TY - JOUR T1 - Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth A1 - Sansjofre,Pierre A1 - Cartigny,Pierre A1 - Trindade,Ricardo I. F. A1 - Nogueira,Afonso C. R. A1 - Agrinier,Pierre A1 - Ader,Magali AD - Univ Paris Diderot, Sorbonne Paris Cite, Inst Phys Globe Paris, Equipe Geochim Isotopes Stables,UMR CNRS 7154, F-75005 Paris, France. AD - Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Dept Geofis, Rua Matao 1226, BR-05508900 Sao Paulo, Brazil. AD - Univ Bretagne Occidentale, Lab Domaines Ocean, IUEM, F-29280 Plouzane, France. AD - Fed Univ Para, Inst Geociencias, Fac Geol, BR-66075110 Belem, Para, Brazil. UR - https://archimer.ifremer.fr/doc/00639/75075/ DO - 10.1038/ncomms12192 N2 - The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope (S-34/S-32) excursions in Earth's history, with strong variability and maximum values averaging delta S-34 similar to+38 parts per thousand. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (S-33/S-32, S-34/S-32 and S-36/S-32 ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere. Y1 - 2016/07 PB - Nature Publishing Group JF - Nature Communications SN - 2041-1723 VL - 7 ID - 75075 ER -