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Abstract 18 

Many marine species are shifting their distribution poleward in response to climate change. 19 

The Barents Sea, as a doorstep to the fast-warming Arctic, is experiencing large scale 20 

changes in its environment and its communities. This paper aims at understanding what 21 

environmental predictors limit fish species habitats in the Barents Sea and discuss their 22 

possible evolution in response to the warming of the Arctic. 23 
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Species distribution models usually aim at predicting the probability of presence or the average 24 

abundance of a species, conditional on environmental drivers. A complementary approach is 25 

to determine suitable habitats by modelling the upper limit of a species’ response to 26 

environmental factors. Using quantile regressions, we model the upper limit of biomass for 33 27 

fish species in the Barents Sea in response to 10 environmental predictors. Boreal species 28 

are mainly limited by temperatures and most of them are expected to be able to expand their 29 

distribution in the Barents Sea when new thermally suitable habitats become available, in the 30 

limit of bathymetric constraints. Artic species are often limited by several predictors, mainly 31 

depth, bottom and surface temperature and ice cover, and future habitats are hard to predict 32 

qualitatively. Widespread species like the Atlantic cod are not strongly limited by the selected 33 

variables at the scale of the study, and current and future suitable habitats are harder to 34 

predict. These models can be used as input to integrative tools like end-to-end models on the 35 

habitat preference and tolerance at the species scale to inform resource management and 36 

conservation. 37 

 38 

Key words: quantile regression, habitat suitability models, climate change, species 39 

distribution, species shifts, environmental drivers 40 

1 INTRODUCTION: 41 

There is growing evidence of spatial shifts of species distribution correlated with climate 42 

change (Chen et al., 2011; Hickling et al., 2006; Parmesan and Yohe, 2003; Thomas, 2010). 43 

The Arctic is warming faster than any other ocean in the world (IPCC, 2014). Cheung et al. 44 

(2009) investigated the potential geographical changes in marine biodiversity worldwide in 45 

response to warming and suggested a general increase of species richness in Arctic waters 46 

due to northward migrations of species. The region would experience higher species turnover 47 

rates due to invasion and local extinction than anywhere on the globe. As such, describing 48 

distribution patterns, understanding drivers and projecting potential changes at the species 49 
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scale is of crucial importance for conservation and management purposes (Marzloff et al., 50 

2016; Pecl et al., 2017; Porfirio et al., 2014). 51 

The Barents Sea is situated on the border of the Arctic. It is under the influence of two water 52 

masses outflowed from the warm, saline Atlantic in the south west and the cold, less saline 53 

Arctic in the north east (Loeng, 1991). Those two masses separate two main communities , 54 

arctic and boreal, that differ, among other thing, in fish species composition (e.g. Fossheim et 55 

al., 2015; Johannesen et al., 2012), traits (Frainer et al., 2017) and trophic structure (Kortsch 56 

et al., 2015). Important commercial fish (e.g. Atlantic cod, Gadus morhua, Atlanto-scandic 57 

herring, Clupea harengus, and capelin, Mallotus villosus) are present in both types of 58 

communities and respond to climatic signals (Chambault et al., 2018; Hamre, 1994; Matishov 59 

et al., 2012). During past decades, the Barents Sea has been experiencing an increase in 60 

Atlantic water inflow and coinciding heat content in the water column, as well as loss of sea 61 

ice in the northeast (Årthun et al., 2012; Dalpadado et al., 2012; Lind et al., 2018). In the 62 

meantime, the distribution of demersal fish has been altered with a general displacement of 63 

boreal communities towards the northeast (Fossheim et al., 2015). Unfortunately, studies in 64 

Arctic and subarctic waters have sometimes suffered from a lack of appropriate data to provide 65 

robust conclusions about changes in individual species biogeography (Ingvaldsen et al., 66 

2015). Hollowed et al. (2013) estimated, based on expert knowledge, the potential of 17 67 

species of the sub-arctic regions to shift their distribution northward, following the increased 68 

production in newly ice-free areas. This set of species was quite evenly divided into species 69 

with high, medium and low potential to change their distribution. However, changes in spatial 70 

distribution at the scale of individual species remain uncertain. There is a need for empirical 71 

studies that would help better identify the main drivers of changes in species distributions, 72 

which species are likely to respond most, and to which degree it is possible to make prediction 73 

about future geographical distributions based on currently available information.  74 

Because environment is generally assumed to be the main driver of species distribution 75 

(Pearson & Dawson, 2003), most spatial distribution models (SDM) rely solely on 76 

environmental covariates. As such, they predict the suitability of a habitat to host a species 77 
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based on its mean response (in presence/absence or in abundances) to environmental 78 

conditions. An alternative approach is to explicitly focus on how those factors may limit species 79 

habitats by predicting the upper limit of the species response, i.e. a high quantile (e.g. >0.9) 80 

instead of the mean. The statistical method of quantile regression (QR) (Cade et al., 1999; 81 

Cade & Noon, 2003) provides a useful framework for assessing limiting factors from 82 

observational data. It predicts the expected response for a given quantile q. With q = 0.5, QR 83 

predicts the median response. With high q’s (>0.9), QR predicts the upper limit of the 84 

response. For a set of environment conditions, it is possible to determine the most limiting 85 

factor by considering several single-covariate models and identifying the one that predicts the 86 

lowest response (Austin, 2007). This approach inherits from the Sprengel-Liebig law of the 87 

minimum (van der Ploeg et al., 1999), which considers that a response variable can only be 88 

as high as allowed by the most limiting factor. 89 

Quantile regression originated in economics (Koenker and Bassett, 1978) and has been used 90 

in ecology to investigate prey-size-predator size relationship (Bethea et al., 2004), DNA 91 

variation across environmental gradients (Knight and Ackerly, 2002), response to metal 92 

concentrations (Schmidt et al., 2012), and fish recruitment-environment relationship (Planque 93 

and Buffaz, 2008). Review papers have highlighted its utility for the prediction of suitable 94 

habitats (Austin, 2007; Elith and Leathwick, 2009; Hegel et al., 2010), with some applications 95 

for terrestrial (Cade et al., 1999; Carrascal et al., 2016; Jarema et al., 2009; Schröder et al., 96 

2005) and aquatic species (Ateweberhan et al., 2018; Cozzoli et al., 2013; Dunham et al., 97 

2002; Lancaster and Belyea, 2006; Lauria et al., 2011; Vaz et al., 2008). Most of the ecological 98 

applications of quantile regression have assumed linear relationships between the biological 99 

response and the predictors. Based on theoretical considerations, the species response to an 100 

environmental factor is expected to be bell-shaped (Hutchinson, 1957; Whittaker, 1967) and 101 

recent studies have applied non-linear quantile regression models to allow for this (Anderson, 102 

2008; Cozzoli et al., 2013; Dunham et al., 2002; Halkos, 2011; Schröder et al., 2005).  103 

The aim of the present work is to (i) quantify the limiting effect of the environmental factors 104 

that impact on the spatial distribution of fish in the Barents Sea, (ii) assess the predictability of 105 
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future geographical distributions based on currently available information and (iii) identify 106 

which species are most likely to respond to future environmental changes. For this purpose, 107 

we analyze data from the autumn ecosystem survey in the Barents Sea on the 33 most 108 

frequently sampled fish species and 10 environmental variables that can potentially limit their 109 

habitat. We develop QR nonlinear models for all combinations of species and environmental 110 

factors. 111 

2 MATERIAL AND METHODS 112 

2.1 DATA:  113 

2.1.1 Fish biomass by species 114 
Fishes were caught by a Campelen 1800 bottom trawl during the autumn IMR-PINRO joint 115 

ecosystem survey between 2004 and 2017 (Eriksen et al., 2018). The spatial extent is quite 116 

large (around 1.6 million km²), with 278 stations per year in average, depending on the sea 117 

ice extent in the North-eastern part of the sea. The sampling effort is regular in space with 35 118 

nautical miles (35*1.852 km) between each trawling. The same stations are visited every year, 119 

in the limit of technical, time or climatic feasibility. A grid of 35 x 35 nm was fitted in an albers 120 

equal area projection, so that each grid cell contains only one station. The bulk of the fish 121 

species in the catch of the Campelen bottom trawl contained demersal species. However, 122 

bentho-pelagic and pelagic fish were also regularly caught in high abundances by the trawl 123 

and they are kept in the analyses. Estimated species biomasses were standardized by unit 124 

area, considering an opening of 25 m of the trawl. Only the trawls towed between 50 m and 125 

500 m depth, in 15 to 60 minutes were kept. Towing speed was about 3 knots. In total, data 126 

comprised 3827 stations and 78 species over the 14 years. Taxa that were absent in more 127 

than 95% of the stations were removed, reducing the number of species to 33.  128 

2.1.2 Environmental predictors 129 
Eleven variables reflecting the environmental conditions of fish habitat were gathered. 130 

Considerations on the nature and number of predictors to include according to sample size 131 

are described in appendix 1. 132 
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During the ecosystem survey, CTD were used to measure surface (10 m, T.surf) and bottom 133 

temperature (°C, T.bottom) and salinity (S.surf and S.bottom) at each station. Two 134 

stratification variables were calculated from temperature and salinity profiles following Planque 135 

et al. (2006). The surface mixed layer depth (SML, m) was calculated from a double layer 136 

model, and the potential energy anomaly (PotEnAno, kg.m-1.s-1, Simpson & Bowers, 1981) 137 

was estimated as the energy required to mix vertically the entire water column. 138 

Bathymetry (m) and slope (degrees) were extracted from NOAA raster for the Barents Sea 139 

(Jakobsson et al., 2012). Sediment type was defined by extraction of seafloor description by 140 

NGU (Contains data under the Norwegian license for public data (NLOD) made available by 141 

Norway's geological survey (NGU)). The 16 sediment classes described on the map were 142 

aggregated in 7 coarser classes following the EUNIS sediment hierarchical classification 143 

(Davies et al., 2004). Chlorophyll a (chla, mg/m3) average concentration between March and 144 

July of each year, as estimated by the NASA from ocean color (NASA OBPG, 2018). Number 145 

of days with ice cover (daysofice) were counted from daily sea ice extent maps from the NOAA 146 

(Cavalieri et al., 1996). For all those variables, values were extracted at the bottom trawl 147 

station position, i.e. there is only one of each per grid cell and per year.  148 

Correlation analysis (described in appendix 2) showed a high correlation of potential energy 149 

anomaly with depth, so the former was removed from the analysis. To assess the potential of 150 

a species habitat suitability to be predicted in a changing environment, the ten remaining 151 

predictors were categorized into fixed (bathymetry, slope, sediment) and dynamic (all the 152 

others). 153 

2.2 ANALYSIS 154 

2.2.1 Species response to environmental predictors  155 
Prior to the regression analysis, species biomass data were log+d-transformed, where d is 156 

half the lowest biomass of the species. All quantitative environmental parameters were 157 

discretized in 20 categories of equal frequency to facilitate the model fitting process. In the 158 
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case of days of ice cover, as there was a lot of 0, the first category comprised all the 0s, and 159 

the 19 others were spread equiprobably over the rest of the distribution. 160 

One quantile generalized additive model (QGAM) was fitted for each pair of species-predictor 161 

(330 models) using the qgam function in the qgam package in R (Fasiolo et al., 2017) and 162 

setting the quantile level at 99%. The use of QGAMs allows for greater flexibility in the shape 163 

of the relationship between the predictor and the species response than linear quantile 164 

regression. It can capture bell-shaped responses, or responses that reach a plateau for high 165 

or low levels of the predictor. Other considerations about the theoretical roots, strengths and 166 

weaknesses of the methods are quickly described in appendix 3. To avoid regressions with 167 

shapes too complex to be ecologically meaningful, the number of degrees of freedom in the 168 

GAMs was limited to 3. For the qualitative variable (sediment), linear QR was applied to fit the 169 

99th quantile within each sediment category. The rq function from quantreg package in R 170 

(Koenker, 2018) was used. 171 

Models were fitted using observations for years 2004 to 2013. They were then evaluated on 172 

observations for years 2014-2017. The evaluation was based on two metrics. The first metric 173 

is the proportion of observations in the evaluation dataset that were below the predicted 99th 174 

quantile. It is expected that 99% of the observations should fall below model predictions. If the 175 

observed proportion is higher, this means that the model is overestimating the maximum 176 

biomass (i.e. underestimating the limiting effect of the predictor). If the observed proportion is 177 

lower, too many observations in the evaluation dataset are higher than the expected maximum 178 

value, so the model is underestimating the maximum biomass (i.e. overestimating the limiting 179 

effect of the predictor). We categorized the variation from the 99th quantile into a “slight” (98.5 180 

to 99.5% of data below the predictions) and a “strong” (less than 98.5% or more 99.5%) 181 

over/underestimation of the maximum biomass. We considered that a model has a good 182 

predictive power if the predictions show a slight deviation from the 99th quantile. 183 

The second metric, termed ‘contrast’, is measured for each model on the predicted values, by 184 

the difference between minimum and maximum relative to the maximum. High (close to one) 185 

contrast occurs when the expected response of the species varies greatly across the 186 
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environmental gradient. The predictor influences the species biomass, and has a limiting effect 187 

when biomasses are low. Low (close to zero) contrast occurs when there are little variations 188 

in the predicted species biomass along the environmental gradient. The predictor has a low 189 

effect on the species and is not limiting in the range of the Barents Sea. In the case of the 190 

sediment type, three of the seven classes (“Compacted sediments or sedimentary bedrock”, 191 

“Sand, gravel and pebbles”, and “Thin or discontinuous sediment on bedrock”) were 192 

associated to less than 1% of all the samples (appendix 4). Those sediment types are ignored 193 

for the calculation of the contrast to ensure that the metric is built on sediment categories that 194 

carry enough information. 195 

2.2.2 Spatial prediction of suitable habitats 196 
Each year, it is possible to construct maps of habitat suitability for each species. Each station 197 

is associated with a set of predictor values. For a given species, each model predicts a 99th 198 

quantile of biomass in response to that set of predictor values. The most limiting factor is the 199 

one leading to the lowest 99% quantile. From here on, we use the term “most limiting” factor 200 

as defined by this criterion, whether the predictors can have a direct (like bottom temperature 201 

and depth) or indirect limiting effect (like chlorophylle a, which is not in direct link with the 202 

species habitat, but is an indicator of primary production that can indirectly affect bottom 203 

species). The maximum (99th quantile) biomass predicted based on the local environmental 204 

conditions is a local measure of habitat suitability. We applied this process to every location 205 

sampled each year.  206 

This process results in two maps per year and per species: a habitat suitability map and a 207 

limiting factor map. The habitat suitability map displays the spatial distribution of the expected 208 

maximum biomass. The limiting factor map simply shows the most limiting factor at each 209 

location. However, when the biomasses are high, no factor can be considered limiting. In the 210 

limiting factor maps, wherever the maximum biomass predicted, at a given location, from the 211 

most limiting factor is superior to 25% of the species-predictor model maximum, we considered 212 

the factor to have a “weak limiting effect” on the species at the station. We use three categories 213 

to describe the limiting factors: fixed, dynamic, and weakly limiting (which can be both a 214 
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dynamic or fixed predictor). From those maps, we looked at the proportion of locations where 215 

a given species biomass is limited by a given predictor. It is computed by i) counting for each 216 

predictor the number of stations where it is the most limiting for a given species a given year, 217 

ii) dividing that count by the number of stations sampled that year and iii) calculating the mean 218 

of that proportion over the years. It provides a measure of the limiting power of each predictor 219 

at the scale of the whole Barents Sea and across species. 220 

2.2.3 Predictability of future suitable habitats  221 
To be able to predict a species suitable habitats in the Barents Sea using QGAMs, it is 222 

necessary that i) at least one selected predictor, dynamic or fixed, has an impact on the taxon 223 

response (i.e. the species-predictor model has a high contrast), ii) the value of the predictor(s) 224 

for which the species biomass is limited occurs in the study area and at the temporal scale of 225 

the study, iii) the modelled response is robust to new conditions (i.e. predicted maximum 226 

quantile on the evaluation dataset should be close to the 99th), iv) possible differences in 227 

specific respond of different groups of individuals (by age, size, physiological state and other) 228 

within a taxa to the environmental predictor(s) are avoided.  229 

To evaluate the potential of a species suitable habitat to shift in a changing environment, we 230 

also look at the maximum contrast in fixed and dynamic predictor models. Species with a 231 

highest contrast in response to dynamic predictors are more susceptible to shift their habitat 232 

to follow changing environmental conditions. 233 

3 RESULTS 234 

3.1 RESULTS STRUCTURE 235 

Norway pout (Trisopterus esmarkii) is used to illustrate the detailed results of the quantile 236 

regression on a single species in response to three predictors: two that are associated with a 237 

high and a low contrast in the species response and one qualitative predictor. This species 238 

was chosen because it showed high contrast in its responses to the selected variables and 239 

high consistency of the predicted quantiles between the training and the testing datasets. 240 
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The results for all other species analyzed in this study are provided in appendix 5. Tables 241 

summarizing the species responses to the different predictors are in appendix 6. Some 242 

figures use abbreviated species names. The correspondence between abbreviated and full 243 

names is provided in appendix 6. 244 

A synthesis of the models of habitat suitability across all species is presented. In both parts, 245 

habitat suitability maps are shown only for 2013, which was the year with the widest spatial 246 

coverage. Maps for all the species are presented in appendix 7. 247 

3.2 LIMITS TO THE DISTRIBUTION OF THE NORWAY POUT (TRISOPTERUS 248 

ESMARKII) 249 

3.2.1 Species responses to environmental predictors  250 
Convergence and predicted quantiles: T. esmarkii modelled response to depth, slope and 251 

sediment converged successfully. When fitted to the training dataset, 99.1% of the 252 

observations were below the modelled response to depth, and 99.0% were below the model 253 

for both slope and sediment (Figure 1). When the same models were applied to the testing 254 

dataset, 99.3% of the observations were below the depth model, and 99.4% below the slope 255 

model. Both models thus slightly overestimate the maximum biomass allowed by those 256 

predictors when applied to new environmental conditions. For sediment, the model strongly 257 

overestimates the maximum biomass of the predictor, with 99.9% of the data below the model. 258 

Model contrast: The contrast in the response to depth was very high, 0.997. Such high value 259 

indicates that the minimum of the predicted maximum biomass was close to zero, i.e. that the 260 

sampling includes environmental conditions that are very limiting for the species. The 261 

response to slope shows the lowest contrast (0.81), indicating a relatively lower impact of 262 

slope on the species response. The contrast of the modelled response to sediment was 263 

intermediate with 0.90.  264 

Model shape: The responses of T. esmarkii to depth and slope are bell-shaped (Figure 1A 265 

and 1B respectively), although the response to slope is flatter. The “stair” pattern in the model 266 

predictions comes from the discretization of the predictors prior to fitting. The shape of the 267 
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qualitative predictor, the sediment, is not relevant. The range of observations along the depth 268 

gradient is wide, covering 76% of the bathymetric range of the Barents Sea (from 73 m to 410 269 

m depth, while conditions across the locations sampled scope from 52 to 494m). The 270 

maximum predicted biomasses occur at ~240 m, while the minimal (i.e. the limiting values) 271 

occur at ~70 m. For slope, most of the non-null biomasses were observed in areas with low 272 

degree of slope. For the sediment, the minimum prediction was close to 0 on compacted 273 

sediment or sedimentary bedrock, and maximum for coarse sediment. 274 

Other predictors: All the modelled responses of T. esmarkii to the other predictors converged. 275 

Between 99.0% and 99.2% of the training dataset observations were below the model. The 276 

surface and bottom salinity and surface mixed layer depth models slightly overestimate the 277 

maximum biomass when applied to the testing dataset, with 99.2 to 99.4% of the data below 278 

the predictions. The other models more strongly overestimate the maximum biomass with 99.8 279 

to 99.9% of the testing data below the models. Contrast is high for all the variables: from 0.73, 280 

0.88, and 0.97 for surface mixed layer depth, surface and bottom salinity respectively to >0.99 281 

for all other predictors.  282 

The response of the species to surface temperature and salinity, bottom temperature, surface 283 

mixed layer depth, days of ice cover and chlorophyll a concentrations show complete or partial 284 

bell shapes (see appendix 5). The range of response to the different predictors is large, 285 

scoping from 55 to 96% of the conditions over the Barents Sea. Modelled response to bottom 286 

salinity shows a V shape. High biomasses of T. esmarkii are associated with warm surface 287 

(~10°C) and bottom (>2.5°C) temperatures, high salinities (>34.5), rather shallow and weak 288 

stratification (SML ~40-50m). 289 

3.2.2 Habitat suitability mapping 290 
When applying the models for T. esmarkii for a given year, predictions are rather low (i.e. 291 

some factors are very limiting) in most of the Barents Sea, except in the south-west (e.g. in 292 

2013, Figure 2A). Bottom temperature limited biomass in the majority (60.9%) of the stations 293 

in 2013 (58.3% in average across all years) and was most limiting in all the central area of the 294 

Barents Sea. Other environmental parameters are much less limiting. Depth (12.8% in 2013, 295 
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12.7% in average) is most limiting on the shallow areas of Murmansk bank and north of Bear 296 

Island, or in the depth of the Bear Island trough. Surface temperature was the third most 297 

frequent limiting factor in 2013 (9.0%); but second in average (14.0%). The ice coverage is 298 

the last predictor limiting more than 10% of the samples on average (11.6% on average, 5.4% 299 

in 2013). Both surface temperature and ice cover are most limiting in the north, between 300 

Svalbard and Franz Joseph Land. All other parameters are most limiting for less than 5% of 301 

all the samples in 2013 and on average over the years. 302 

3.2.3 Predictability of the suitable habitats:  303 
The maximum contrast in the modeled response of T. esmarkii distribution was to depth 304 

(contrast: 0.991) among the static predictors and to bottom temperature (contrast > 0.999) 305 

among the dynamic predictors. However, depth is not that often a limiting factor in the Barents 306 

Sea. It is thus probable that this species suitable habitat will shift in response to changes in 307 

temperature, in the limit of the bathymetric constrains. The predictive power of the T. esmarkii 308 

– T. bottom model is poor as it tends to overestimate the maximum biomass, while that of the 309 

T. esmarkii – depth model is good. This means that the predicted habitat suitability might be 310 

overestimated if based only on bottom temperature.  311 

3.3 LIMITS TO THE DISTRIBUTION OF 33 FISH SPECIES 312 

3.3.1 Species responses to environmental predictors  313 
Convergence and predicted quantiles: All models successfully converged. The training and 314 

testing sets performed quite differently on predicting the 99th quantile (Figure 3). When fitted 315 

on the training set, most of the models (94%) were between 98.5% and 99.5% of the data. 316 

Only 6% strongly overestimated the maximum biomass (i.e. were above more than 99.5% of 317 

the data). None of them strongly underestimated the maximum biomass.  318 

The models performed less well at predicting the 99th quantile when applied to the testing data 319 

set, as only 50% of the models were between 98.5 to 99.5% of the data; 38% strongly 320 

overestimated the maximum biomass and 11% strongly underestimated it. One model is an 321 

outlier, performing very poorly in the testing set: Arctozenus risso response to sediment. This 322 
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may be because this species reached higher biomasses in 2016, during the testing set, than 323 

any other year before. 324 

Model contrast: Most of the model showed relatively high level of contrast: 45% had high 325 

contrast (>0.90), and 37% had an intermediate contrast (0.50 to 0.90). Slope has the lowest 326 

mean contrast (0.44) across the 33 species, followed by surface mixed layer depth (0.58). 327 

Surface salinity and chlorophyll a are associated to similar contrast in the species response 328 

(~0.75). Following predictors display high contrasts: sediment (0.83), ice cover (0.85), bottom 329 

salinity (0.86) and bottom temperature (0.87). Depth and surface temperature models are the 330 

most contrasted with an average of 0.90.  331 

Among temporally fixed predictors, the most contrasted modeled responses were to depth (24 332 

of the 33 species), sediment (8 species) and slope (1 species). Bottom and surface 333 

temperature caused the highest contrast among dynamic predictors for 12 and 13 species 334 

respectively, ice cover for 5 and bottom salinity for 3.  335 

Model shapes: Most model shapes can be interpreted as a complete or a partial bell, with 336 

large differences in amplitude, from very contrasted to very flat models. Occasionally, species 337 

response models to surface or bottom salinity or ice coverage would take a v shape. 338 

Distribution of the species responses along the different predictor gradients can be found in 339 

appendix 5.  340 

3.3.2 Habitat suitability mapping  341 
The mean proportion of samples limited by a single predictor over the years ranged from 0.3 342 

to 58.8% (Figure 4, left panel). Some predictors limit on average 50% or more of a single 343 

species samples: bottom temperature (50.4% of Argentina silus samples, 58.3% of 344 

Trisopterus esmarkii samples), depth (53.9% of Arctozenus risso samples) and surface 345 

temperature (54.3% of Triglops nybelini samples).  346 

Bottom temperature is the most frequent most limiting predictor (22% of all samples). Depth 347 

is most limiting in 20% of the samples, and surface temperature and sediment in 14%. Slope 348 

(2%), surface mixed layer depth (2%), surface salinity (4%), chlorophyll a (5%), bottom salinity 349 

(7%) and ice cover (8%) are the least limiting among the species. However, these predictors 350 
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are not always strongly limiting the species biomasses. For 15 of the 33 species, 351 

environmental conditions weakly limit the biomass in most of the sampled locations (Figure 4, 352 

right panel). Dynamic predictors are most often limiting for 17 species and fixed ones only for 353 

1 (Arctozenus risso).  354 

3.3.3 Predictability of suitable habitats 355 
Profiles of species responses to the selected predictors vary a lot in the Barents Sea (Figure 356 

4). Some species are strongly limited by a low number of predictors, mainly dynamic ones 357 

(Figure 4, top species), while others are rather evenly limited by several predictors (Figure 4, 358 

bottom species). Most frequent most limiting predictors that have good predictive power 359 

(predicted quantile of the testing dataset between 98.5 and 99.5) are sediment, depth and 360 

bottom and surface temperature and bottom salinity. Nearly half (15 out of 33) of the 361 

considered species are most frequently most limited by a predictor for which the model has 362 

good predictive power.  363 

It is the case of species situated toward the top of figure 4 for which we can thus evaluate 364 

current suitable habitats. They are limited by a low number of parameters. Those are e.g. 365 

Arctozenus risso, Argentina silus, Pollachius virens, Gadiculus argenteus and Micromesistius 366 

poutassou.  367 

Trisopterus esmarkii, Triglops nybelini and Sebastes viviparus are also strongly limited by few 368 

predictors, but their predictive power is less good so the model might over or underestimate 369 

the habitat suitability.  370 

Species for which it is hard to decipher suitable from unsuitable habitats are situated toward 371 

the bottom of figure 4 and most of their sample are only weakly limited: e.g. Amblyraja radiata, 372 

Gadus morhua, Zoarcidea, Hippoglossoides platessoides, Anarhichas minor or Anarichas 373 

denticulatus. Although some are limited by few predictors, and despite the good predictive 374 

power of the corresponding models, those species tend to be mostly weakly limited by the 375 

environmental variables, i.e. display high predicted biomasses on most of the Barents Sea. 376 

For 21 of the 33 species, the maximum contrast to dynamic predictors is higher than that of 377 

the fixed ones (Figure 5). This maximum predictor is bottom salinity for 1 species, ice for 3, 378 
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bottom temperature for 8 and surface temperature for 9. All those species are thus more 379 

susceptible to shift their habitat to follow a change in the environment, particularly those with 380 

the highest maximum contrast. The 12 other species have higher contrast in fixed predictors. 381 

The maximum predictor is depth for all those 12 species. Those are more constrained by depth 382 

and their habitat might not be influenced by a change in dynamic environmental conditions. 383 

4 DISCUSSION: 384 

In the present work we explored the limiting effect of 10 environmental predictors on the 385 

individual responses of 33 fish species of the Barents Sea and assessed our capacity to 386 

predict their suitable habitats. From the results, we can estimate the species ability to track 387 

potential changes in their suitable habitats in response to climate change.  388 

4.1 LIMITING EFFECT OF ENVIRONMENTAL PREDICTORS ON INDIVIDUAL 389 

SPECIES SUITABLE HABITATS 390 

The shapes of QGAM models provide the information about the limiting effect of predictors on 391 

species. In this study, QGAMs were fitted with a maximum degree of freedom of 3, so that the 392 

resulting models display simple shapes that can be interpreted in the context of the niche 393 

theory. Most frequently, models display bell shapes that can sometimes be skewed and/or 394 

incomplete (i.e. only one side of the bell is visible). V-shapes occur occasionally (in response 395 

to salinity or ice cover) and are more difficult to interpret. Causes of those v shapes could 396 

include the existence of two population within the Barents Sea with different habitat 397 

preferences, or strong non-linear links to other variables with strong spatial structure (proximity 398 

to coast, river outflow, depth, etc.).  399 

The flatness of the model shape is an indicator of the limiting power of the predictor and is 400 

reflected in the contrast metric. Some predictors are more contrasted (i.e. limiting) than others. 401 

Depth and surface and bottom temperature have the highest average contrast over the 402 

considered species. This is consistent with the literature, as many authors have highlighted 403 

the importance of depth and temperature in the habitat requirements of demersal fish over the 404 
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world (see Johnson et al., 2013 for a review). In the habitat suitability maps, they are also the 405 

most frequent most limiting predictors across the study area. The reason for these three 406 

parameters to limit the distribution of shallow-water species (< 200m depth) in depth and 407 

latitude is well studied (Brown & Thatje, 2015; Pörtner, 2010) and is linked to the thermal, oxic 408 

and hydrostatic conditions necessary for those species to maintain aerobic metabolism. 409 

Depth has been reported to be one of the most, if not the most, important predictor of demersal 410 

fish distribution, regardless of the method used or the geographical location of the study 411 

(Chatfield et al., 2010; Leathwick et al., 2006; Moore et al., 2010, 2011; Ross et al., 2015; 412 

Rutterford et al., 2015; Smoliński & Radtke, 2017). In this study, depth was often limiting either 413 

on the shelf for species living in deep areas (e.g. spotted barracudina Arctozenus risso or 414 

deepwater redfish Sebastes mentella, mainly found in the Bear Island Trough), or on the 415 

deepest and shallowest areas (for e.g. snakeblenny, Lumpenus lampretaeformis, or wolfish 416 

Anarhichas lupus).  417 

Limiting values of bottom temperature for the distribution of the demersal fish occur often in 418 

the Barents Sea. For species that are distributed in the south west part of the Barents Sea 419 

(e.g. Norway pout Trisopterus esmarkii, greater argentine Argentinus silus, saithe Pollachius 420 

virens, silvery pout Gadiculus argenteus) this predictor was the most limiting in more than half 421 

of their samples. Their spatial distribution appear to be limited by the low bottom temperatures 422 

currently occurring in the rest of the Barents Sea. Byrkjedal & Høines (2007) obtained similar 423 

results in a study focusing on the south-western part of the Barents Sea, and explained the 424 

strong influence of the temperature by the conjunction of the cold, subzero, Artic and warm 425 

Atlantic water at the polar front, creating strong latitudinal gradients of temperature.  426 

Surface temperatures cause high contrast in the species response are frequently the most 427 

limiting either i) in the north, approximately northeast of the polar front, for some species 428 

distributed mostly in the south of the Barents Sea (e.g. Atlantic herring Clupea harengus and 429 

Saithe P. virens), or ii) in the south for species considered as arctic (e.g. polar cod Boreagadus 430 

saida and bigeye sculpin Triglops nybellini). Some of those species have been shown to follow 431 

yearly variations in sea ice extent in other sub-arctic areas (Wyllie-Echeverria and Wooster, 432 
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1998). In our samples, surface temperature and ice cover are often limiting in the same area, 433 

in the North, so the limitation of the species responses by low surface temperature might also 434 

be a proxy of the limitation by cold, ice covered water masses north of the polar front. 435 

The most limiting factors of species suitable habitats revealed by the QGAMs are consistent 436 

with the literature and reflect the strong environmental gradients existing across the Barents 437 

Sea.  438 

4.2 ASSESSING OUR CAPACITY TO IDENTIFY SPECIES SUITABLE HABITATS 439 

All the species are not impacted in the same way by the different predictors, and suitable 440 

habitats are thus not equally identifiable across species. 441 

Some of the species have a taxonomic resolution too coarse to ensure a uniform response to 442 

the predictors across all individuals. A recent study (Smith et al., 2019) showed that grouping 443 

related taxa that are likely to share environmental tolerances, or splitting species in smaller 444 

population units that have adapted independently can improve niche estimates. In the case of 445 

cod (Gadus morhua), or eel pouts (zoarcids) the widespread spatial distributions and 446 

environmental tolerance partially reflect the variety of habitats used by different age groups 447 

(cod) or species (eel pouts). Modelling habitat suitability at a finer biological scale (e.g. by age 448 

or species) might be required to improve habitat suitability models for these groups (M. 449 

McPherson & Jetz, 2007; Morán‐Ordóñez et al., 2017; Porfirio et al., 2014; Thuiller et al., 450 

2005). In addition, suitable habitats are also hard to identify for species that are abundant and 451 

widespread like Long rough dab (Hippogloissoides platessoides), Greenland halibut 452 

(Reinhardtius hippoglossoides), Thorny skate (Amblyraja radiata) and two species of wolfish 453 

(Anarhichas minor and denticulatus). Long rough dab inhabits most of the Barents Sea and 454 

operates an east to west spawning migration against the larval drift, which allows it to maintain 455 

its position in the region (Walsh, 1996). This shows its wide tolerance for the conditions in the 456 

Barents Sea. The habitat mapping in the current study show that Long rough dab and 457 

Greenland halibut are never strongly limited by environmental conditions, except by extreme 458 

depths in shallow (for Greenland halibut) or deep areas (for Long rough dab). Thorny skate, 459 
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on the other hand, thrives in all ranges of depth and temperatures of the Barents Sea (Dolgov 460 

et al., 2005). All those species are very abundant across the whole Barents Sea and thus 461 

mostly weakly limited by selected environmental factors. There is therefore substantial 462 

information on where these species are, but little on where there aren’t. It is thus difficult to 463 

identify their unsuitable habitats and how environmental conditions may limit their distributions. 464 

Species for which it is possible to identify suitable habitats are e.g. the spotted barracudina 465 

(Arctozenus risso), the greater argentine (Argentina silus), saithe (Pollachius virens), silvery 466 

pout (Gadiculus argenteus), Norway pout (Trisopterus esmarkii), Norway redfish (Sebastes 467 

viviparus), or Blue whiting (Micromesistius poutassou). Those are exclusively south-western 468 

species inhabiting rather deep areas with warmer Atlantic bottom waters at the entrance of 469 

the Barents Sea. For example, blue whiting and adult saithe resides in the Norwegian Sea 470 

and expands into the Barents Sea when the Norwegian stock is large (for blue whiting: Heino 471 

et al., 2008) or as a seasonal migration during the second and third quarter (for saithe:Olsen 472 

et al., 2010). For all those boreal species, suitable habitats are mainly limited by only one 473 

predictor (most of the time the bottom temperature). Triglops nybelini is the only arctic species 474 

for which there is a clear limitation by a single factor, the surface temperature, which highly 475 

linked to ice cover in the north-east.  476 

Some species habitats can be determined even though each predictor limits only a small 477 

portion of samples; i.e. there is no clear limitation by a single factor. For those species, the 478 

proportion of samples that are weakly limited by the environment is not as important as for 479 

widespread species, so we have some information on where the species is absent, or in low 480 

abundances. It is the case for the habitats of polar cod (Boreogadus saida), capelin (Mallotus 481 

villosus), eel pouts (liparids), Atlantic poacher (Leptagonus decagonus), daubed shanny 482 

(Leptoclinus maculatus) or scaled sculpin (Icelus spp.). Those are mainly arctic species, 483 

abundant but not widespread in the Barents Sea, spatially limited to colder waters north of the 484 

polar front (Fossheim et al., 2006; Hop & Gjøsæter, 2013). We can determine suitable 485 

habitats, but we need for that to consider several predictors. 486 

 487 
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The biogeography and the environmental affinity and tolerance of a species in the Barents 488 

Sea seems to be major indicators of our capacity to identify its habitat. Together with the 489 

results of the current study, this help us build hypotheses on the potential shifts in suitable 490 

habitats for individual species of the Barents Sea.  491 

4.3 PREDICTING FUTURE HABITAT SUITABILITY IN RESPONSE TO CLIMATE 492 

CHANGE 493 

Quantitative predictions of suitable habitats for fish in the Barents Sea can be obtained by 494 

applying the QGAM models on projected maps of predictors showing the possible future 495 

environmental conditions. The predictive power of a model determines how well it will perform 496 

when transferred to a new area or another time, which is particularly important in the context 497 

of climate change (Dormann, 2007; Porfirio et al., 2014). Although it is not possible to 498 

quantitatively assess model’s performance in future climate, the recent rapid warming in the 499 

Barents Sea provides suitable conditions to test the performance of the habitat models in two 500 

periods with contrasting ocean climate. Half of the models performed well when applied to the 501 

testing dataset. The poorer performances of the other models may reflect that the training 502 

dataset did not include enough of the variability in the species response to the predictor. For 503 

those models, prediction can still be done, but the resulting habitat suitability might be 504 

over/underestimated. 505 

 506 

Without projected environmental maps, it is still possible to use the results from the QGAM fit 507 

to hypothesize qualitatively the evolution of Barents Sea fish suitable habitats in response to 508 

environmental changes. Recent climate predictions show increasing water temperatures in 509 

the Barents Sea (Stenevik & Sundby, 2007) and decrease in sea ice possibly leading to ice 510 

free winters by 2061-2088 (Onarheim & Årthun, 2017). Species that would be more sensitive 511 

to these projected changes, i.e. that would be forced to move to track suitable habitats, are 512 

those that display a highest contrast in response to dynamic - rather than fixed - variables. 513 

This is the case for two thirds of the species. The limiting factors are bottom and surface 514 
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temperature (that is projected to increase with climate change), bottom salinity (correlated to 515 

depth) and ice cover (which is projected to decrease). However, species tracking their 516 

environment might be limited in their progress by unsuitable fixed environmental conditions. A 517 

good example is Anarhichas lupus, which responds with the highest contrast to ice but is more 518 

often limited by depth across the Barents Sea. Predicting its future suitable habitat necessitate 519 

to consider both fixed and dynamic parameters. This supports a recent study projecting that 520 

depth will strongly limit the availability of suitable habitats (Rutterford et al., 2015).  521 

 522 

Predicting potential shifts in suitable habitat for a species thus requires integrating all the 523 

information gathered in the current study on niche preferences and ranges, most contrasted 524 

models, spatially most limiting factors, response to dynamic and fixed factors and predictability 525 

of suitable habitats. Here we make tentative qualitative predictions on the future of demersal 526 

fish in the Barents Sea based on the two most limiting predictors of the region: bottom 527 

temperature and depth (Figure 6). 528 

The warming of the Barents Sea is likely to increase the extent of suitable habitat for species 529 

with preferences for warmer waters (right side of the figure 6). They are susceptible to migrate 530 

or expand northward as new habitats become available, if the depth is suitable. The species 531 

concerned respond strongly to and are spatially more limited by either bottom or surface 532 

temperature. They are species for which it is easy to estimate qualitatively their future habitat 533 

because few predictors control their niche et the scale of the Barents Sea. Species that prefer 534 

intermediate depths (Micromesistius poutassou, Argentina silus, Gadiculus argenteus, 535 

Sebastes norvegicus and viviparus, Trisopterus esmarkii and Pollachius virens) and two 536 

shallower species (Clupea harengus and Melanogrammus aeglefinus) are likely to migrate 537 

north as most of the Barents Sea is in the range of their suitable depths. This is supported in 538 

the literature. Ecological niche models have predicted a gain in suitable habitat in the Barents 539 

Sea for saithe (P.virens) and haddock (M. aeglefinus) in the middle of the Barents Sea 540 

between 1960 and 2090 (Lenoir et al., 2011). (Hollowed et al., 2013) also hypothesized a 541 

northward shift of C. harengus. Some of those species have already been noticed to displace 542 
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northward: (Perry et al., 2005) noticed that M. poutassou and T. esmarkii distribution 543 

boundaries have shifted northward in relation to the warming between 1977 and 2001 in the 544 

North Sea, and in the Barents Sea, both species and A. silus are part of the boreal or 545 

intermediate communities that also have shifted between 2004-2012 (Fossheim et al., 2015). 546 

Unlike this group of species, A. lupus is already widespread on the shallow banks of the 547 

Barents Sea and is spatially limited by depth and sediment in its northern boundary. It is thus 548 

unlikely that the warming will open new suitable habitats for that species. However, this 549 

species is also limited by other parameters so future suitable habitats are hard to predict.  550 

 551 

Temperature increase in the Barents Sea will cause the loss of the coldest habitats of the 552 

region. Species that prefer cold habitats (left side of figure 6) are the most threatened as they 553 

will then experience temperatures warmer than their current optima. To come back to 554 

temperatures closer to their optimum, they would need to migrate further north into the deep 555 

Arctic ocean, or retract around Svalbard where they would ultimately be trapped if they don’t 556 

tolerate high depths. The concerned species are mainly arctic ones with large depth tolerance, 557 

so both scenarios are possible. Ribbed sculpin (Triglops pingelii) and Arctic alligatorfish 558 

(Aspidophoroides olrikii) are exceptions as they respond more strongly to depth and might not 559 

be able to retract to deeper and colder areas. However, all those species are part of the group 560 

for which suitable habitats are harder to predict qualitatively because of the many predictors 561 

involved in the biomass limitation. To understand potential shifts in their future habitat, the 562 

knowledge gained on their habitat requirements needs to be integrated and applied to 563 

projected environmental conditions.  564 

 565 

Species currently preferring intermediate temperatures (0 to 2°C) can be divided into shallow 566 

and intermediate depth loving species and deep associated ones. Shallower species 567 

(optimum >300m) are generally widespread. Some are common over the whole Barents Sea 568 

(like Gadus morhua, Hippoglossoides platessoides or Ambyraja radiata) and little can be said 569 

about their future habitat. Others are widespread in the north and south-east of the Barents 570 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2020. ; https://doi.org/10.1101/2020.01.20.912816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.20.912816
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sea (Leptoclinus maculatus, Lumpenus lampretaeformis, Leptagonus. decagonus, Artediellus 571 

atlanticus, Triglops nybellini and Amblyraja hyperborea). They all tolerate a wide range of 572 

depth conditions so they would able to track their preferred environmental conditions by 573 

moving northward or diving deeper. However most of them are also limited by other predictors, 574 

so their future suitable habitats is hard to estimate qualitatively. 575 

Deeper species (Cottunculus microps, Reinhardtius hippoglossoides, Anarhichas 576 

denticulatus, Arctozenus risso and Sebasted mentella) are mainly found around the Bear 577 

island Trough. Their response to climate change depends more on their tolerance to shallower 578 

depths. R. hippoglossoides and A. denticulatus are widespread, with wide tolerance to depth 579 

and might be able to expand northward. In Hollowed et al. (2013), R. hypoglossoides is indeed 580 

suspected to move in or expand in the high Arctic. S. mentella is more constrained by 581 

shallower depths but has expanded into the Barents Sea during the period of the study (as 582 

hypothesized by Hollowed et al., 2013). A. risso however, is not very tolerant to shallower 583 

depth and respond strongly to salinity (which is itself very correlated to depth). If its habitat 584 

conditions were to change, the species could not move northward on the shallower Barents 585 

Sea shelf.  586 

Similar tradeoffs will constantly occur for all species as changes in dynamic variables will 587 

interact with limitations caused by fixed ones. Light conditions might be a particularly strong 588 

tradeoff at those latitudes (Poloczanska et al., 2016).    589 

5 CONCLUSIONS 590 

The use of QGAM allowed to explore the potential environmental niche of 33 fish species in 591 

the Barents Sea. The models show a wide variety of responses to environmental stressors. 592 

The application of the Liebig’s law on the mapped conditions of the region highlighted the 593 

importance of depth and temperatures as limiting factors for most of the species. But the set 594 

of selected predictors influence each taxon differently, which leads to some species suitable 595 

habitats being more difficult to predict than others. While species responding more strongly to 596 

dynamic variables should be the most responsive to changes in their habitats, this study 597 
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highlighted the importance of considering their interaction with fixed predictors when predicting 598 

future suitable habitats.  599 

In the face of the complexity of the response at the individual species scale, it seems clear 600 

that explaining and predicting the responses of whole communities to changes in their habitat 601 

is challenging. Yet, ecosystem studies need for those individual responses to be integrated at 602 

larger scales. An advantage of the QGAM methods is that the models can easily be used as 603 

habitat preferences prior that input end-to-endo models. This would allow to predict suitable 604 

habitats maps on top of which other processes would refine the species distribution. Such 605 

empirical knowledge at the basis of the modelling process would greatly benefit our models 606 

and can inform resource management and conservation.  607 
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 871 

Figure 1: examples of Trisopterus esmarkii modelled log10 responses to three environmental 872 

predictors: depth, slope, and sediment type. A and B: black dotted scatterplot of the log of non-null 873 

biomasses of the species in response to the predictor. Red dots indicate modelled log of maximum 874 

biomass predictions. On top of the scatterplot, the marginal density shows the distribution of samples 875 

conditional to the predictor values. C: Boxplot of response to the sediment. The model prediction is 876 

the 99th quantile for each sediment class: 1= Coarse sediment, 2= Compacted sediment or sedimentary 877 

bedrock, 3= Mixed sediment, 4= Mud, clay and sandy mud, 5= Sand and muddy sand, 6= Sand, gravel 878 

and pebbles, 7= Thin or discontinuous sediment on bedrock. All panels: horizonal dashed lines indicate 879 

references for the calculation of the contrast: a: max predicted maximum biomass, b: min predicted 880 

maximum biomass. Contrast = (a-b)/a.  881 
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 882 

Figure 2: Spatial predictions in 2013 of Trisopterus esmarkii A) suitable habitat (maximum biomass) 883 

and B) most limiting predictor. Color indicates the predictor’s category: fixed (sediment, depth, 884 

slope), dynamic (all the others) or not weakly limiting. (predicted biomass > 25% of the model 885 

maximum) 886 
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 887 

Figure 3: scatterplot of the predicted percentile of the observation by the models in the training and 888 

testing set. The dotted rectangle indicates models that slightly under or overestimate the maximum 889 

biomass. Outside of that rectangle are the models that strongly under or overestimate the maximum 890 

biomass.  891 
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  892 

Figure 4: Frequency of the limiting effect across space and years. Right panel: for each species, mean 893 

proportion of samples limited by each predictor category: fixed, dynamic, or weakly limiting. Fixed 894 

parameters are slope, depth and sediment. Dynamic predictors are all the others. Predictors are 895 

weakly limiting a sample if the corresponding predicted biomass is >25% of the model maximum. Left 896 

panel: for each species, mean proportion of samples limited by each factor. Only the samples strongly 897 

limited are shown (predicted biomass <25% of the model maximum). Black rectangles identify for 898 

each species the most frequent most limiting predictor, but only if its predictive power is acceptable 899 

(predicted quantile of the testing dataset ranging from 98.5 to 99.5).  900 
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 901 

Figure 5: Scatterplot of species maximum contrasts in response to fixed versus dynamic variables. The shape of the point indicates which parameter is the 902 

one with the maximum contrast. The 1:1 line is grey and dashed. B is a zoom in the grey area of A. 903 
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 904 

Figure 6: Bottom temperature - depth habitat preferences of the Barents Sea demersal fish. Dots 905 

indicate the predictor value at which the species predicted biomass is maximum. Grey lines indicate 906 

the width of the species optimum i.e.for which predictors values the predicted biomasses reach 90 907 

(dark grey) and 80% (light grey) of their maximum. Big grey dot indicates the average values of depth 908 

and bottom temperature in the Barents Sea. 909 

 910 

9 APPENDICES 911 

Supplementary material can be found as PDF on the server 912 
 913 
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