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1. Confocal Laser Scanning Microscopy Methods

The photosynthetic apparatus of cyanobacteria is a
thylakoid-membrane-bound complex that utilizes various
pigments such as chlorophyll, phycobilins, carotenoids,
and various binding proteins to achieve its intended en-
ergy conversion role (Grossman et al., 1995; Green and
Durnford, 1996). When pigments are bound to proteins as
complexes, their optical absorbance as well as fluores-
cence properties change (Falkowski and Kiefer, 1985).
Consequently, in vivo optical measurements on cyano-
bacterial cells cannot be taken as the sum of individual
pigments, even though these pigments have been studied
in detail through purification by solvent-extraction. En-
vironmental factors as well as cell physiology have also
been shown to alter the optical properties of the photo-
synthetic apparatus (Schubert and Hagemann, 1990;
Campbell et al., 1998). Therefore, the identification of the
auto-florescence source from cyanobacteria can be a
complex problem, frequently requiring making measure-
ments at liquid nitrogen temperatures (at this temperature,
the pigment—pigment, pigment—protein interactions are
minimized) (Kiihlbrandt et al., 1994; Beale, 2008; Lamb
et al., 2015). Recent technological advances in confocal
laser scanning microscopy, however, have offered new
insights regarding the in vivo fluorescence signal from
cyanobacteria (Roldan et al., 2004; Vermaas et al., 2008).
It has been shown that a 488-nm laser primarily excites
the phycobilins and carotenoids in Synechocystics
sp. PCC 6803 rather than chlorophyll-a, giving unique
insights on how these pigments are spatially distributed in
cyanobacterial cells in vivo (Vermaas et al., 2008).
Consequently, the 488-nm laser line was used extensively
in this study to characterize cells from the free-living state
(at the exterior of the sinter environment) until the fos-
silized state (at the interior of the sinter up to about
10-mm depth).

At room temperature, the chlorophyll and phycobilisome
pigments in cyanobacteria have a fluorescent emission peak
between 640- and 700nm (Vermaas et al., 2008). Known
pigments in this class and their emission maximums are
phycocyanin (650 nm), allophycocyanin (665nm), and
allophycocyanin-B (675 nm) (Bittersmann and Vermaas, 1990;
Sobiechowska-Sasim et al., 2014). On the other hand, carot-
enoids are accessory pigments that help channel light energy
into primary pigments such as chlorophyll, expanding the
overall photoreception range (Green and Parson, 2003). A
second role for carotenoids is photooxidation protection
against excess visible and ultraviolet light radiation (Wada
et al., 2013). Known carotenoids and their emission maxi-
mums are ff-carotene (560 nm), rhodopin (560-600nm), and
spheroidenone (560-620nm) (Gillbro and Cogdell, 1989).
These emission characteristics are used in this study for the
interpretation of organic pigments present in our samples.
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