer 
(CRTNSL) during daytime of individual tunas to the number of surface events (left) and 
that of tuna schools (right). The red line indicates the correlation of the variables in 
both relationships, with the number of surface events being a function of the CRTNSL 
durations. 
 



Supplementary Material	
	
Table S1 Resolution and tag data used for the calculation of CRTs in each layer 
 

Layer Data Resolution used 
VSL Recovered tags 15 s 

NSL Recovered tags and transmitted  600 s 

DL Recovered tags and transmitted  600 s 
 
 
Table S2 Number of deployment days and the number of completely transmitted daytime 
periods per miniPAT.  
 

Serial 
Deployment Completely 

date days 

transmitted 
daytime 
periods 

14P0818 2015-08-05 36 17 

14P0814 2015-08-05 53 28 

14P0813 2015-09-10 46 26 

14P0824 2015-09-10 46 14 

14P0825 2015-09-25 51 1 

14P0821 2015-09-25 44 6 

14P0823 2016-04-17 147 76 

14P0819 2016-04-17 151 106 

14P0815 2016-04-22 12 11 

14P0816 2016-04-22 37 37 

15P0983 2016-08-03 3 0 

15P0985 2016-08-03 2 1 

15P0986 2016-08-03 6 5 

15P1019 2016-08-07 12 11 

15P1022 2016-08-07 27 25 

11P0584 2016-08-25 91 48 

11P0587 2016-08-26 91 54 

11P0279 2016-08-26 34 20 

13P0243 2016-08-26 82 60 

15P1025 2016-08-28 90 65 

15P0984 2016-08-28 52 10 

15P1023 2016-08-31 19 18 

15P1024 2016-08-31 46 37 

15P1016 2016-08-31 41 41 
	 	



Table S3 GPE3 model scores per tag and travel speed (50, 75 and 100 km/d).	
 

Serial	 Ptt set 2.1 km h-1	 3.1 km h-1	 4.2 km h-1	
14P0818 112780 transmitted 31.36 36.20	 40.59 
14P0818 112780 recovered 36.28 40.12 45.16 
14P0814 94261 transmitted 32.22 33.92 35.08 
14P0813 34205 transmitted 26.14 34.88 38.42 
14P0824 148820 transmitted 61.14 62.85 63.40	
14P0824 148820 recovered 72.57 74.72 75.69 
14P0825 148821 transmitted 36.53 50.67 52.89 
14P0821 148818 transmitted 62.50	 65.34 66.39 
14P0823 148819 transmitted NA 44.75 47.26 
14P0819 148817 transmitted 29.43 36.22 44.78 
14P0815 104658 transmitted NA 45.28 51.45 
14P0815 104658 recovered NA 60.19 62.61 
14P0816 104683 transmitted 36.66 50.74 57.39 
15P0986 98726 transmitted 54.06 58.20	 59.84 
15P0983 34205 transmitted 49.22 48.83 49.46 
15P0985 98716 transmitted 42.81 41.10	 40.44 
15P1019 104659 transmitted 40.58 42.82 45.87 
15P1022 112779 transmitted 32.02 37.87 47.04 
11P0584 104672 transmitted 44.60	 45.86 49.57 
11P0584 104672 recovered 58.75 60.10	 65.59 
11P0587 104679 transmitted 45.03 51.75 53.67 
11P0279 94251 transmitted 32.00	 38.25 42.82 
13P0243 98715 recovered 60.43 65.55 68.11 
15P1025 148821 transmitted 48.43 50.00	 52.37 
15P0984 94252 transmitted 38.65 41.36 44.06 
15P0984 94252 recovered 56.71 60.06 61.14 
15P1023 112782 transmitted 45.82 54.45 56.50	
15P1024 148818 transmitted 57.96 60.51 62.22 
15P1024 148818 recovered 57.16 62.01 63.92 
15P1016 104655 transmitted 53.28 54.41 56.51 

	
	

	 	



	
Table S4: Monthly average of daytime CRTs in the NSL (0-10m) and DL (>10m) recorded 
for the recovered tags. Values in brackets report the standard deviation.	

 
Year Month CRTNSL  

(h)	
CRTDL  

 (h) 

2015 
August 1.0 (1.5) 0.8 (1.7) 

September 0.8 (1.1) 0.4 (0.4) 
October 0.3 (0.3) 1.6 (2.1) 

2016 

August           1.2 (1.8) 0.5 (0.8) 
September          0.8 (1.2) 0.6 (1.1) 

October     0.7 (1.4) 1.3 (2.2) 
	

	
	 	



	
Environmental data analysis  

Three major indicators for the thermal-structure of the water column were estimated from the tag 
data: daily thermocline depth, thermocline gradient as well as the thermal stratification index, 
following the approach used by Bauer et al. (2015) implemented in the R-package “RchivalTag” 
(Bauer, 2018). To do so, we first interpolated transmitted PAT-style Depth-Temperature profiles 
(PDT) or, when available, recovered Depth-Temperature time series data, per day and tag, using the 
function “interpolate_TempDepthProfiles” (Bauer, 2018). From the resulting interpolated Depth-
Temperature profiles, we then estimated the three indicators, by applying the function 
“get_thermalstrat” (Bauer, 2018). The thermocline depth was thereby estimated as the depth of 
the maximum temperature gradient, which served as an indicator of the thermocline gradient. By 
contrast, the stratification index was defined as the standard deviation of interpolated daily depth-
temperature profiles up to a depth of 100 m (Valdés and Moral, 1998). This depth limit was chosen 
to confine temperature values to the layer of highest thermal variability, in order to increase the 
representativeness of the stratification index. A comparative analysis on the accuracy of the three 
indicators obtained from PDT and Depth-Temperature time series data from the recovered tags (see 
Figure S1 in the Supplementary Information) revealed that the stratification index was particularly 
robust for those days where the tagged individuals attained depths ≥ 88 m. We therefore estimated 
the stratification index from PDT profiles, or (if available) recovered Depth-Temperature time series 
data, that met this requirement in the subsequent analyses. Missing values in the time series of the 
stratification index were estimated by applying an exact cubic regression spline, using the function 
“spline” of the standard R-package “stats” (Forsythe et al., 1977, R Core Team, 2017).	
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Figure S1 Correlation between PDT and depth temperature time series data derived 
indicators of the thermal water column structure: the daily thermocline depth (red 
rectangle), its gradient (green triangle) as well as a stratification index (blue circle). 
PDT profiles were simulated based on the daily interpolated depth temperature time 
series data from the recovered tags, using the depth values of transmitted and 
recovered ABFT PDT profiles (up to 200 m depth) as sampling points.	

	



 
	
	
Figure S2 80% Surface probability maps for each tag obtained from the GPE3 
software. Maps were generated using the “plotmap”-functions of the R-package 
“oceanmap” (Bauer, 2019).	
 

 
	



 
 
Figure S3: Average daily presence rates recorded in the 0-10m depth layer (NSL) from 
all tags (blue dots) and its standard deviation (error bars) as well as the thermal 
stratification index (orange) in 2015 (left) and 2016 (right). 
	
	 	



	
	
	
	

	
Figure S4: Daily CRT_VSL (top) and CRT_VSL_school (bottom) for 2015 (top) and 2016 
(bottom).	
 
	 	



Figure S5: Daily average CRTNSL (top; 0-20m) and CRTDL (bottom; >20m) for 2015 (left) 
and 2016 (right).	
 
 
	

 



	
Figure S6: Daily average CRTNSL (top; 0-10m) and CRTDL (bottom; > 10m) for 2015 (left) 
and 2016 (right).	
	
	
	 	



	
	
	
	

	
	
Figure S7: Boxplot of daytime CRTNSL (top; 0-10m) and CRTDL (bottom; >10m) recorded 
between August and October for 2015 (left) and 2016 (right).	
	
	 	



	
Figure S8: Relationship between the continuous residence times in the 0-10 m layer 
(CRTNSL) during daytime of individual tunas to the number of surface events (left) and that 
of tuna schools (right). The red line indicates the correlation of the variables in both 
relationships, with the number of surface events being a function of the CRTNSL durations. 
	


