Depositional evolution of an extinct sinter mound from source to outflow, El Tatio, Chile

Type Article
Date 2020-08
Language English
Author(s) Wilmeth Dylan T.1, Nabhan Sami1, Myers Kimberly D.1, Slagter Silvina1, 2, Lalonde Stefan3, Sansjofre Pierre4, Homann Martin5, Konhauser Kurt O.6, Munoz-Saez Carolina7, Van Zuilen Mark A.1
Affiliation(s) 1 : Institut de Physique du Globe de Paris, CNRS-UMR7514, 1 Rue Jussieu, 75005 Paris, France
2 : Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
3 : Laboratoire Géosciences Océan, Institut Universitaire Européen de la Mer, 29280 Plouzané, France
4 : Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, IMPMC, Paris, France
5 : Department of Earth Sciences, University College London, WC1E 6BT London, United Kingdom
6 : Department of Earth and Atmospheric Sciences, University of Alberta, T6G 2R3 Edmonton, Alberta, Canada
7 : Department of Geology and Andean Geothermal Center of Excellence (CEGA), FCFM, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile.
Source Sedimentary Geology (0037-0738) (Elsevier BV), 2020-08 , Vol. 406 , P. 105726 (27p.)
DOI 10.1016/j.sedgeo.2020.105726
WOS© Times Cited 11
Keyword(s) Siliceous sinter, Hot springs, El Tatio, Microbialites, Microfossils

Siliceous sinter deposits from El Tatio, Chile, preserve a wide variety of depositional environments and biosignatures, from high-temperature (~85 °C) vent-proximal facies to distal deposits dominated by silicified microbial mats. Four cores were drilled into an El Tatio sinster mound and associated distal apron to investigate changes in hydrothermal environments over geologic timescales. Sedimentary and geochemical analysis of multiple sinter cores records the initiation and accretion of diverse depositional features still observed today in El Tatio. Facies adjacent to hydrothermal vents are dominated by laminated sinter crusts on the steep margins of a high-temperature pool, with sparse microbial preservation. Outer margins of the same pool contain extensive sinter columns up to ten centimeters in length, precipitated during repeated cycles of pool overflow and subsequent evaporation. Low-relief hydrothermal pools also form minor deposits within distal debris aprons, and analogous pools are still active close to sampling locations. Debris aprons are dominated by palisade, tufted, and arborescent microbial fabrics, with distinct mat textures revealing well preserved microfossils. Surficial deposits in all cores feature detrital-rich and microbially-influenced sinters overlying higher-temperature facies, indicating a relative decrease in hydrothermal activity over time. Geochemical proxies for hydrothermal fluids and detrital input match depositional interpretations based on sedimentary structures. 14C ages from core deposits extend the mound's history by 11,000 years, recording at least three thousand years of sinter deposition on top of glacial sandstones (13,337–10,232 y. cal. BP). Importantly, this work provides a detailed depositional model unavailable through surficial sedimentology alone.

Full Text
File Pages Size Access
Publisher's official version 85 19 MB Open access
Supplementary material 326 KB Open access
Top of the page

How to cite 

Wilmeth Dylan T., Nabhan Sami, Myers Kimberly D., Slagter Silvina, Lalonde Stefan, Sansjofre Pierre, Homann Martin, Konhauser Kurt O., Munoz-Saez Carolina, Van Zuilen Mark A. (2020). Depositional evolution of an extinct sinter mound from source to outflow, El Tatio, Chile. Sedimentary Geology, 406, 105726 (27p.). Publisher's official version : , Open Access version :