FN Archimer Export Format PT J TI Mapping the Intertidal Microphytobenthos Gross Primary Production Part I: Coupling Multispectral Remote Sensing and Physical Modeling BT AF Méléder, Vona Savelli, Raphael Barnett, Alexandre Polsenaere, Pierre Gernez, Pierre Cugier, Philippe Lerouxel, Astrid Le Bris, Anthony Dupuy, Christine Le Fouest, Vincent Lavaud, Johann AS 1:1;2:2;3:1,2;4:3;5:1;6:4;7:1;8:1,5;9:2;10:2;11:6,7; FF 1:;2:;3:;4:PDG-ODE-LITTORAL-LERPC;5:;6:PDG-ODE-DYNECO-LEBCO;7:;8:;9:;10:;11:; C1 Mer Molécules Santé (EA 21 60), Université de Nantes, Nantes, France LIENSs ‘Littoral ENvironnement et Sociétés’ UMR 7266, Institut du Littoral et de l’Environnement, CNRS/Université de La Rochelle, La Rochelle, France Laboratoire Environnement Ressources des Pertuis Charentais (LER-PC), Ifremer, L’Houmeau, France Département Dynamiques de l’Environnement Côtier, Laboratoire d’Ecologie Benthique, Ifremer, Plouzané, France Centre d’Etude et de Valorisation des Algues (CEVA), Pleubian, France Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Québec, QC, Canada Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Québec, QC, Canada C2 UNIV NANTES, FRANCE UNIV LA ROCHELLE, FRANCE IFREMER, FRANCE IFREMER, FRANCE CEVA, FRANCE CNRS, FRANCE UNIV LAVAL, CANADA SI LA TREMBLADE BREST SE PDG-ODE-LITTORAL-LERPC PDG-ODE-DYNECO-LEBCO IN WOS Ifremer UPR DOAJ copubli-france copubli-univ-france copubli-int-hors-europe IF 5.247 TC 17 UR https://archimer.ifremer.fr/doc/00643/75531/76429.pdf https://archimer.ifremer.fr/doc/00643/75531/76430.docx LA English DT Article DE ;microphytobenthos;intertidal mudflat;gross primary production;remote sensing;NDVI;modeling AB The gross primary production (GPP) of intertidal mudflat microphytobenthos supports important ecosystem services such as shoreline stabilization and food production, and it contributes to blue carbon. However, monitoring microphytobenthos GPP over a long-term and large spatial scale is rendered difficult by its high temporal and spatial variability. To overcome this issue, we developed an algorithm to map microphytobenthos GPP in which the following are coupled: (i) NDVI maps derived from high spatial resolution satellite images (SPOT6 or Pléiades), estimating the horizontal distribution of the microphytobenthos biomass; (ii) emersion time, photosynthetically active radiation (PAR), and mud surface temperature simulated from the physical model MARS-3D; (iii) photophysiological parameters retrieved from Production–irradiance (P–E) curves, obtained under controlled conditions of PAR and temperature, using benthic chambers, and expressing the production rate into mg C h–1 m–2 ndvi–1. The productivity was directly calibrated to NDVI to be consistent with remote-sensing measurements of microphytobenthos biomass and was spatially upscaled using satellite-derived NDVI maps acquired at different seasons. The remotely sensed microphytobenthos GPP reasonably compared with in situ GPP measurements. It was highest in March with a daily production reaching 50.2 mg C m–2 d–1, and lowest in July with a daily production of 22.3 mg C m–2 d–1. Our remote sensing algorithm is a new step in the perspective of mapping microphytobenthos GPP over large mudflats to estimate its actual contribution to ecosystem functions, including blue carbon, from local and global scales. PY 2020 PD JUN SO Frontiers In Marine Science SN 2296-7745 PU Frontiers Media SA VL 7 UT 000552273300001 DI 10.3389/fmars.2020.00520 ID 75531 ER EF