Supporting Information for "Enhanced vertical mixing in coastal upwelling systems driven by diurnal-inertial resonance: numerical experiments"

Giles Fearon^{1,3}, Steven Herbette², Jennifer Veitch^{3,7}, Gildas Cambon²,

Andrew Lucas⁴, Florian Lemarié⁵, Marcello Vichi^{1,6}

¹Department of Oceanography, University of Cape Town, Rondebosch, South Africa

²Laboratoire dOcéanographie Physique et Spatiale (LOPS), IUEM, Univ. Brest - CNRS - IRD - Ifremer, Brest, France

³South African Environmental Observation Network, Egagasini Node, Cape Town, South Africa

⁴Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA

⁵Univ Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France

 6 Marine and Antarctic Research centre for Innovation and Sustainability (MARIS), University of Cape Town, Rondebosch, South

Africa

⁷Nansen-Tutu Centre, Marine Research Institute, Department of Oceanography, University of Cape Town, South Africa

Contents of this file

1. Figures S1 to S6

March 4, 2020, 5:13pm

Figure S1. As per Figure 3 in the paper, but with the 1D-vertical model now integrated with clockwise rotating wind stress forcing. Inertial oscillations are not generated.

:

Figure S2. As per Figure 4 in the paper, but with the 1D-vertical model now integrated excluding bottom friction terms in computing $\frac{\partial \eta}{\partial x}$ from Equation 6. The zero depth-average cross-shore transport assumption is violated.

Figure S3. Sensitivity of the depth averaged velocity U_{max} to water depth for experiments shown in Figures 4 and S2. U_{max} is computed as the maximum depth averaged cross-shore velocity over the fifth day of the simulation. Note that $\frac{\partial \eta}{\partial x}$ is derived under the assumption of zero depth averaged cross-shore velocity and significant deviation of U_{max} from zero represents a violation of this assumption.

March 4, 2020, 5:13pm

Figure S4. As per Figure 5 in the paper, but with the 1D-vertical model now integrated with a constant alongshore wind stress and ignoring the land boundary effect. Classic Ekman theory predicts a cross-shore surface layer transport ($U_E = \frac{\tau_s^y}{\rho f}$) of -1.34 m² s⁻¹, which is predicted by the model to within 1.5%. The constant wind stress is spun-up smoothly from rest over 1 day.

March 4, 2020, 5:13pm

Figure S5. Realistic model configuration for comparison with observations.

:

Figure S6. As per Figure S5 but forced with the diurnal anticlockwise rotary component of the wind stress (τ^{ac}).

March 4, 2020, 5:13pm