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Abstract. This study provides a detailed reconstruction of climatic events affecting a cold-water coral mound located 

within the East Melilla Coral Province (Southeast Alboran Sea) over the last 300 ky. Based on benthic foraminiferal 

assemblages, macrofaunal quantification, grain size analysis, sediment geochemistry, and foraminiferal stable 

isotope compositions, a reconstruction of environmental conditions prevailing in the region is proposed. The 

variations in planktonic and benthic δ
18

O values indicate that cold-water coral mound formation follows global 20 

climatic variability. Cold-water corals develop during both interglacial and glacial periods, although interglacial 

conditions would have allowed better proliferation. Environmental conditions during glacial periods, particularly 

during the Last Glacial Maximum, appear to better suit the ecological requirements of the erect cheilostome 

bryozoan Buskea dichotoma. Benthic foraminiferal assemblages suggest that high organic carbon flux characterized 

interglacial periods. Results from this study imply that increased influence of warm and moist Atlantic air masses 25 

during interglacial periods led to increased fluvial discharge, providing nutrients for cold-water corals. Important 

interglacial Atlantic Water mass inflow further promoted strong Alboran Gyres, and thus mixing between surface 

and intermediate water masses. Increased turbulence and nutrient supply would have hence provided suitable 

conditions for coral development. In contrast, benthic foraminiferal assemblages and grain size distributions suggest 

that the benthic environment received less organic matter during glacial periods, whilst bottom flow velocity was 30 

reduced in comparison to interglacial periods. During glacial periods, arid continental conditions combined to more 

stratified water masses caused a dwindling of coral communities in the southeastern Alboran Sea, although aeolian 

dust input may have allowed these to survive. In contrast to Northeast Atlantic counterparts, coral mound build-up in 

the southeastern Alboran Sea occurs during glacial as well as during interglacial periods and at very low aggradation 

rates (between 1 and 9 cm.ky
-1

). We propose that Buskea dichotoma plays an important role in long-term mound 35 

formation at the East Melilla Coral Province, noticeably during glacial periods.  
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1. Introduction 

Cold-water coral (CWC) reefs are diverse ecosystems that are common on Earth (Freiwald et al., 2004; Roberts et 

al., 2009). The most important reef building CWC species in the Atlantic Ocean and Mediterranean Sea are the 

scleractinians Desmophyllum pertusum (formerly known as Lophelia pertusa, see Addamo et al., 2016) and 40 

Madrepora oculata (Roberts et al., 2009). These predominantly suspension-feeding organisms depend on nutrient 

supply and enhanced hydrodynamic regimes (White et al., 2005; Mienis et al., 2007; Carlier et al., 2009; Davies et 

al., 2009; Roberts et al., 2009; Hanz et al., 2019). The role of internal waves (i.e. waves that occur at the interface 

between two water masses of different densities) on the proliferation of CWCs is important, since these oscillations 

increase turbulence and hence nutrient supply (White et al., 2005; Davies et al., 2009; Pomar et al., 2012; Wang et 45 

al., 2019). Physico-chemical properties of the ambient water (e.g. salinity, temperature, dissolved oxygen 

concentrations, pH, density) also affect CWC growth (Freiwald et al., 2004; Dullo et al., 2008; Davies and Guinotte, 

2011; Hanz et al., 2019). If favourable conditions are maintained over longer periods, successive reef generations 

build CWC mounds through the interaction between coral growth and sediment accumulation (Wilson, 1979; 

Roberts et al., 2006; Foubert and Henriet, 2009; Roberts et al., 2009). Consequently, CWC mounds can reach 50 

considerable heights of over 300 m and spread for kilometres in width and length at their base (De Mol et al., 2002; 

Kenyon et al., 2003; Huvenne et al., 2005). Mound development may span from thousands to millions of years and 

attain important mound aggradation rates, e.g 290 cm.ky
-1 

in the Porcupine Seabight (Frank et al., 2009; López 

Correa et al., 2012; Stalder et al., 2015; Wienberg et al., 2018). As such, CWC mounds are valuable environmental 

and climatic archives, although mound formation is generally discontinuous (Rüggeberg et al., 2007; Roberts et al., 55 

2009). Moreover, the sensitivity of CWCs to climate change renders them useful to monitor variations in 

environmental conditions (e.g., water mass variability, surface productivity, bottom current velocity; Rüggeberg et 

al., 2007; Huvenne et al., 2009; Hebbeln et al., 2016; Wienberg et al., 2018).  

 

The long-term development of CWC mounds was first studied in the Northeast Atlantic Ocean, where it is 60 

recognized to be driven by large-scale changes in oceanographic conditions (e.g. Dorschel et al., 2005; Frank et al., 

2011, Wienberg et al., 2018). Corals along the Irish margin grow during interglacial and interstadial times, whilst 

their development declines during glacial periods (Dorschel et al., 2005; Kano et al., 2007; Rüggeberg et al., 2007; 

Eisele et al., 2008). Cold-water coral mound development along the Irish margin depends on the strength of the 

Mediterranean Outflow Water (MOW) and the influence of internal waves (Mohn et al., 2014; Raddatz et al., 2014; 65 

Hebbeln et al., 2016). The strong influence of MOW during interglacial and interstadial times and the resulting 

enhanced turbulence induced by internal waves provides the correct balance between nutrient and sediment supply 

(Mohn et al., 2014; Raddatz et al., 2014). In contrast, during glacial times, weak MOW flow lowers nutrient supply 

and increases sediment smothering, causing coral retreat (Dorschel et al., 2005; Rüggeberg et al., 2007; Mohn et al., 

2014). In the Northwest Atlantic Ocean, CWC mounds also form during interglacial periods, when stronger 70 

hydrodynamic regimes and better-oxygenated waters dominate the region (Matos et al., 2015; 2017). At lower 

latitudes in the East Atlantic, off the coast of Mauritania and in the Gulf of Cádiz, coral mounds form essentially 
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during glacial times (Wienberg et al., 2009; Eisele et al., 2011), although they also developed at lower aggradation 

rates during the last interglacial (Marine Isotope Stage 5; Wienberg et al. 2018).  

 75 

In the Mediterranean Sea, CWC mound provinces are mostly concentrated in the Alboran Sea, along the Moroccan 

margin (Fink et al., 2013; 2015; Lo Iacono et al., 2014; Stalder et al., 2015; 2018; Terhzaz et al., 2018; Wang et al., 

2019; Rachid et al., 2020). The largest CWC mound field in this region is the Melilla Mound Field, covering an area 

greater than 500 km
2 

parallel to the margin (Comas and Pinheiro, 2010; Lo Iacono et al., 2014). It is divided into two 

provinces, the West and East Melilla Coral Provinces, respectively situated 7 km northwest and 35 km northeast of 80 

the Cape Tres Forcas (Hebbeln, 2019; Fig. 1). Several recent studies suggest an environmental forcing on CWC 

mound formation during the last 30 ky at the Melilla mounds (Fink et al., 2013; Stalder et al., 2015; 2018; Wang et 

al., 2019; Feenstra, 2020). Mound aggradation rates reach their highest values (75-420 cm.ky
-1

) during the Early 

Holocene and Bølling-Allerød interstadial. In contrast, mound formation halted during the Younger-Dryas, 

demonstrating low mound aggradation rates (30-50 cm.ky
-1

; Fink et al., 2013; Stalder et al., 2015; Wang et al., 2019; 85 

Feenstra, 2020). Based on benthic foraminiferal assemblages, Stalder et al. (2015) suggest that cold/dense well 

oxygenated bottom water conditions favoured CWC development, whilst Wang et al. (2019) relate the intensified 

coral proliferation to high surface productivity combined with strong turbulence induced by internal waves. 

 

Although the development of the East Melilla mounds during the last 30 ky is well documented, the long-term 90 

development and environmental forcing affecting these mounds remain unknown. The aims of this study are: 1) to 

constrain the influence of climate variability on mound formation in the East Melilla region over the last 300 ky, and 

2) to assess long-term coral mound formation in the area and compare it to North Atlantic counterparts. 

2. Study area 

2.1 Geological setting 95 

The Alboran domain is structurally complex and its geodynamics are still debated (Duggen et al. 2008). Extension 

and subsidence occurred during the Early to Middle Miocene (Comas et al., 1999; Faccenna et al., 2004; Do Couto et 

al., 2016). As a result of the extension in the area, the Alboran Sea oceanic crust has been thinned, with a minimum 

thickness of 13 km in some parts (López Casado et al., 2001). The Alboran Sea is the westernmost basin of the 

Mediterranean Sea, and is closely connected to the Atlantic Ocean by the Strait of Gibraltar. The Alboran Sea is 100 

approximately 400 km long, with a width of 200 km, an average depth of 1300 m and a maximum depth of 1800 m 

(Olivet et al., 1973; Comas et al., 1999). The Alboran Sea‘s metamorphic basement is intruded by a number of 

volcanic plateaus and seamounts formed through the extensional processes that took place between 17 and 8 million 

years ago (Comas et al., 1999; Duggen et al., 2008). One of these shallow volcanic plateaus, the Banc des 

Provençaux (ca. 200 m depth), extends in a series of 3 ridges colonized by CWCs, named ―Brittlestar ridges‖ (BRI, 105 

BRII, BRIII) (Comas et al., 2009). They are part of the larger East Melilla Coral Province nestled at depths of 

between 250 and 450 m. The ridges are 3 to 20 km in length, whilst the mounds vary in height from 50 to 150 m 
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(Hebbeln et al., 2019). These mounds have mostly dead corals with scarce living corals at their summits and 

erosional moats at their base, supporting the presence of dynamic currents that influenced the area (Hebbeln et al., 

2019) (Fig.1). 110 

2.2 Oceanography 

Low salinity (ca. 36.5 psu), low density Atlantic Water enters the Mediterranean through the Strait of Gibraltar. This 

inflowing water mass mixes with Mediterranean water while crossing the Strait of Gibraltar to form the Modified 

Atlantic Water (MAW), the dominant surface water mass in the Alboran Sea (La Violette, 1983; Millot, 2009). In 

addition, evaporation also exceeds river runoff and precipitation; hence MAW becomes saltier and denser journeying 115 

east and finally sinks in the Levantine, Aegean, Adriatic and Liguro-Provençal sub-basins (Millot et al., 2006). 

Intermediate waters consist of the highly saline (ca. 38.5 psu) and warm (ca. 13.5 °C) Levantine Intermediate Water 

(LIW) that forms in the Levantine basin and flows from East to West, entering the western Mediterranean through 

the Straits of Sicily to finally exit through the Strait of Gibraltar (Millot, 2013). Levantine Intermediate Water 

contributes to ca. 70 % of the total outflow of Mediterranean Outflow Water (MOW; Millot, 2013). The LIW flows 120 

between 200 and 600 m water depth, whilst the core of the LIW is situated at approximately 400 m depth (Millot, 

2009). 

 

It is important to note that the LIW receives contributions from other intermediate water masses before it enters the 

western Mediterranean and hence has different characteristics to the LIW in the eastern Mediterranean (Millot, 125 

2013). Moreover, intermediate waters appear to differ between the North and South Alboran Sea (Fig. 2). The LIW 

flows essentially along the Spanish margin, whilst Shelf Water (ShW), i.e. a mixture of MAW and Western 

Mediterranean Deep Water (WMDW), dominates intermediate depths along the Moroccan margin (Ercilla et al., 

2016). Brittlestar Ridge I lies in the depth range of the ShW (Fig. 2). The deepest water mass, flowing under LIW 

and ShW, is WMDW, which forms in the Gulf of Lions and flows westward to finally exit through the Strait of 130 

Gibraltar and contribute to MOW (Millot et al., 2006). In the Alboran Sea, WMDW circulates principally along the 

Moroccan margin (Hernandez-Molina et al., 2002; Ercilla et al., 2016). 

  

The surface MAW extends down to approximately 200 m depth (Katz, 1972) and enters the Northeast Alboran Sea 

as a jet (1.6 Sv; 1 Sv = 10
6
.m

3
.s

-1
; Lanoix, 1974). This jet triggers the formation of the quasi-permanent anti-cyclonic 135 

Western Alboran Gyre that contributes to mixing between surface MAW and underlying LIW (Heburn and La 

Violette, 1990; Lafuente et al., 1998). When the waters of the Western Alboran Gyre reach the African coast, they 

separate into two branches: one flows back westward along the coast towards the Strait of Gibraltar while the other 

flows towards the eastern part of the basin to form the Eastern Alboran Gyre (La Violette, 1983; Viúdez and Tintoré, 

1995). This second non-permanent gyre also contributes to the mixing process between surface and intermediate 140 

water masses. The Banc des Provençaux and Brittlestar Ridge I are situated in the path of the eastward circulating 

branch/Eastern Alboran Gyre (Lanoix, 1974; Viúdez and Tintoré, 1995; Fig. 1). The mixing between surface and 

intermediate water masses occurs down to ca. 300 m water depth (Heburn and La Violette, 1990). The Strait of 
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Gibraltar is a shallow (ca. 300 m depth) and narrow (ca. 20 km wide) crossing point for entering lower salinity 

MAW and exiting higher salinity MOW (Heburn and La Violette, 1990; Millot, 2009). Thus, the Strait of Gibraltar 145 

plays a key role in controlling water mass exchanges between the semi-enclosed Mediterranean Sea and the Atlantic 

Ocean. The importance of the water exchange varies between glacial and interglacial periods as a function of sea 

level change. Moreover, the narrow width and depth of the Strait of Gibraltar, together with the geometry of the 

Alboran basin and the Coriolis force, affects the formation, mean position and shape of the Alboran gyres (Heburn 

and La Violette, 1990). Thus, this will in turn affect mixing between surface and intermediate water masses in the 150 

Alboran Sea.  

3. Material and methods 

3.1 Sample collection 

This study is based on the multiproxy analysis of gravity core MD13-3462G (35°26.531ˈN, 2°31.073ˈW; 327 m 

depth; 926 cm long) recovered during the EUROFLEETS cruise MD194 Gateway ‘The Mediterranean-Atlantic 155 

Gateway Code: The Late Pleistocene Carbonate Mound Record‘ on board of the R/V Marion-Dufresne II (Van Rooij 

et al., 2013). Cores were split frozen and sedimentary facies descriptions were made at the University of Fribourg 

prior to sampling. These descriptions include the detailed investigation of texture, grain-size and colour of the matrix 

sediment, together with the identification and assessment of the preservation state of major macrofaunal components 

(Fig. 3). All data was plotted using the ggplot2 package for R (Wickham, 2016; R Core Team, 2018).160 

3.2 Macrofaunal quantification 

X-ray Computed Tomography (CT) imaging was carried out on whole-round sections using a Siemens Somatom 

Definition AS64 at the Institute of Forensic Sciences at the University of Bern (Switzerland). Core sections were 

scanned using an X-ray source operating at 120 kV. The images were reconstructed with a slice thickness of 0.6 mm 

taking into account an increment of 0.3 mm. The pixel resolution of the slices is 0.3 mm. The Avizo 9.4 software was 165 

used to visualize, segment and quantify the volumes of the main macrofaunal components (coral, bryozoan and 

bivalve/brachiopod fragments). Prior to segmentation, images were filtered to remove noise in the matrix, using a 

non-local means filter. Brachiopods and bivalves were segmented manually. Corals, matrix, pores and bryozoans 

were segmented through the combination of dual thresholding and watershed segmentation. Labelled fragments 

smaller than 5 voxels were filtered prior to quantification. The material statistics module was used to quantify the 170 

volume % of faunal fragments per slice and the same volume of interest was selected for each core section. 

3.3 Geochemical logging 

Geochemical logging was performed using the Itrax high-resolution X-ray fluorescence (XRF) core scanner on split 

cores at the Institute of Geological Sciences, University of Bern (Switzerland). Measurements were taken at 5 mm 

intervals using an integration time of 20 s at 30 kV and 45 mA. To counter potentially biased measurements linked to 175 

https://doi.org/10.5194/cp-2020-82
Preprint. Discussion started: 26 June 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

the uneven surface of CWC cores, such as the direct measurement of air or of CWC skeletons, a post treatment of the 

dataset was carried out. X-ray fluorescence values with Argon counts higher than 6000, representing the 

measurement of air and thereby more porous/cracked media not representative for changes in sediment composition, 

were removed from the final dataset. In this study, we use the Log10 normalized ratios (Gregory et al., 2019) Ti/Al 

and Si/Al as proxies for aeolian input, whilst the Log10 Zr/Al and Rb/Al are used as proxies for fluvial input. Indeed, 180 

titanium enrichment is considered a typical indicator of increased Saharan dust influence (Frigola et al., 2008; Itambi 

et al., 2009; Rodrigo-Gámiz et al., 2011), as aeolian deposits tend to concentrate heavy minerals that are rich in 

elements such as titanium or zirconium (Balsam et al., 1995; Itambi et al., 2009, Rodrigo-Gamíz et al., 2011). 

Silicates make up an important part of Saharan material, whilst they are rare in Alboran sediments (Caquineau et al., 

2002; Masqué et al., 2003). Thus, in the same way as for titanium, enrichment in silica can be used as a proxy for 185 

increased aeolian input originating from the Sahara (Rodrigo-Gámiz et al., 2011; Feenstra, 2020). Since rubidium is 

common in aluminosilicate minerals contained in fluvial material, the Rb/Al ratio is used as an indicator of terrestrial 

run-off in the western Mediterranean (Calvert and Pedersen, 2007; Martinez-Ruiz et al., 2015; Feenstra, 2020). 

Though zirconium is generally considered as a proxy for aeolian input for the same reasons as Titanium (Rodrigo-

Gámiz et al., 2011), it has been shown that sediments originating from major Moroccan rivers are considerably 190 

enriched in zirconium (Stanley et al., 1975). We hence use the Zr/Al and Rb/Al ratios as regional proxies for fluvial 

input. 

3.4 Grain-size analysis and organic geochemistry 

Grain-size of the siliciclastic fraction was analysed using the Malvern Mastersizer 3000 at the Department of 

Geology, Ghent University (Belgium). The core was sampled with a small spoon (1 cm
3
) every 5 cm. Large clasts 195 

(>1 cm), such as coral or bryozoan fragments, were removed prior to analysis. Samples were placed in 35 % H2O2 to 

remove organic matter and boiled until the reaction ended. Following this first step, samples were boiled in 10 % 

HCl for 2 minutes to dissolve CaCO3. Prior to measurement, samples were placed in 2 % sodium polymetaphosphate 

and boiled to assure complete disaggregation. Any remaining particle larger than 2 mm was sieved out before 

measurement. Eighty seven size classes were measured (from 0.01 to 2000 µm). Each sample was measured three 200 

times and results were then averaged. Mean grain-size of the siliciclastic fraction   ̅̅̅̅  (Folk and Ward, 1957) was 

calculated on the entire dataset with the Rysgran package for R (Gilbert et al., 2015; R Core Team, 2018). The 

sortable silt mean size   ̅̅ ̅, as defined by McCave et al. (1995; i.e. the mean of the 10-63 µm grain size range), was 

also calculated following the same procedure. Furthermore, following McCave and Hall (2006), the percentage of 

sortable silt (SS%) in the total <63 µm fraction was calculated. This percentage, together with the sortable silt mean 205 

size, was used as a proxy for bottom current velocity (McCave and Hall, 2006; Toucanne et al., 2012). It has to be 

mentioned that the use of   ̅̅ ̅ as a proxy for bottom current velocity on cores recovered from CWC mounds may be 

biased (e.g. Eisele et al., 2011). Indeed, the baffling effect of coral framework can locally reduce bottom current 

velocity and favour the deposition of fine sediments (Huvenne et al., 2009; Titschack et al., 2009; Fentimen et al., 

2020), thus leading to an underestimation of   ̅̅ ̅ during periods with high CWC content. Because of this, only relative 210 

increases in   ̅̅ ̅ are considered in combination with results obtained from other proxies.  
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Total Organic Carbon (TOC, weight%) and Mineral Carbon (MinC, weight%) contents were determined on matrix 

sediments every 10 cm using the Rock-Eval6 technique at the laboratory of Sediment Geochemistry at the University 

of Lausanne (Fantasia et al., 2019). Following Jiang et al. (2017), the percentage of carbonates was calculated as 215 

CaCO3(%) = 7.976   MinC. The RockEval6 technique produces an Oxygen and Hydrogen index, respectively 

corresponding to the quantity of CO2 relative to TOC and the quantity of pyrolyzable organic compounds relative to 

TOC (Fantasia et al., 2019). These two indices give an indication about the origin of the organic matter present in the 

samples (Van Krevelen, 1993).  

3.5 Microfaunal and macrofaunal investigations 220 

The core was sampled (sliced) every 10 cm for micropalaeontological analysis. Samples were weighed dry, washed 

through a 63 µm mesh sieve and dried at 30 °C. Each fraction was then dry sieved through a series of 63, 125 and 

2000 µm mesh sieves and weighed. A target number of 300 benthic foraminifera were identified from the fraction 

larger than 125 µm for each sample. If the residue contained more than 300 specimens, it was split using a dry 

microsplitter. Relative abundances (percentages) of benthic species were calculated from the total benthic 225 

foraminiferal assemblage. The benthic foraminiferal density was calculated by dividing the total number of 

foraminifera of a given sample by the sample fraction‘s weight. The diversity Shannon index (H‘) was computed 

using the PRIMER6 software (Clarke and Gorley, 2006).  

 

Samples prepared for micropaleontological analysis were further used to identify bryozoan species/genera at the 230 

Department of Biological, Geological and Environmental Sciences, University of Catania (Italy) on the 125 µm to 2 

mm and >2 mm sized fractions. Key intervals with high bryozoan content, previously identified by CT imagery, 

were selected. Dominant scleractinian corals and main brachiopod and bivalve species were identified at the lowest 

taxonomic level possible on the 2 mm sized fraction at the Department of Geosciences, University of Fribourg 

(Switzerland).  235 

3.6 Oxygen and Carbon stable isotope analysis 

Stable oxygen and carbon isotope compositions were measured on 5 to 12 specimens of the planktonic foraminifera 

Globigerina bulloides and the benthic foraminifera Cibicides lobatulus from the size fraction 212-250 µm in order to 

prevent any ontogenic effect on the measurements (Schiebel and Hemleben, 2017). The specimens were first cleaned 

three times with distilled water in an ultrasonic bath for 2 seconds. The measurements were then made using a 240 

Thermo Fisher Scientific GasBench II connected to a Thermo Finnigan Delta Plus XL isotope ratio mass 

spectrometer at the Stable Isotope Laboratory of the University of Lausanne (Switzerland) according to the method 

adapted from Spötl and Vennemann (2003). Results are reported in the conventional -values in permil (‰) relative 

to the Vienna Pee Dee Belemnite (VPDB) standard. Analytical standard deviations (1σ) average 0.04 ‰ for δ
13

C and 

0.06 ‰ for δ
18

O values based on 8 replicate analyses of standards in each sequence of 40 samples. 245 
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3.7 Radiometric dating 

Radiocarbon dating was performed on benthic foraminifera from 3 samples from the upper first meter of core MD13-

3462G at the Laboratory of Ion Beam Physics, ETH Zürich, Switzerland (Table 1). The epibenthic foraminifera 

species Discanomalina coronata, Cibicides lobatulus and Cibicides refulgens were picked in order to obtain between 

4 and 10 mg of pure carbonate. The samples were first dissolved in phosphoric acid. The resulting extracted CO2 was 250 

then converted to graphite and measured by Accelerator Mass Spectrometry (AMS) technique using the MICADAS 

dedicated instrument (Synal et al., 2007). Results were corrected for 
13

C and calibrated using the Marine13 

calibration curve (Reimer et al., 2013) and the software OxCal v4.2.4 (Ramsey, 2017). A reservoir age of 390 ± 80 

years was applied to all ages (Siani et al., 2000). 

 255 

Uranium-series dating was carried out on 10 CWC fragments (D. pertusum and M. oculata) using a multicollector 

inductively coupled plasma source mass spectrometer MC-ICPMS (Thermo Fisher Scientific Neptune
plus

) coupled 

with a dissolver (Aridus I) at the Institute of Environmental Physics, Heidelberg University (Table 2). In order to 

constrain the chronostratigraphy of the core, well-preserved coral fragments were selected at the upper and lower 

boundaries of coral-rich units. These were identified based on visual core descriptions and CT-analysis (macrofaunal 260 

quantification; Fig. 3). Coral fragments were physically cleaned with a Dremel
®

 drill tool and by sand blasting, and 

further chemically cleaned using a weak acid leaching prior to measurements. The detailed sample protocol is 

described by Frank et al. (2004), while spectrometry and chemical U and Th extraction and purification followed 

Wefing et al. (2017). Uranium-series coral ages were used to calculate mound aggradation rates. 

4. Results 265 

4.1 Chronostratigraphy 

The chronostratigraphy of core MD13-3462G is based on the combination of the coral ages (U-series dating), the 

planktonic and benthic stable oxygen isotope records, and the foraminiferal radiocarbon ages for the top first meter 

of the core (Fig. 3). Coral ages have been widely used to define the chronology of cores recovered from coral 

mounds. This approach provides satisfying results although age reversals down core have to be taken into account 270 

(e.g. Rüggeberg et al., 2007; Frank et al., 2009; Matos et al., 2017). Indeed, reefs are fragile structures and can 

collapse, topple and fragment through the action of bioerosion, strong bottom currents, and gravity-driven processes, 

resulting in transport and redeposition of coral fragments (Beuck et al., 2005; Dorschel et al., 2007; White et al., 

2007). In contrast, constructing a continuous age model based on stable isotope records is generally considered 

untrustworthy for cores collected from coral mounds since sedimentation is intermittent (Dorschel et al., 2005). 275 

However, coral ages at the upper and lower boundaries of coral build-up phases in core MD13-3462G (e.g. at 390 

and 507 cm depth) correspond to changes in the stable oxygen isotope records (Fig. 3), which in turn match the 

changes between Marine Isotope Stages (MIS; Lisiecki and Raymo, 2005). As such, the stable oxygen isotope 

records can, in the case of core MD13-3462G and in conjunction with coral ages, indicate important stratigraphic 
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boundaries (Fig. 3). This is particularly relevant during times when CWCs did not grow and hence cannot serve to 280 

construct a timeframe.  

 

The coral ages indicate that core MD13-3462G extends approximately from 300 ka BP (Marine Isotope Stage 9) to 

the Holocene (Fig. 3, Table 2). The stratigraphic boundaries from the base of the core to ca. 600 cm depth were 

defined based on the coral ages as planktonic stable oxygen isotope compositions show little variation. The 285 

boundaries of MIS 8 are the most poorly defined (Fig. 3). Due to difficulties to define precisely the stratigraphy of 

this section of the core, it will not be considered in detail during this study. In contrast, the planktonic and benthic 

δ
18

O values and the coral ages do constrain the stratigraphic boundaries from MIS 6 to MIS 1 (Fig. 3). Low 

planktonic and benthic δ
18

O values correspond to interglacial periods, whilst high planktonic and benthic δ
18

O values 

correspond to the last glacial periods of MIS 6, 2 and 2 (Fig. 3). These boundaries are confirmed by the coral and 290 

foraminiferal ages (Fig. 3; Tables 1 and 2). Highest planktonic and benthic δ
18

O values (3.5 and 4 ‰) correspond to 

MIS 4 whilst average planktonic and benthic δ
18

O values between 2 and 3 ‰ correspond to MIS 3. 

4.2 Sediment characterization 

The sediment in core MD13-3462G consists mostly of macrofaunal remains (essentially corals and bryozoans) 

surrounded by a clay- to silt-sized carbonate/siliciclastic matrix. No important variation in the matrix sediment is 295 

observed throughout the core. Carbonate content varies from ca. 10 to 86 %, whilst average values generally range 

between 40 and 60 % (Fig. 4). Total organic carbon content in the sediment varies between 0.16 and 1.13 wt% (Fig. 

4). The highest TOC value is measured during late MIS 3 (1.13 wt%), whilst the lowest is recorded during MIS 8 

(0.16 wt%; Fig. 4). The most important shifts to higher TOC values are observed during MIS 5, MIS 3 and at the 

transition between MIS 2 and MIS 1 (Fig. 4). High TOC values correspond to interglacials, whilst low values 300 

correspond to glacials (Fig. 4). The sediment samples are further characterized by high Oxygen index values (> 200 

mg C02/g TOC; Supplementary data), indicating that the organic matter is oxidized and of essentially terrestrial 

origin (Espitalié et al., 1985).  

 

The mean grain size of the siliciclastic fraction (  ̅̅̅̅ ) varies between ca. 6 and 14 µm (Fig. 4), whilst   ̅̅ ̅ varies 305 

between ca. 19 and ca. 26 µm (Fig. 4). Trends in   ̅̅ ̅ follow those of   ̅̅̅̅  (Fig. 4). Overall, a decrease in   ̅̅ ̅ and   ̅̅̅̅  is 

associated to intervals marking the transitions from interglacial to glacial periods (Fig. 4). Conversely, an increasing 

trend is observed from ca. 550 to ca. 375 cm depth, corresponding to the passage from the later phases of MIS 6 to 

the end of MIS 5 (Fig. 4). This trend is mirrored in   ̅̅̅̅  (Fig. 4). A sharp decrease in   ̅̅ ̅ and   ̅̅̅̅  marks the passage 

from MIS 3 to MIS 2 and the later phase of MIS 2 (Fig. 4). The percentage of sortable silt (SS%) increases with   ̅̅ ̅ 310 

(Fig. 5). As discussed by McCave and Hall (2006) and McCave et al. (2017), the straight-line relationship (slope of 

ca. 0.125 µm/% and an intercept at 0% of ca. 17.5 µm) between   ̅̅ ̅ and SS% is indicative of a sorting process 

induced by bottom currents (Fig. 5).  
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4.3 Macrofauna 

The major macrofaunal fragments present in the core are scleractinian corals, bryozoans, brachiopods and bivalves 315 

(Fig. 3; Fig. 6). Sea urchins, gastropods, serpulids and gorgonian fragments are more sporadically distributed. The 

dominant coral species in the core is the scleractinian D. pertusum. In the upper 20 cm, D. pertusum is replaced by 

M. oculata (Fig. 3; Fig. 6). A third and solitary species, Desmophyllum dianthus, is scarcely distributed (Fig. 3). 

High CWC content is observed during interglacial periods, whilst low content characterizes glacial periods (Fig. 3). 

During MIS 3 coral content shows a more staggered distribution, with a range of values from less than 10 vol% to ca. 320 

27 vol% (Fig. 3). 

 

In total 23 genera of bryozoans were identified. Buskea dichotoma is by far the dominant bryozoan species (Fig. 6). 

Accessory species/genera are mainly represented by Reteporella sparteli, Tubuliporina sp. and Palmiskenea sp. 

Bryozoan content varies in general between 10 and 20 vol% (Fig. 3). Very high content is, however, observed during 325 

MIS 2, reaching near to 70 vol%. The fragments, although delicate and fragile, are well preserved, large sized and 

unworn (Fig. 6). Bryozoans are absent during most of MIS 5. This absence corresponds to the interval when coral 

content is the most important (Fig. 3). Conversely, the maximum abundance of bryozoans during MIS 2 correlates to 

a minimum in coral content (Fig. 3). 

 330 

Brachiopods are mainly represented by the co-occurrence of the species Gryphus vitreus and Terebratulina retusa 

(Fig. 6). These two brachiopods are regularly associated to the bivalve Bathyarca pectunculoides (Fig. 6). These 

three inverterbrates have been formerly reported from Mediterranean CWC environments. Gryphus vitreus and 

Terebratulina retusa are also recorded from Pleistocene CWC deposits from Rhodes, Greece (Bromley, 2005), 

whilst Bathyarca pectunculoides was found at the Santa Maria di Leuca CWC province (Mastrototaro et al., 2010; 335 

Negri and Corselli, 2016). Gryphus vitreus was also found associated to ―white corals‖ between 235 and 255 m 

depth off the coast of the Hyères Islands, France (Emig and Arnaud, 1988). Although being fragile, the shells are 

well preserved (Fig. 6). The brachiopod/bivalves concentrate as layers; hence they demonstrate a non-continuous 

distribution (Fig. 3 and 6). They reach their highest abundance during glacial periods, in particular at the end of MIS 

3 (30 vol% at 80 cm). Brachiopods and bivalves are completely absent during the last two interglacial periods (Fig. 340 

3).  

4.4 Benthic foraminiferal assemblages  

Shannon diversity ranges between ca. 2.8 at 652 cm and 3.6 at 782 cm (Fig. 7). High Shannon diversity values 

between 3.4 and 3.6 are recorded during interglacial periods (Fig. 7). The lowest Shannon diversity values (between 

2.8 and 3.0) are associated to glacial periods (Fig. 7). A total number of 166 benthic foraminifera species were 345 

recognized (Annex 1). The most abundant species are Bolivina spathulata, Bulimina marginata, Bulimina striata, 

Cassidulina laevigata, Cibicides lobatulus, Discanomalina coronata, Gavelinopsis praegeri, Globocassidulina 

subglobosa, Hyalinea balthica, Miliolinella subrotunda, Trifarina angulosa and Uvigerina mediterranea.  
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The three Buliminid species B. aculeata, B. marginata and B. striata demonstrate the same distribution trends and 350 

were thus grouped together as Bulimina spp. All Miliolids were grouped together for the same reason. The species 

M. subrotunda makes up more than half of the total abundance of the Miliolid group with an average contribution of 

ca. 53.4 %. The abundances of all important species are given in Figure 7. The opportunistic infaunal Bulimina spp. 

show maximum abundances during interglacial periods (ca. 18 %) and minimum abundances during glacial periods 

(ca. 2 %; Fig. 7). Uvigerina mediterranea follows a similar distribution to Buliminids, with peak abundances 355 

corresponding to interglacial periods (Fig. 7). Relative to Bulimina spp., U. mediterranea, G. subglobosa and B. 

spathulata, the infaunal T. angulosa and the epifaunal D. coronata are the least abundant during the last two 

interglacials (between ca. 1 and 5 %), whilst they are the most abundant during glacial periods, with peak 

abundances reached during MIS 4 for D. coronata (ca. 30 %; Fig. 7). Abundances of Miliolids (5-22 %), C. 

lobatulus (3-17 %) and C. laevigata (3-17 %) are relatively high throughout the entire core (Fig. 7); although 360 

Miliolids show higher abundances during glacials (ca. 20 %). The highest numbers of C. laevigata are recorded 

during glacial periods (ca. 20 %), whilst minimum abundances occur during interglacials (3 % during MIS 5). The 

epifaunal G. praegeri is homogeneously distributed, in contrast to H. balthica that first appears in the core at the 

onset of MIS 5, reaching maximum abundances during MIS 2 (ca. 11 %; Fig. 7). 

4.5 Stable carbon isotopes 365 

The range of δ
13

C values of the planktonic G. bulloides is between -2.2 ‰ at 12 cm and -0.5 ‰ at 292 cm, whereas 

that for the benthic C. lobatulus is between 0.9 ‰ at 872 cm and 1.8 ‰ at 362 cm (Fig. 4). The planktonic δ
13

C 

record has more variability compared to the benthic δ
13

C record (Fig. 4). During MIS 6, the benthic δ
13

C is relatively 

high (ca. 1.5 ‰), whilst the planktonic δ
13

C record fluctuates between -0.6 ‰ and -1.5 ‰. A decrease in the 

planktonic δ
13

C record (from -0.7 to -1.5 ‰) marks the middle of MIS 5. In contrast, the benthic δ
13

C remains stable 370 

and low (ca. 1.2 ‰) throughout MIS 5 (Fig. 4). The passage from MIS 4 to MIS 3 is characterized by a shift from the 

low planktonic δ
13

C recorded during MIS 4 (-1.5 ‰) to higher planktonic δ
13

C (-0.5 ‰). Conversely, benthic δ
13

C 

values shift from high (1.8 ‰) to lower values (1.3 ‰). The passage from MIS 2 to MIS 1 is marked by a sharp 

decrease in planktonic and benthic δ
13

C (from -1.2 ‰ to -2.2 ‰ and from 1.8 ‰ to 1.0 ‰ respectively). The last two 

glacial intervals, in particular MIS 4, are marked by a stronger difference between benthic and planktonic δ
13

C 375 

values (Fig. 4). 

4.6 Elemental geochemistry 

The Ti/Al and Si/Al ratios follow the same general trend. Variations in Ti/Al and Si/Al ratios are more marked 

during MIS 7 and MIS 3, in comparison with the more stable values recorded during other periods. Maximum 

average Ti/Al and Si/Al values are reached during glacials, whereas interglacials record the lowest values (Fig. 8). 380 

The Zr/Al and Rb/Al ratios follow the same trend, whilst differing strongly from the Ti/Al and Si/Al records. The 

Zr/Al and Rb/Al ratios demonstrate overall low values throughout the core. However, higher Zr/Al and Rb/Al ratios 

are reached at the end of MIS 6, and during MIS 5 (ca. 400 cm) and MIS 3 (ca. 100 cm). In the same way as for 
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Ti/Al and Si/Al records, Zr/Al and Rb/Al ratios demonstrate an important variability during MIS 3, in comparison to 

other periods where the records are comparatively stable (Fig. 8).  385 

5. Discussion 

5.1 Environmental controls on coral proliferation during interglacial periods 

5.1.1 Humid continental conditions, fluvial discharge and increased food availability 

During interglacial periods, benthic foraminiferal assemblages are marked by high abundances of the infaunal 

Bulimina spp., U. mediterranea and B. spathulata. Several authors describe Bulimina spp. as characteristic for 390 

eutrophic and dysoxic environments (Phleger and Soutar, 1973; Lutze and Coulbourn, 1984; Jorissen, 1987; 

Schmiedl et al., 2000). In the Mediterranean Sea, they are dominant in the vicinity of the Po river delta in the North 

Adriatic Sea and close to the Rhône River delta (Jorissen, 1987; Mojtahid et al., 2009). The shallow infaunal U. 

mediterranea and the opportunistic B. spathulata are known to demonstrate a positive correlation with organic 

matter flux (De Rijk et al., 2000; Schmiedl et al., 2000; Fontanier et al., 2002; 2003; Drinia and Dermitzakis, 2010). 395 

Moreover, Bulimina spp. and U. mediterranea are reported to be able to feed on fresh but also more refractory 

organic matter (De Rijk et al., 2000; Koho et al., 2008; Dessandier et al., 2016). Based on these observations, the 

benthic foraminiferal assemblage during interglacials would support a high organic matter export to the seafloor. The 

overall higher TOC levels during interglacials confirm that the sediment during these periods was relatively enriched 

in organic matter in comparison to glacial periods (Fig. 4). High abundance of the shallow infaunal G. subglobosa 400 

has been linked to the deposition of fresh phytodetritus on the seafloor after bloom events (Gooday, 1993; 

Fariduddin and Loubere, 1997; Suhr et al., 2003; Sun et al., 2006). It is typically found in high energy (e.g. steep 

flanks, ridges) and well-oxygenated environments (Mackensen et al., 1995; Milker et al., 2009), and is a common 

taxon of the Alboran Platform and of CWC environments (Margreth et al., 2009; Milker et al., 2009; Spezzaferri et 

al., 2014). Mackensen et al. (1995) noted that G. subglobosa dominated in areas of the South Atlantic Ocean where 405 

the organic carbon flux did not exceed 1 g.cm
-2

yr
-1

. In contrast, in the Mediterranean Sea, B. marginata is restricted 

to sites with an organic carbon flux >2.5 g.cm
-2

yr
-1

, whilst B. aculeata is associated to a flux of 3 g.cm
-2

yr
-1

 (De Rijk 

et al., 2000). The last two interglacials (MIS 7 and MIS 5) are marked by an increased abundance of G. subglobosa 

at early stages followed by a general decline. Buliminids follow a converse trend, particularly during MIS 5, with 

lower abundances at early stages (Fig. 7). This suggests that conditions during the later stages of interglacials became 410 

increasingly eutrophic and in turn less oxygenated at the sediment/water interface, as the consumption of organic 

matter led to oxygen depletion. These more environmentally stressful conditions resulted in decreased foraminiferal 

diversity and a proliferation of opportunistic taxa (Fig. 7). Overall lower abundances of Miliolids, which are typically 

found in well-oxygenated environments (Murray, 2006), further confirm eutrophication coupled to lower 

oxygenation at the seafloor during interglacials, specifically towards the end of interglacials (Fig. 7). 415 
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Schmiedl et al. (2010) link the high abundance of U. mediterranea in the Aegean Sea to humid climatic conditions 

and increased river runoff. This observation is in agreement with overall increased fluvial and reduced aeolian input 

during interglacial periods at BRI, as evidenced by the Al-normalized elemental ratios (Fig. 8). Increased fluvial 

input has been widely linked in the eastern Mediterranean to more humid continental conditions during interglacial 420 

times in response to a northern shift of the African monsoon (e.g. Gasse, 2000; Gasse and Roberts, 2005; Osborne et 

al., 2008; Coulthard et al., 2013). In contrast, the Alboran Sea lies below the maximum Inter-Tropical Convergence 

Zone northward position and is sheltered by the Atlas Mountain chain (Rohling et al., 2002; Tuenter et al., 2003; 

Lavaysse et al., 2009). Modern-day observations show that rainfall over the northwest Atlas Mountains is generally 

associated to baroclinic activity over the North Atlantic (Knippertz et al., 2003; Braun et al., 2019). The south of the 425 

Atlas Mountains has one of the highest cyclonic activities in the Mediterranean borderlands, whilst the largest 

fraction of cyclones entering the Mediterranean Sea arrives from the Atlantic (Lionello et al., 2016). Pasquier et al. 

(2018) noticed that periods of increased input of organic matter from sediment-laden rivers occur during warm 

substages of the last 200 ky. These authors relate these pluvial events to negative North Atlantic Oscillation-like 

conditions (Pasquier et al., 2018). The East Melilla Coral Province is located 50 km away from the mouth of the 430 

Moulouya River which takes its source in the High Atlas Mountains (Snousi, 2004; Emelyanov and Shimkus, 2012; 

Tekken and Kropp, 2012). The basin of the Moulouya River covers approximately 54,000 km
2
, hence representing 

the largest river basin in Northwest Africa (Emelyanov and Shimkus, 2012; Tekken and Kropp, 2012). We propose 

that the influence of warm and moist Atlantic air masses during interglacial periods led to warmer and more humid 

conditions over Northwest Africa and torrential rain fall. This would have led to a strengthening of the Moulouya 435 

River‘s flow rate, hence triggering episodes of important terrestrial organic matter input at BRI. These events may 

have in turn caused eutrophication and oxygen depletion at the seafloor, compatible with the benthic foraminiferal 

assemblages. Dysoxic conditions during interglacial periods would have hampered coral proliferation, as suggested 

by the low mound aggradation rates (Fig. 9). However, dysoxic conditions may have been limited to the sediment, 

thus only affecting foraminiferal communities and not fully preventing colonial corals living above the sediment 440 

surface to develop. Such vertical decoupling between sediment and pelagic ecosystems has previously been observed 

in modern Norwegian CWC reefs (Wehrmann et al., 2009). Overall, high food availability triggered by increased 

fluvial discharge appears to be a decisive parameter governing coral proliferation at BRI.  

 

5.1.2 Enhanced surface and intermediate water mass mixing 445 

During interglacial periods, the high sea level and the increased evaporation in the Mediterranean leads to a more 

important inflow of low salinity MAW through the Strait of Gibraltar (Sierro et al., 2005). Thus, surface waters in 

the Alboran Sea are, in comparison to glacial periods, warmer and less dense. This is also noticed in the planktonic 

δ
18

O record (Fig. 3). The enhanced MAW flow during interglacials triggers stronger Western and Eastern Alboran 

Gyres, resulting in better mixing and downwelling. Knowing that the Banc des Provençaux and BRI are situated at 450 

relatively shallow water depths and in the path of the eastward circulating branch/Eastern Alboran Gyre (Lanoix, 

1974; Viúdez and Tintoré, 1995; Fig. 10), and that mixing between surface and intermediate water masses is 
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documented to occur down to ca. 300 m water depth (Heburn and La Violette, 1990), it is conceivable that the corals 

living currently at 327 m depth were bathed by, or situated at the limit of mixing between surface and intermediate 

water masses during interglacial periods. Higher input of MAW into the Alboran Sea would lead to an increased 455 

contribution of surface waters to intermediate water masses (ShW) and a deepening of the pycnocline. This would 

promote the formation of internal waves and increase turbulence at the seafloor of BRI, as suggested by the slightly 

higher   ̅̅ ̅ values during interglacials (Fig. 4 and 5), and would have favoured coral proliferation by increasing lateral 

nutrient supply (Fig. 10). The slight offset between planktonic and benthic δ
13

C records towards the end of MIS 7 

and MIS 5 indicate that water masses were becoming more stratified towards the end of interglacials and that the 460 

contribution of MAW to intermediate water masses was hence possibly decreasing. Maximum Bulimina spp. 

abundance, minimum G. subglobosa abundance, and decreasing benthic foraminiferal diversity may suggest that 

reduced mixing, in concomitance with important fluvial discharge (section 6.1.1) led to oxygen depletion at the 

seafloor at the transition between interglacial and glacial periods. Severe oxygen depletion may explain the decline 

of corals at the transition from interglacial to glacial periods. 465 

5.1.3 Variability of cold-water coral mound formation between interglacial periods 

Highest coral content is reached during MIS 5 and corresponds to a maximum in Buliminid abundance. The Al-

normalized elemental ratios suggest that aeolian input during MIS 5 was relatively stable, whilst fluvial input would 

have increased throughout (Fig. 8). These stable conditions would have favoured a long-lasting coral proliferation 

dominated by the scleractinian D. pertusum (Fig. 3). Marine Isotope Stage 9 and 7 are also dominated by D. 470 

pertusum. Although MIS 7 is poorly constrained, Al-normalized elemental ratios would indicate that this time period 

was more unstable than the previous interglacial period (Fig. 8). The late Holocene is marked by a decrease in coral 

abundance and a dominance of M. oculata over D. pertusum. The coral fragment at the top of core MD13-3462G has 

an age of 6.3 ka. Fink et al. (2013) obtained ages from surface coral fragments at BRI that were generally between 

2.7 and 3.1 ka, whilst Stalder et al. (2015) reported an age of 5.4 ka for a surface coral fragment sampled at BRI. 475 

Similar ages of between 3.5 and 5.8 ka were obtained on surface coral fragments at the Western Melilla Coral 

Province (Wang et al. 2019). Dominance of the coral M. oculata during the Late Holocene was also observed at BRI 

by Stalder et al. (2015), whilst Wienberg (2019) reported that M. oculata already became the dominant coral species 

during the mid-Holocene. Previous observations suggest that M. oculata is more tolerant to environmental stress than 

D. pertusum (e.g. Wienberg et al., 2009; Stalder et al., 2015). Thus, the dominance of M. oculata at the top of the 480 

core would indicate that conditions during the late Holocene were becoming increasingly unsuitable for coral 

proliferation, particularly for D. pertusum. This is consistent with modern-day seafloor observations that report a 

near-absence of CWCs at BRI (Hebbeln et al., 2019). These combined results point to unfavourable conditions for 

coral proliferation during the late Holocene, as suggested by Fink et al. (2013), Stalder et al. (2015; 2018) and Wang 

et al. (2019). The recent decline of CWCs at the Eastern and Western Melilla Coral Provinces may be linked to the 485 

establishment of more arid conditions over North Africa ca. 4 ka ago (Gasse, 2000 and references therein; Shanahan 

et al., 2015). The fluctuations in coral and bryozoan abundances between the different interglacial periods may be 

caused by the influence of alternating dry and humid conditions. 
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5.2 Environmental conditions during glacial periods 

5.2.1 Arid continental conditions and reduced bottom currents  490 

At the exception of MIS 8, for which the boundaries are poorly defined, glacial periods are marked by a change in 

macrofaunal composition with lower coral and higher bryozoan content in comparison to interglacial periods. Higher 

bryozoan content during glacials at BRI is in tune with observations made at the Great Australian Bight, where lower 

temperatures, lower sea level stand, and increased upwelling probably promoted bryozoan proliferation during 

glacial periods (James et al., 2000; Holbourn et al., 2002). Conversely, higher temperatures and downwelling during 495 

interglacials halted bryozoan extension at the Great Australian Bight (James et al., 2000; Holbourn et al., 2002). 

Rigid erect branching bryozoans such as B. dichotoma are known to be fragile, and hence to prefer low energy 

environments, being unable to withstand strong bottom currents and turbulence (Scholz and Hillmer, 1995; Bjerager 

and Surlyk, 2007). Eutrophic environments dominated by infaunal benthic foraminifera (e.g. Bulimina spp.) are 

unfavourable for erect bryozoans, the high concentration of suspended food particles clogging up their feeding 500 

apparatus (Holbourn et al., 2002). Low   ̅̅ ̅ values and reduced TOC content in the sediment confirm that glacial 

periods were marked by weak bottom current velocities and organic matter flux (Fig. 4 and 5). The presence of 

brachiopod/bivalve layers dominated by the brachiopod Gryphus vitreus also characterizes the glacial macrofauna 

(Fig. 3). This species is found between 160 and 250 m depth along the Mediterranean continental margin and thrives 

in areas dominated by moderate bottom currents (Emig and Arnaud, 1988). Thus, this species‘ co-occurrence with 505 

bryozoans confirms that variations in sea level stand, hydrodynamics and trophic conditions govern the change in 

macrofaunal dominance at BRI. Low organic matter flux during glacial periods has been related to predominantly 

arid conditions over North Africa, in association with a weak North African monsoon (Gasse, 2000; Sierro et al., 

2005). Such arid conditions led to the complete or severe desiccation of major African lakes during the last glacial, 

such as Lake Victoria (Talbot and Livingstone, 1989; Johnson, 1996). High Ti/Al and Si/Al elemental ratios would 510 

indicate that aeolian input prevailed during glacial periods at BRI (at the exception of MIS 3, section 6.4), hence 

confirming that continental conditions were arid at these times (Fig. 8 and 9).  

 

The reduced precipitation and retreat of vegetation would have led to a dwindling of fluvial discharge at BRI, as 

evidenced by generally low Zr/Al and Rb/Al elemental ratios (Fig. 8). Glacial benthic foraminiferal assemblages are 515 

characterized by the dominance of large epibenthic suspension feeding foraminifera, such as C. lobatulus and D. 

coronata, together with the infaunal C. laevigata (Fig. 7). This follows observations made by Stalder et al. (2018) 

who noticed increased abundances of Cibicides spp., D. coronata and C. laevigata during glacial periods at BRI. 

These species share a preference for high quality fresh marine organic matter (De Rijk et al., 2000; Milker et al., 

2009, Stalder et al., 2018). Cibicides lobatulus and D. coronata prefer oxygen-rich bottom waters (Linke and Lutze; 520 

1993; Margreth et al., 2009), whilst following Milker et al. (2009), high abundances of C. laevigata could be related 

to the presence of fine grained material in the western Mediterranean. Increased abundance of C. laevigata matches 

minimum   ̅̅̅̅  values, thus confirming this species‘ affinity for fine grained glacial material (Fig. 4). In the Arctic 

basins and Norwegian-Greenland Sea, the dominance of the epibenthic Cibicides wuellerstorfi (a relative of C. 
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lobatulus) reflects a relative low flux of organic matter (Linke and Lutze; 1993). This species tolerates vertical flux 525 

rates <2 g.cm
-2

.yr
-1

 (Altenbach, 1989). The dominance of C. lobatulus, D. coronata, C. laevigata and Miliolids 

would thus indicate that the seafloor during glacial periods received less but higher quality organic matter and 

became more oxygenated in response to the stronger influence of intermediate and deep water masses (Fig. 10). 

These observations suggest that more arid conditions during glacial periods led to a shift from a more fluvial to a 

more marine influenced environment (Fig. 10). We propose that weaker but comparatively fresher organic matter 530 

input favoured the development of the bryozoan B. dichotoma. This assumption is supported by experimental 

observations demonstrating how erect bryozoans feed essentially on diatoms and that suspension feeding 

foraminifera use the same food sources (Winston, 1977; 1981; Best and Thorpe, 1994; Goldstein, 1999). Lower 

nutrient input appears in contrast to have been detrimental for coral proliferation but would not have led to their 

complete disappearance (Fig. 3 and 10). It can be hypothesized that there may exist a threshold in the quality and 535 

quantity of organic matter determining which of D. pertusum or B. dichotoma dominates the benthic environment at 

BRI. 

5.2.2 Increased stratification and deep water overturning 

As highlighted previously, the dominant macrofauna and low   ̅̅ ̅ values (Fig. 3, 4 and 5) during glacial intervals at 

BRI indicate weaker bottom currents. Wang et al. (2019) relate low off mound   ̅̅̅̅  and high benthic foraminiferal 540 

δ
13

C values at BRI during glacials to a dominant influence of MAW coinciding with a low sea level stand. However, 

whilst the benthic foraminiferal δ
13

C values from core MD13-3462G are indeed relatively high during glacial 

periods, the planktonic foraminiferal δ
13

C values do not follow the same trend (Fig. 4). The decoupling between the 

planktonic and benthic δ
13

C records during the two last glacial periods, noticeably during MIS 4, suggests that water 

mass stratification was greater than during interglacial periods and that the seafloor was not under the direct 545 

influence of surface MAW. During glacial periods, the flow of MAW was reduced due to lower sea level and the 

reduced evaporation over the Mediterranean (Sierro et al., 2005). This would have reduced the contribution of MAW 

to ShW and weakened Western and Eastern Alboran Gyres, which would have in turn led to less mixing between 

surface and intermediate water masses, whilst conversely increasing stratification.  

 550 

Modern observations show that recently formed dense waters do not necessarily reach the deep western 

Mediterranean but may, in contrast, be located at intermediate water depths, above 1500 m depth (Sparnocchia et al., 

1995; Millot, 1999; Ercilla et al., 2016). Ercilla et al. (2016) further exposed that WMDW can be identified at depths 

shallower than 500 m depth along the Moroccan margin and that it contributes to the overlying ShW, whilst deep 

water overturning and ventilation peaked during MIS 2 (Cacho et al., 2006; Toucanne et al., 2012). Increased 555 

oxygenation of the seafloor, as evidenced by the benthic foraminiferal assemblage (Fig. 7), may suggest that the 

contribution of well-ventilated deep and intermediate water masses at BRI was more important during glacials than 

during interglacials (Fig. 10). The physical shape of BRI possibly plays a role in the rise of deep waters during 

glacial periods. In addition, the heavier benthic C-isotope record and the abundance of fresh organic matter feeding 

foraminifera (C. lobatulus and D. coronata) during glacial periods could indicate that these waters were also 560 
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nutrient-rich. Although stratification between surface and intermediate water masses was greater during glacials, the 

stronger flow of well-ventilated WMDW at BRI would explain the higher oxygen availability at the seafloor. Overall 

during glacial periods, and in particular during the LGM, enhanced contribution of nutrient-rich and well-ventilated 

WDMW to overlying ShW, coupled to reduced fluvial input and turbulence, would have promoted bryozoan 

proliferation (Fig. 10). However, such environmental conditions would be detrimental for coral proliferation (Fig. 565 

10).  

5.2.3 Fluctuating environmental conditions during the last glacial period 

The benthic and planktonic foraminifera δ
18

O and δ
13

C values indicate that environmental conditions were 

particularly unstable during the last glacial period, as suggested by previous studies (Cacho et al., 2000; Martrat et 

al., 2004; Pérez-Folgado et al., 2004; Cacho et al., 2006; Bout-Roumazeilles et al., 2007). The last glacial shows a 570 

strong variability in macrofaunal and benthic foraminiferal assemblages. Maximum coral content is reached during 

MIS 3 (Fig. 3). This increased coral content is associated to higher numbers of G. subglobosa and C. laevigata, 

together with phases of higher Zr/Al and Rb/Al elemental ratios (Fig. 7 and 8). These observations suggest that 

corals and the benthic foraminiferal community positively responded to short phases of increased surface 

productivity related to important continental runoff during MIS 3. This is supported by observations made by 575 

Rogerson et al. (2018), who documented more humid conditions during MIS 3 in comparison to the more arid MIS 4 

and 2. Humid conditions would hence have promoted coral proliferation through increased fluvial input at BRI, in 

the same way as during interglacial periods (section 6.1). Nevertheless, the dominance of G. subglobosa coupled to 

the absence of Bulimina spp. and U. mediterranea suggests that conditions were less eutrophic than during peak 

interglacial periods and that the organic matter reaching the seafloor may have been less degraded.  580 

 

At BRI, high planktonic foraminiferal δ
18

O values during the last glacial are associated with increased Ti/Al and 

Si/Al elemental ratios (Fig. 8). There is evidence that during times of increased aridity, enhanced African winds blew 

north towards the Alboran Sea (Magri and Parra, 2002; Bout-Roumazeilles et al., 2007). During Heinrich Event 1, 

the existence of a steppe/semi-desertic flora around the Alboran borderlands points to cold and dry climatic 585 

conditions (Combourieu Nebout et al. 2009). The association of high Ti/Al and Si/Al ratios with high planktonic 

foraminiferal δ
18

O values confirms that increased aridity on land coupled to strong winds were concomitant with 

lower sea surface temperatures at BRI (Fig. 8). The arid continental conditions during these particularly cold spells 

would have led to reduced continental runoff. This could in turn explain the overall dwindling of coral communities 

during these cold events (Fig. 3). Cacho et al. (1999) and Martrat et al. (2004) showed that sea surface temperature 590 

minima matched higher planktonic G. bulloides δ
18

O values in the Alboran Sea during the last glacial. Moreover, 

these sea surface temperature minima are concurrent with North Atlantic Heinrich Events, i.e. the deposition of ice-

rafted detritus from massive iceberg discharges during some of the colder stadials (Heinrich, 1988; Bond et al., 

1992). Ice-rafted detritus layers were observed as far south as the Portuguese margin (Lebreiro et al., 1996; Bard et 

al., 2000; Schönfeld and Zahn, 2000), the Gulf of Cádiz (Llave et al., 2006; Toucanne et al., 2007) and the Moroccan 595 

margin (Kudras and Thiede, 1970). Rapidly decreasing sea surface temperatures were also associated to North 
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Atlantic Heinrich events of the Bermuda Rise (Sachs and Lehman, 1999) and in the Alboran Sea (Cacho et al., 

1999). Moreover, based on palynological and mineralogical evidence, Bout-Roumazeilles et al. (2007) revealed an 

intensification of wind, dust erosion and transport toward the Alboran Sea in provenance of western Morocco during 

North Atlantic cold events. Based on these observations, we tentatively suggest that the dwindling of coral 600 

communities during the last glacial period may also be linked to the inflow of Atlantic glacial freshwater during 

Atlantic cold events. More precise investigations are however needed to assert this relationship.  

5.3 Interglacial-glacial transition phases 

The western Mediterranean is marked by abrupt interglacial-glacial transitions (Martrat et al. 2004). Benthic 

foraminiferal assemblages and   ̅̅ ̅ would confirm that the environment at BRI also experienced such abrupt 605 

transitions. Indeed, the interglacial-glacial transitions are characterized by increased   ̅̅ ̅ values and T. angulosa 

abundances (Fig. 3 and 7). Trifarina angulosa is typical for current-swept areas and can withstand permanent 

winnowing (Mackensen et al., 1995; Schönfeld, 2002; Margreth et al., 2009). These results suggest that transition 

phases between interglacial and glacial periods were characterized by winnowing at the seafloor. In contrast, benthic 

foraminiferal assemblages and   ̅̅ ̅ would indicate that transition phases from glacial to interglacial periods were not 610 

marked by winnowing or erosional events. These observations differ from the ones drawn from Northeast Atlantic 

mounds, where winnowing and mass wasting are considered as precursor events for the re-initiation of coral 

proliferation during interglacials (Dorschel et al., 2005; Rüggeberg et al., 2007). Thus, the environmental 

mechanisms triggering the reset of coral proliferation at the onset of interglacials at BRI appear to be different from 

the Northeast Atlantic. The re-establishment of coral proliferation during the last two interglacials at BRI is 615 

concomitant with an increase in Buliminid abundance. This increase in Buliminid abundance is coupled to higher 

Rb/Al values at the transition between MIS 6 and 5 (Fig. 7, 8). These observations confirm that the recovery of coral 

proliferation at BRI is tightly linked to an increase in river runoff, which in turn reflects more humid continental 

conditions. A similar process has been reported from the Viosca Knoll area, where the dispersal of terrestrial organic 

matter by the Mississippi River triggers an increase in primary productivity, providing nutrients for coral 620 

communities (Mienis et al., 2012). As such, water mass rearrangements appear to be of secondary importance, whilst 

the rapid increase in fluvial discharge would be the primary factor triggering coral proliferation at BRI.  

5.4 Differences between Southeast Alboran and North Atlantic coral mound formation 

5.4.1 Coral proliferation and environmental forcing 

In the Northeast and Northwest Atlantic, corals thrive during interglacial periods whilst their proliferation is halted 625 

during glacial periods (Dorschel et al., 2005; Rüggeberg et al., 2007; Frank et al., 2009; 2011; Matos et al., 2015; 

2017). Coral proliferation at BRI does not follow the same pattern. Indeed corals also develop during interglacial 

periods, but also to a lesser extent during glacial periods (Fig. 3). Coral proliferation in the Northeast Atlantic is 

controlled by the northward advance of subtropical waters and of MOW (Henry et al., 2014; Boavida et al., 2019), 

whereas corals at BRI are influenced by the interplay between inflowing MAW and outflowing LIW, ShW and 630 
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WMDW (Stalder et al., 2015; 2018; Wang et al., 2019; this study). Environmental control on coral development in 

both regions shares similarities but also shows differences. The positive response of corals to increased bottom 

current velocity is important in both regions. This follows the general consensus that strong bottom currents are 

decisive for the development of corals (e.g. White et al., 2005; Mienis et al., 2007; Roberts et al., 2009). The 

topography of Brittlestar Ridge I may favour the formation of Taylor columns and the retention of organic matter, 635 

such as observed in the Rockall Trough (Northeast Atlantic, White et al., 2007). However, benthic foraminiferal 

assemblages associated to phases of coral proliferation in the Northeast Atlantic (Rüggeberg et al., 2007) and in the 

Southeast Alboran Sea (this study) differ. Benthic foraminiferal assemblages associated to phases of sustained coral 

proliferation at Propeller Mound (Northeast Atlantic) are essentially characterized by large epibenthic foraminifera 

(C. lobatulus, Cibicides refulgens, D. coronata, and Planulina ariminensis) and the infaunal Trifarina bradyi 640 

(Rüggeberg et al., 2007). In contrast, at BRI, higher abundances of C. lobatulus, D. coronata and T. angulosa are 

associated to glacial periods or transition phases between interglacial and glacial periods with low coral abundance, 

while small infaunal foraminifera dominate phases of coral proliferation (Fig. 7). These contrasting observations 

suggest differences in food supply and bottom current regimes. Corals in the Northeast Atlantic thrive on fresh 

marine-derived organic matter resulting from the North Atlantic blooms which are fuelled by upwelling (Dickinson 645 

et al., 1980). In contrast, corals at BRI are likely supplied by plankton blooms triggered by the input of degraded 

fluvial organic matter during interglacial times, whilst aeolian dust input allows corals to survive during glacial times 

by triggering local moderate bloom events in the area. In this regard, coral mounds situated in the Southeast Alboran 

Sea show more similarities to mounds located in the Viosca Knoll area or in the Gulf of Cadiz (Wienberg et al., 

2010; Mienis et al., 2012). The respective shallow location and proximity of BRI to the continent explains the higher 650 

influence of continental runoff on coral communities than in the deeper Northeast Atlantic sites. It can hence be 

expected that corals at BRI show higher sensibility to shifting continental climatic conditions.  

5.4.2 Long-term coral mound build-up 

Average mound aggradation rates for core MD13-3462G are particularly low in comparison to other CWC mound 

provinces (Frank et al., 2011; Wienberg and Titschak, 2015). A maximum rate of ca. 9 cm.ky
-1

 is reached during 655 

MIS 4, whilst rates do not exceed ca. 4 cm.ky
-1 

during interglacial periods (Fig. 9). In comparison, mound 

aggradation rates during the Early Holocene reached up to 869 cm.ky
-1 

at Stjernsund Fjord (Norwegian margin) and 

290 cm.ky
-1 

in the Porcupine Seabight (López Correa et al., 2012; Frank et al., 2009; Wienberg and Titschak, 2015). 

Moreover, mound aggradation rates during the Holocene for core MD13-3462G (Fig. 9) are extremely low in 

comparison to other reported rates in the area. Indeed, Fink et al. (2013) and Stalder et al. (2015) report aggradation 660 

rates between ca. 260 and 290 cm.ky
-1 

for the Early Holocene at the East Melilla Coral Province, whilst Wang et al. 

(2019) calculated rates between ca. 75 and 107 cm.ky
-1 

for the West Melilla Coral Province. These combined 

observations suggest that coral mound formation demonstrates strong spatial and temporal variability at the East 

Melilla Coral Province, and more precisely during the Holocene at BRI. 

 665 
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Long-term coral mound formation at BRI and in the Porcupine Seabight do not show the same temporal distribution. 

Indeed, mound aggradation in the Porcupine Seabight is restricted to interglacial periods, whilst glacials are marked 

by winnowing and erosive events (Rüggeberg et al., 2007; Frank et al., 2011). Long-term coral mound formation at 

BRI took place during interglacial and glacial periods, though at much lower aggradation rates than in the Porcupine 

Seabight (Fig. 9; Frank et al., 2011). Mound aggradation rates in core MD13-3462G are comparable to inactive or 670 

abandoned reefs in the Porcupine Seabight, i.e. <5 cm.ky
-1

 (Frank et al., 2011), thus suggesting that CWCs did not 

thrive at the site of core MD13-3462G but rather developed under stressful, possibly dysoxic, environmental 

conditions. Average long-term mound aggradation rates at BRI show more similarities with mounds situated along 

the Mauritanian margin that developed during the last glacial (28-45 cm.ky
-1

)
 
but also during the last interglacial 

period (16 cm.ky
-1

; Wienberg et al., 2018; Wienberg and Titschak, 2015). In contrast with Atlantic CWC mounds, 675 

mounds from the East Melilla Coral Province show a high contribution of the erect cheleistome bryozoan B. 

dichotoma. Based on mound aggradation rates and macrofaunal content, we propose that B. dichotoma communities 

favoured mound formation at BRI, noticeably during glacial periods, by capturing fine-grained sediments in a similar 

way as CWCs do (Fig. 3 and 9). As such, mounds at BRI stand out and may be considered as mixed B. 

dichotoma/CWC mounds, rather than CWC mounds per se.  680 

Conclusions 

The multiproxy study of core MD13-3462G provides information on the long-term development of a cold-water 

coral mound at Brittlestar Ridge I. Three important points can be concluded: 

 

(1) Cold-water corals develop mainly during interglacial periods. Their growth is promoted by the combination of 685 

increased fluvial input and enhanced influence of Alboran Gyres. Increased fluvial organic matter inputs are driven 

by the increased impact of warm and moist Atlantic air masses with intensified Western and Eastern Alboran Gyres 

that lead to more important turnover between surface and intermediate water masses. This phenomenon is promoted 

by enhanced Modified Atlantic Water inflow at the Strait of Gibraltar. The seafloor was possibly depleted in oxygen 

at the end of interglacial phases. These results demonstrate the paramount importance of enhanced fluvial input as a 690 

trigger for cold-water growth in the Southeastern Alboran Sea. 

 

(2) Glacial periods are unfavourable for cold-water corals; in contrast the bryozoan Buskea dichotoma is more suited 

to glacial environmental conditions. The retreat of corals during glacial periods is triggered by arid continental 

conditions that lead to reduced fluvial input and nutrient supply. Moreover, reduced inflow of Modified Atlantic 695 

Water at the Strait of Gibraltar results in a lower contribution of surface waters to intermediate waters. In contrast, 

the contribution of Western Mediterranean Deep Water to intermediate water masses increased. Weaker Alboran 

Gyres and increased contribution of well-ventilated deep waters at intermediate depths resulted in increased 

stratification. Lower input of organic matter, but less degraded, further characterizes glacial environmental 
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conditions. Aeolian dust was the main fertilizing influence and may have enabled corals to survive throughout glacial 700 

periods.  

 

(3) Average coral mound aggradation rates are particularly low, varying between 1 and 9 cm.ky
-1

. Mound formation 

takes place during glacial periods as well as during interglacial periods. Low mound aggradation rates during 

interglacials and glacials suggest that corals did not thrive but rather developed under stressful environmental 705 

conditions at Brittlestar Ridge I. The erect cheleistome bryozoan Buskea dichotoma plays an important role in the 

long-term mound formation at Brittlestar Ridge I, noticeably during glacial periods. Overall, mound development at 

Brittlestar Ridge I is controlled by alternating aeolian and fluvial inputs, in response to North Atlantic climate 

dynamics.  

 710 

From a wider perspective, this study demonstrates how cold-water coral environments can benefit from both fluvial 

and aeolian terrestrial input, during respectively interglacial and glacial periods. These results underline how cold-

water coral systems are capable of withstanding important environmental changes and to survive and adapt to 

different climatic conditions. 
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Figure 1. Location of the study area. (A) General map of the Mediterranean Sea and location of the investigated region (B) 

Bathymetric map of the western Mediterranean Sea based on the GEBCO_2019 gridded bathymetric data. Abbreviations: EMCP: 1210 

East Melilla Coral Province (red box); WAG: Western Alboran Gyre; EAG: Eastern Alboran Gyre. (C) Bathymetry and location 

of the Banc des Provençaux and Brittlestar Ridge I (BRI). The white dot indicates the location of the studied core MD13-3462G 

recovered during cruise ―GATEWAY‖ No. 194 on board the research vessel Marion Dufresne II (Van Rooij et al, 2013), during 

which the multibeam data used was also acquired using the shipboard 12 kHz multibeam echosounder (Van Rooij et al., 2013). 
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Figure 2. (1) CTD profile taken at the east of Brittlestar Ridge I (35°26,087‘N; 2°30,100‘W) during cruise ―GATEWAY‖ (No. 

194) on board the research vessel Marion Dufresne II (Van Rooij et al., 2013). Salinity, temperature (°C) and oxygen content 

(µmol.kg-1) are indicated. The location of core MD13-3462G in relation to the profile is indicated by the black line. (2) North-1240 

South orientated bottom water profile of the East Alboran Sea modified from Ercilla et al. (2016). Abbreviations: MAW: 

Modified Atlantic Water, ShW: Shelf Water, LIW: Levantine Intermediate Water. 
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Figure 3. Core description, stratigraphy and macrofaunal composition of core MD13-3462G. Stratigraphy is based on the 

planktonic (G. bulloides) and benthic (C. lobatulus) δ18O records (‰ VPDB), the Uranium-series ages of coral fragments and the 

epibenthic foraminiferal radiocarbon ages for the first meter of the core (far right). The quantification of the three main 

macrofaunal components (Cold-water corals: CWC, bryozoans and brachiopods/bivalves) performed through analysis of X-ray 1255 

Computed Tomography (CT) images is given. Smoothed curves are indicated by the light grey shaded curves. 
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 1260 

Figure 4. Planktonic (G. bulloides) and benthic (C. lobatulus) δ13C records, calcium carbonate (CaCO3) content (expressed in 

weight percentage), Total Organic Carbon content (%), mean grain size of the siliciclastic fraction (µm) and mean grain size of 

the sortable silt fraction (the 10-63 µm grain size range, expressed in µm; McCave et al., 2006). Smoothed curves are indicated by 

the light grey shaded curves. The stratigraphy defined in Fig. 3 is given to the far right. The planktonic (G. bulloides) and benthic 

(C. lobatulus) δ18O records (‰ VPDB) are provided as supporting information. 1265 
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Figure 5. Dispersion plot of the sortable silt mean size (the 10-63 μm grain size range, expressed in μm)   ̅̅̅̅  vs. the percentage of 

sortable silt (SS%). The slope of 0.125 μm and intercept at 0 % of 17.52 μm indicates a sorting process induced by bottom 1270 

currents (McCave et al., 2006). 
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1275 

 

Figure 6. Example of a sediment core section showing the main macrofaunal components (section 1, 0-100 cm). (1) X-ray 

Computed Tomography imagery. (2) Three-dimensional reconstruction of coral fragments performed on X-ray Computed 

Tomography (CT) images. (3) Split-core high-resolution image. The white circles indicate the location of main macrofaunal 

components. (4) Main macrofaunal components: (a) the scleractinian coral Madrepora oculata, (b) the brachiopod Terebratulina 

retusa, (c) the bivalve Bathyarca pectunculoides, (d) the brachiopod Gryphus vitreus, (e) the bryozoan Buskea dichotoma.  
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Figure 7. Distribution of main benthic foraminifera (expressed as the percentage of the total number of benthic foraminifera) and 1280 

benthic foraminiferal Shannon diversity (the overlaid grey curve corresponds to the smoothed curve). The stratigraphy defined in 

Fig. 3 is given to the far right. The planktonic (G. bulloides) and benthic (C. lobatulus) δ18O records (‰, VPDB) are provided as 

supporting information. 
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Figure 8. Log10 titanium (Ti), silica (Si), zirconium (Zr) and rubidium (Rb) as aluminium (Al)-normalized ratios. These 

normalized elemental ratios are used as proxies for aeolian (Ti/Al and Si/Al) and fluvial input (Zr/Al and Rb/Al) at Brittlestar 

Ridge I. The stratigraphy defined in Fig. 3 is given to the far right. The planktonic (G. bulloides) and benthic (C. lobatulus) δ18O 

records (‰, VPDB), together with the mean size of the sortable silt fraction (the 10-63 µm grain size range, expressed in µm), are 1290 

provided as supporting information. 
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Figure 9. U-series coral ages (ka BP) vs. core depth (cm). Marine Isotope Stages (as defined by Lisiecki and Raymo, 2005) are 

overlaid. All error bars are 2 of the mean analytical uncertainty. The dashed lines between age-points (see legend) represent 1295 

average mound aggradation rates (in cm.ky-1). Pink and white columns represent respectively interglacial and glacial periods. 
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Figure 10. Three dimensional diagrams and schematic models illustrating the differences between interglacial and glacial periods 

and the response of the benthic community at Brittlestar Ridge I. Water masses discussed in the text are illustrated (MAW: 

Modified Atlantic Water, LIW: Levantine Intermediate Water, ShW: Shelf Water; WMDW: Western Mediterranean Deep Water) 1305 

as well as the Western Alboran Gyre (WAG) and Eastern Alboran Gyre (EAG). The flow strength of each water mass is depicted 

by the thickness of the arrows. The red star indicates the location of the East Melilla Coral Province. The position of the EAG and 

WAG is based on observations made by Lanoix (1974), La Violette (1983), and Viúdez and Tintoré (1995). Sea level of 

interglacial periods corresponds to the current sea level, whilst a 100 m lower sea level stand, following observations made by 

Rabineau et al. (2006), illustrates glacial periods. The LIW, ShW and WMDW flows follow the observations made by Ercilla et 1310 

al. (2016). They have been simplified and thus do not represent their exact dynamics. The schematic models are not to scale, 

although relative depth limits between MAW and LIW have been respected. GEBCO_2019 gridded bathymetric data was used to 

construct the diagrams. 
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LAB ID 
Depth 

(cm) 

14C age 

(BP) 
±1σ 

2σ lower  

(cal years BP) 

2σ upper  

(cal years BP) 

2σ median (cal 

years BP) 

ETH-87743 2 5777 25 5580 5920 5760 

ETH-87744 37 22811 78 25970 26530 26220 

ETH-87745 87 27587 124 30730 31160 30950 

 1315 

 

Table 1. Radiocarbon ages of epibenthic foraminifera (species selected: Cibicides lobatulus, Cibicides refulgens and 

Discanomalina coronata). Ages are corrected for a reservoir age of 390 ± 80 years (Siani et al., 2000). 
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LAB ID 
Depth 

(cm) 
S(1) 

Age 

(ka) 
± 

Age(2) 

(ka) ± 
238U 

(μg/g) 
± 

232Th 

(ng/g) 
± 

δ234U 

(‰) 
± 

δ234Ui 

(‰) 
± 

IUP‐ 8500 3 M  6.34 0.029 6.32 0.030 4.3377 0.00037 0.4311 0.00140 147.22 0.66 149.88 0.67 

IUP‐ 8501 36 D 14.31 0.047 14.30 0.049 3.4367 0.00012 0.3254 0.00084 145.33 0.64 151.33 0.67 

IUP‐ 8503 158 D 52.57 0.19 52.24 0.22 3.7330 0.00013 4.8320 0.01200 123.72 0.83 143.41 0.96 

IUP‐ 9310 201 D 53.07 0.12 53.04 0.13 2.6348 0.00008 0.3418 0.00059 126.01 0.45 146.39 0.53 

IUP‐ 8504 390 D 76.44 0.29 76.43 0.29 3.6896 0.00011 0.1328 0.00039 115.92 0.67 143.86 0.84 

IUP‐ 9183a 390 D 75.66 0.20 75.65 0.17 3.7004 0.00016 0.1763 0.00046 117.75 0.49 145.83 0.61 

IUP‐ 9312 412 D 97.58 0.23 97.54 0.24 3.6265 0.00012 0.4572 0.00069 112.50 0.61 148.21 0.81 

IUP‐ 9313 507 D 130.7 0.45 130.7 0.46 3.4073 0.00015 0.3844 0.00072 105.96 0.85 153.30 1.25 

IUP‐ 8505 748 D 194.8 1.40 187.5 4.2 3.5659 0.00220 102.38(4) 0.27000 95.01 0.84 161.40(3) 2.40 

IUP‐ 9184b 756 D 181.9 0.79 181.9 0.78 2.8694 0.00013 0.6018 0.00099 102.72 0.79 171.74(3) 1.40 

IUP‐ 9314 862 D 265.7 2.10 265.7 2.4 3.4662 0.00018 0.6693 0.00150 70.40 1.10 149.10 2.60 

IUP‐ 8507 921 D 304.2 4.80 304.2 4.9 3.0370 0.00012 0.1176 0.00044 63.32 0.68 149.60 2.60 

IUP‐ 9185c 921 D 312.1 3.40 312.1 3.0 3.3567 0.00016 0.2789 0.00061 58.58 0.77 141.50 2.20 

               

 

 

Table 2. Details of Uranium-series isotope measurements (U/Th) carried out on 10 coral fragments. a) replicate of IUP-8504; b) 

replicate of IUP-8505; c) replicate of IUP-8507. Brackets denote activity ratios. All errors are 2 of the mean analytical 1350 

uncertainty. Ratios determined using a Th-U spike calibrated to a secular equilibrium reference material (HU-1 at the IUP). 

Uncorrected, closed-system age calculated using the decay constants of Jaffey et al. (1971) for 238U and Cheng et al. (2000) for 

230Th and 234U. Ages are reported relative to the date of analysis, from year 2017 (IUP-8500 to IUP-8507) and year 2018 (other 

samples), and do not include uncertainties associated with decay constants. (1) Coral species: M: Madrepora oculata; D: 

Desmophylum pertusum. (2) Ages corrected for the contribution of initial 230Th based on an estimated seawater (230Th/232Th) 1355 

activity ratio of 8 ± 4. (3) Significantly elevated 234Ui if compared to the present day seawater value of 146.8 ± 0.1 ‰, possibly 

indicative of U-series open system behaviour. (4) Samples containing strong residual amounts of non-carbonate contamination 

leading to high 232Th concentrations and thus age corrections. 
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