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A B S T R A C T   

This study investigates the dispersion of atmospheric pollutants over a coastal region of north-western Italy by 
means of modelling techniques. A series of annual air quality model simulations corresponding to different 
emission reduction scenarios has been performed with a three-dimensional chemical transport modelling chain 
running at 3 km resolution. The emission reduction scenarios were used to develop bottom-up (locally produced) 
source-receptor relationships to perform a local source allocation analysis of the main atmospheric pollutants in a 
few polluted cities within the domain of interest. Results were compared with default top-down (EU-wide) 
source-receptor relationships, at roughly 7 km resolution. The results show the benefit of using the two sources of 
information in an integrated way. The analysis of the impacts of local emission reductions on concentrations and 
of the source allocation results reveals that nitrogen oxides concentrations are mostly affected by local emission 
sources, especially road transport and harbour related activities while the contribution of non-local sources is 
important for particulate matter (especially from industry and agriculture sources). For PM, larger scale 
modelling approaches (top-down) are necessary. Ideally, both a bottom-up approach for the characterisation of 
the local emission sources and a top-down larger scale approach to capture the impact of non-local sources would 
be necessary to perform an accurate source allocation, and provide support to the design of local air quality 
plans.   

1. Introduction 

In recent years, the study of the dispersion of air pollutants became of 
primary relevance to understanding the processes affecting air quality 
and their impact on human health and on the environment (Wakefield 
et al., 2001; Hu et al., 2015; Xue et al., 2018; Haines and Ebi, 2019). 
Within this framework, the extension of air quality monitoring networks 
(Harkat et al., 2018) as well as the adoption of innovative low cost 
(Kumar et al., 2015; Popoola et al., 2018) and portable sensors (Sun 
et al., 2016; Mueller et al., 2017; Shindler, 2019) become key tools for 
studying urban air quality. However, such sensors have intrinsic limi
tations, e.g. measurement uncertainty, that do not fully allow for the 
capturing the spatial and temporal variability exhibited by air pollut
ants. Satellite data can provide complementary information from this 
perspective, as they can provide spatial variability even if with lower 

temporal resolution and precision (Nicolantonio et al., 2007).Together 
with measurements, Eulerian Chemical Transport Models (CTM) are 
widely used to assess atmospheric physics, as they fully describe the 
transport, diffusion and chemical transformation processes involved in 
the formation of air pollutants (Pernigotti et al., 2013; Mailler et al., 
2017; Ciarelli et al., 2019; Manders et al., 2017). On top of this, models 
represent the only option available to investigate potential scenarios (e. 
g. impact of a given emission reduction on concentration). However, a 
key component in modelling activities is related to the preparation of the 
required input data, consisting of the meteorological forcing, initial and 
boundary conditions and emissions that need to be estimated for several 
activity sectors. Since the quality of the modelling results will depend on 
the quality of this input data, a great deal of effort is devoted to this task. 
Regarding the emissions, a bottom–up approach (compiled with detailed 
local information) is generally more accurate than a top-down one 
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Fig. 1. Computational domains of the NINFA (in red) and LINEA (in blue) modelling systems. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 2. Time series of NO2 daily mean at four control stations. In red: simulated data; in blue: observations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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(produced with general EU-wide information) as it relies on local 
knowledge. But top-down methodologies based on spatial disaggrega
tion techniques (using proxies such as population), down to the 
municipal level or to the smallest functional units are commonly used 
due to the lack of detailed data (Miranda et al., 2015). As mentioned 
above, one of the main skills of the CTM is to provide information on the 
potential outcome of “what if” scenarios since they are able to evaluate 

the impacts of emissions changes on concentration levels. But this skill 
comes at the expense of resources as the computational time required for 
performing scenarios (in general lengthy!) can easily become prohibi
tive. To cope with this limitation, simplified approaches based on the 
development of source-receptors relationships (SRR) (Pisoni et al., 2010; 
Seibert and Frank, 2004; Vedrenne et al., 2014) are available. These SRR 
mimic the behaviour of a full CTM model when used to predict the link 

Table 1 
Summary of statistical indicators values for five control stations, classified as industrial (IS), rural (RS) and urban (US) stations.  

Station name Coordinates (Lat Lon) HH(NO2) NBI(NO2) HH(PM10) NBI(PM10) HH (O3) NBI(O3)

Mazzucca (IS) 44.39∘N, 8.29∘E 0.13 0.12 − − − −

Cengio (RS) 44.40∘N, 8.21∘E 0.51 0.26 0.56 0.35 0.41 0.15 
Maggiolina (US) 44.12∘N, 9.84∘E 0.81 0.33 0.62 0.32 0.51 0.10 
Quarto (US) 44.40∘N, 8.99∘E 0.83 0.43 0.47 0.31 0.34 0.07 
Varaldo (US) 44.32∘N, 8.49∘E − − 0.75 0.34 0.47 0.08  

Fig. 3. Time series of PM10 daily mean concentrations at four control stations. In red: simulated data; in blue: observations. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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between emission and concentration changes. Among these SRR, the 
SHERPA (Screening for High Emission Reduction Potentials on Air 
quality) modelling tool was recently developed. SHERPA consists of 
simple emission-concentration relationships/equations that are derived 
from a limited set of full CTM emissions scenario. The SRR, after vali
dation, can then be used to evaluate the impact of policy scenarios 
(Clappier et al., 2015; Thunis et al., 2016; Pisoni et al., 2017). The gain 
in CPU requirement obtained with SRR, as compared to the full CTM, 
allows to increase the number of application scenarios. It then becomes 
feasible to test the impact of many different sources and perform a 
source allocation study whereby the contribution of different emission 
categories (e.g. industrial, transport, agricultural sectors) and different 
spatial scales (e.g. local, urban, metropolitan areas) on air pollution is 
quantified. The present study aims to improve our understanding of the 
processes governing air pollution over the region of northwestern Italy. 
To this aim, a set of CTM simulations is created to develop 
source-receptor relationships. We first analyse the results of this limited 
number of CTM scenario simulations and then use the SRR to deliver a 
source allocation for the main atmospheric pollutants. The strengths and 
weaknesses of using bottom-up information, rather than top-down, 
when developing source-receptors models are also addressed.The 
manuscript is organized as follows: first, a description of the CTM and 
source-receptor model are provided in Section 2. The results of the CTM 
scenarios and those of the SRR related source allocation analysis are 
then discussed in Section 3 for some control locations, by means of both 
a bottom-up and top-down SRR. Finally, conclusions are given and 
discussed. 

2. Models and data 

2.1. CTM model and inventory emissions 

LINEA (Ligurian Network to Evaluate Aerosol and photochemical 
pollution) is the numerical system implemented and managed by ARPA 
Liguria to forecast the concentration of photochemical pollutants. Its 
domain covers the entire Ligurian Region at a 3-km horizontal resolu
tion (blue rectangle in Fig. 1). Initial and boundary conditions are 
retrieved from the modelling chain NINFA (Northern Italy Network to 
Forecast Aerosol and photochemical pollution) that covers the entire 
region of Northern Italy at a 5-km resolution (red rectangle in Fig. 1). 
NINFA itself is nested within the larger scale CHIMERE-based PREV‘AIR 
model running at a 50-km spatial resolution. PREV’AIR is managed by 
INERIS (Institut National de l’Environnement Industriel et des Risques) 
and IPSL (Institut Pierre Simon Laplace des Sciences de l’environment). 

The CTM (Chemical Transport Model) model used in LINEA is 
CHIMERE (version 2014b, Menut et al. (2013)). The meteorological 
forcing is provided by two parallel configurations (respectively at 5 and 
2.2 km resolution) of the modelling chain system COSMO (Consortium 
for Small ScaleModeling, Steppeler et al. (2003) and Baldauf et al. 
(2011)). Since the computational domain extends over different regions 
and nations, the emission inventory (reference year: 2016) is compiled 
on the basis of three different input data, as detailed below:  

• The regional inventory E2GOV for emissions located within the 
Liguria region. This contains both the natural and anthropogenic 
sources for the main pollutants, greenhouse gases and metals; 

Fig. 4. Time series of O3daily mean at four control stations. In red: simulated data; in blue: observations. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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• The national inventory ISPRA for the main natural and anthropo
genic emissions originating from all Italian regions (other than 
Liguria); 
The European inventory MACC (Kuenen et al. 2014) for the emis
sions within the neighbouring region PACA (Provence-Alpes-Cote-
d’Azur)Emissions are then spatially disaggregated by means of proxy 
surrogate variables in order to reproduce an accurate spatial vari
ability over the domain. 

The evaluation of the modelling results was performed by direct 
comparison with observed data from the stations of the Liguria air 
quality regional network,to be representative of the modelling domain 
covered by LINEA system. The agreement is good for the NO2 daily mean 
for all industrial and rural stations (Fig. 2a) and 2b)). 

Model performance are evaluated by means of statistical indicators; 
for the sake of brevity only the Normalized Bias NBI and the 

symmetrically normalized root mean square error HH are used. These 
indicators have been introduced by Hanna and Heinold (1986) and are 
defined as: 

• NBI =
∑

(Si − Oi)/
∑

Oi, where Si and Oi are respectively simula
tions and observations. This indicator provides insight on the 
average error level (the closer this indicator is to zero, the better the 
simulation is);  

• HH =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Si − Oi)
2
/
∑

SiOi

√

, provides insight on the average and 
scatter components of the unbiased error. 

Values are reported in Table 1, together with the names and co
ordinates of each control station. 

For NO2, the worst performances occur at urban stations (Fig. 2c) 
and d)), with a tendency to overestimate daily mean values, even though 

Fig. 5. Maps of annual mean and delta NO2 concentrations (base case and scenarios).  
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monthly means are quite similar. For PM10, the time series of modelled 
daily mean concentrations shows a good match with observed data 
(Fig. 3a), 3b), 3c) and 3d)), with a slight tendency to underestimate daily 
mean values at the urban stations (Fig. 3b) and d)). This is also suggested 
by the higher values of the statistical indicators. 

For O3, all stations exhibit a good agreement between observed and 
simulated data (Fig. 4a), 4b), 4c) and 4d)), with a tendency to over
estimate daily concentrations especially at Maggiolina station (Table 1). 

2.2. Source-receptor modelling 

As discussed in the previous sections, a CTM allows for simulation of 
the complex phenomena involving pollutants in the atmosphere. But one 
drawback of a CTM is the time required to perform a simulation, which 
then becomes an issue when several simulations are necessary to answer 
a specific question as source allocation. To hasten the response time, one 

way forward is to substitute the CTM by its associated simplified rep
resentation. SHERPA implements this concept. SHERPA mimics the 
behaviour of a given CTM (in this case CHIMERE) via a statistical 
approach. A limited number of full CTM simulations are produced, 
which are then used to identify the parameters needed to build the 
source-receptor relationships. After identification and validation of 
these simplified statistical relations, SHERPA can then be used to 
perform scenario analysis or source allocation studies, in a limited 
amount of time, in comparison to the full CHIMERE model. Here we 
recall only the main features of the SHERPA methodology. For more 
details, we refer to (Thunis et al., 2016; Pisoni et al., 2017, 2018). 

The SHERPA concept is a data-driven approach, starting from the 
CTM input and output (defined as emissions and concentrations changes 
with respect to the basecase). The concentration change (CHIMERE 
concentration delta) in receptor cell j is defined as the sum of the con
centration changes resulting from the changes in precursor emissions p 

Fig. 6. Maps of annual mean and delta PM10 concentrations (base case and scenarios).  
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from any source cell i within the domain (CHIMERE emission deltas). 
The concentration delta in a receptor cell j can therefore be computed as 
follows: 

ΔCj =
∑Nprec

p

∑Ngrid

i
αp

ijΔEp
i (1)  

where Ngrid is scenarios is required to create the SHERPA n the domain, 
Nprec is the number of precursors, ΔEp

i [kton/year] and ΔCj [μg/m3] are 
the emission and concentration deltas, and αp

ij are the unknown transfer 
coefficients between each source cell i and receptor cell j. Finally pre
cursor p refers to the precursor emissions changes causing the specific 
concentration changes for the pollutant under consideration (i.e. for 
NOx concentrations, the relevant emission is NOx. For PM2.5 concen
trations, the relevant emissions are NOx, VOC, NH3, PPM, SO2). 

The main assumption in SHERPA is that the unknown transfer co
efficients αp

ij can be expressed as a bell-shaped function of distance as 
follows: 

αp
ij =αp

j
(
1 + dij

)− ωp
j (2)  

where dij is the distance between a receptor cell j and a source cell i. 
The final formulation implemented in SHERPA is therefore as fol

lows: 

ΔCj =
∑Nprec

p

∑Ngrid

i
αp

j
(
1 + dij

)− ωp
j ΔEp

i =
∑Nprec

p
αp

j

[
∑Ngrid

i

(
1 + dij

)− ωp
j ΔEp

i

]

(3) 

Additional details on the overall SHERPA methodology, and on the 
estimation of the coefficients (αp

j and ωp
j ) , can be found in Clappier et al. 

(2015); Thunis et al. (2016); Pisoni et al. (2017). 
With this formulation, various simulations can then be performed to 

analyse how concentrations change (in comparison to a base case) due to 
emission reduction scenarios. This approach is used in the next sections, 
to perform source allocation for the domain under study. We will 
compare the results obtained with a dedicated version of SHERPA, based 
on bottom-up (local) data with those obtained with the SHERPA top- 
down implementation (Pisoni et al., 2018) in which default EU-wide 
data are implemented. 

3. Results and discussion 

3.1. Scenario analysis 

As mentioned above, a series of CTM scenarios is required to create 
the SHERPA surrogate model (training scenarios). In this work. 

(caption on next column) 

Fig. 7. Validation of the SRR model (as compared to the CTM reference) for 
NO2, PM10 and PM2.5, for scenario VII (shipping emissions).The SRR are then 
used to perform Source Allocation (SA) modelling. For this purpose, we selected 
three “control” areas (urban areas definition) that include the cities of Genoa, 
La Spezia and Savona, respectively. The exact control areas for the three cities 
correspond to the NUTS3 (province) levels as per the European Nomenclature 
of Territorial Units for statistics. In addition to these three areas, we also assess 
the contribution from emissions originating from outside the Liguria region. 
Results are compared with another version of the SHERPA model (hereafter 
SHERPA 7) developed by the JRC on the basis of CHIMERE 7 km resolution 
simulations over whole Europe (emission inventory reference year: 2010). 
While the SHERPA7 results are based on the same underlying CTM, it should be 
noted that the spatial resolution, the meteorology and the emissions differ. The 
purpose of this comparison is therefore to evaluate the robustness of our re
sponses. The maps of the α coefficients (these coefficients show the relative 
importance of a given emission precursors to pollution concentrations) e.g. for 
primary PM10 emissions (PPM10) obtained by SHERPA3 and SHERPA7 are re
ported in Fig. 8. They are in good agreement in terms of values and spatial 
variability. 
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Fig. 8. Alpha values (SHERPA coefficient) for primary PM10 emissions PPM10, estimated for SHERPA3 (bottom-up model version) and SHERPA7 (top-down model 
version) over the LINEA domain. 

Fig. 9. SA (Source Allocation) at Genoa performed by SHERPA3 (Fig. 9a), c) and 9e) and SHERPA7 (Fig. 9b), d), 9f)). The “Total” entry represents the sum of the local 
and non-local contributions for each sector. The graphs show on the x-axis the various geographical (“control” = local emissions and “no control = linked to far-away 
emissions) or sectoral (Transport, Industry, etc …) sources of pollution, while the y-axis the values of relative contributions, from 0 to 100. 
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• Scenario I (training): NOx;  
• Scenario II (training): NMVOC  
• Scenario III (training): NH3;  
• Scenario IV (training): PPM;  
• Scenario V (training): SO2  
• Scenario VI (training): All pollutants (NOx, NMVOC, NH3, PPM1, 

PPM2, PPM3, CO, SO2). Primary particulate is split in PPM1 (≤ 10 
mm), PPM2 (≤ 2.5 and ≥10 mm) and PPM3 ( ≥2.5 mm)  

• Scenario VII (Validation): NOx but only SNAP8 (shipping emission). 

Let’s first analyse the output of these different scenarios.The map of 
the base case NO2 annual mean concentrations (Fig. 5a)), shows, as 
expected, the highest concentrations along the main traffic lines and 
highways. 

The highest values are located in the vicinity of the principal har
bours, in particular Genoa and La Spezia where the daily limit value 
concentrations are frequently exceeded, followed to a lesser extent by 
Savona. Outside the Liguria Region, large concentrations are also 
modelled nearby Livorno and Nice, where significant industrial and 
maritime facilities are located.Scenario I (Fig. 5b)) mainly affects road 
transport, as exhibited by the marked concentration decrease in prox
imity of the western traffic lines. As expected, this is the reduction 
scenario that has the most impact on NO2. The spatial distribution of the 
concentration deltas (difference between scenario and base case) shows 
a marked reduction (negative delta) on NO2 values along the entire 
coastline as a result of the reductions of both the transport and off-road 
emissions.The impact of reducing shipping emissions (Scenario VII) is 
significant on harbour concentrations (Fig. 5c)), with a greater impact 
on the Genoa, La Spezia, and Savona locations and in a lesser measure on 
Nice. The Livorno area seems not to be affected by such emission re
ductions, suggesting that the main contributors to pollution in this area 
are the road transport and industrial activities. With the exception of the 
slightly larger values in the western part of the area (translating into a 
lower concentration delta), Scenario VI (Fig. 5d)) does not add any in
formation, as compared to what was already confirmed in Scenario I. 
This corroborates the minor role of other than NOx emissions on the 
formation of NO2. For PM10, the base case (Fig. 6a)) exhibits the largest 
concentrations outside of Liguria on the North-West and North-East side, 
as a consequence of the emissions related to the agricultural and in
dustrial activities within the Po Valley (mostly Piedmont and Emilia- 
Romagna). Significant values are also found in France (Nice) and in 
the province of Livorno. Within the Liguria Region, the largest concen
trations are modelled in proximity of the Genoa and Savona harbours, 
followed by La Spezia. 

The impact of a NOx emission reduction on PM10 (scenario I) is 
limited, as noticed in other CHIMERE studies. PM10 concentrations are 
little affected (Fig. 6b)), except for the decrease in the North-West area. 
The results of scenario IV (Fig. 6c)) show on average concentrations over 

the entire domain, especially in coastal areas; in particular, a substantial 
decrease of the PM10 concentrations is modelled at West (France) due 
probably to the reduced industrial emissions. Other reduction areas are 
modelled at the North-West and North-East as expected, in the proximity 
of Genoa, La Spezia and Livorno, and along the traffic line connecting 
West Liguria to France.A combined reduction of all pollutants (scenario 
VI) (Fig. 6d) shows a general decrease of the concentrations over the Po- 
Valley as well as over the Livorno province. Within the Liguria region, 
significant concentration reductions are modelled in proximity of the 
main harbours and along the whole stretch of coastline. PM2.5 (not 
shown here) exhibits a spatial behaviour that is very similar to PM10. 
Finally, the impact of emission reduction scenarios on O3concentrations 
(not shown here due to lack of space) shows the usual titration effects of 
NOx emissions in urban areas. 

3.2. Source allocation results 

The 3-km resolution CHIMERE emission reduction scenarios 
described in Section 2.2 for the year 2016 were used together with the 
base case for the training of the SHERPA model (hereafter SHERPA3) to 
produce Source Receptor Relationships (SRR). Not used for training, 
scenario VII which tests the impact of shipping emissions is used for the 
validation (see validation results in Fig. 7). In this scatter each point 
represents the yearly average concentrations (for the various considered 
pollutants) in each domain grid-cell, for the full CHIMERE model (AQM) 
and its the source-receptor approximation (SR). 

Finally, we use both models in source allocation mode, to evaluate 
the impact of local (defined as local in the Figures) emissions on con
centrations and the remaining concentration fraction (defined as non- 
local). Figures from 9a) onward show on the x-axis the various 
geographical or sectoral (Transport, Industry, etc …) sources of pollu
tion (“control” means due to local emissions and “no control means 
linked to far-away emissions). The SHERPA 3SA of the NOx emissions on 
NOx concentrations1 for the Genoa area (Fig. 9a)) reveals that the largest 
contributions are the offroad (harbour emissions, 45.7%) and transport 
(31.7%) emissions (Table 2), as already shown by the analysis of the 
scenario. 

The remaining but minor contributions arise from the residential and 
industrial sectors (less than 10%). The external contribution is relatively 
small (less than 20%) and is mainly due to the transport sector, a sector 
that obtains an overall contribution of 47.6% when all transport 

Table 2 
Percentage contributions at Genoa, for NOx (top), PM10 (central) and PM2.5 (bottom).   

%Transp.  Indust. Agric. Resid. Offroad Other No control 

NOx 
SHERPA3 31.7 1.4 0.0 5.2 45.7 0.1 15.9 
SHERPA3TOT 47.6 4.3 0.0 9.9 45.0 0.0 −

SHERPA7 46.2 4.4 0.0 6.3 15.2 0.1 30.5 
SHERPA7TOT 67.6 4.3 0.0 9.9 18.0 0.0 −

PM10 
SHERPA3 16.7 19.7 9.4 7.2 10.8 3.3 32.9 
SHERPA3TOT 20.5 25.5 28.8 9.3 11.2 4.5 −

SHERPA7 20.0 1.3 0.3 16.6 3.8 0.9 56.7 
SHERPA7TOT 22.7 20.1 30.3 17.2 6.7 2.8 −

PM2.5 
SHERPA3 18.4 24.7 7.5 7.2 8.9 2.7 30.5 
SHERPA3TOT 22.3 31.8 23.3 9.4 9.2 3.8 −

SHERPA7 21.3 1.2 0.3 21.3 4.6 0.7 50.6 
SHERPA7TOT 23.2 17.5 30.5 19.4 7.1 2.0 −

1 Note that the NO2SHERPA source allocation is done for NOxconcentrations, 
later on to be converted to NO2. In this manuscript we stick to NOxsource 
allocation, to simplify the analysis; as the transformation to NO2 would also 
consider the application of chemical mechanisms and would make the analysis 
of the results more complex. 
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contributions within the domain are summed up.With SHERPA 7, the 
local transport contribution (Fig. 9b)) is higher (46.2% vs 31.7%, 
Table 2), while the harbour traffic contribution is only 15.2% (vs. 
45.7%). This difference could be linked to the different emission 

inventories used, as well as to the different model resolutions. 
Although the differences in terms of resolution, emission inventory 

reference year or meteorology between SHERPA7 and SHERPA3 might 
explain some of the observed discrepancies between the two models, the 

Fig. 10. SA for La Spezia location performed by SHERPA3 (Fig. 10a), c) and 10e) and SHERPA7 (Fig. 10b), d) and 10f)). The “Total” entry represents the sum of the 
local and non-local contributions from each sector. 
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bottom-up and top-down approaches followed to derive the two emis
sion inventories is likely one of the key factors explaining the varying 
results. It stresses the importance of using an inventory that is detailed at 
a regional level to capture the harbour contribution, a contribution that 
is of primary importance in this particular region for securing an accu
rate source allocation.The external Liguria contribution stands at 30.5% 
with SHERPA 7, mainly originating from the transport sector that thus 
reaches an overall contribution of 67.6%.According to SHERPA 7, the 
major local (e.g. from the Liguria province) contributions to 
PM10(Fig. 9c)) in Genoa originate from the industrial (19.7%) and 
transport (16.7%) sectors; other contributions are lesser (e.g. off-road 
traffic (10.8%), agriculture and residential). The total of the local con
tributions reaches about 70%. The remaining 32.9% originate from 
outside the province and are mainly due to agricultural and industrial 
activities, that are transported and spread from the Po valley. On the 
other hand, SHERPA7 identifies transport (20.0%) and residential 
(16.6%) activities as the prevailing sectors (Fig. 9d)), while the indus
trial contribution is marginal. However, the imported contribution is 
larger than with SHERPA3 with a non-local contribution reaching 57%, 
of which a significant contribution comes from the agricultural emis
sions, followed by the transport and industrial contributions.Similar 
considerations can be made for PM2.5(Fig. 9e)), with the difference that 
the industry contribution reaches 24.7% within the Liguria Region, and 
rise to 30.8% overall. SHERPA7 provides a source allocation that is very 
similar to the one found for PM10. 

Generally speaking, it can be deduced that the implementation of a 
good SA of NOxon a regional scale for the Liguria region requires a 
locally detailed (bottom-up) emissions inventory, to correctly identify 
the transport and harbours activities, while for particulate matter, larger 
scale models are necessary to capture the contributions from emissions 

outside the particular region of interest. Similarly to the results obtained 
for Genoa, the SA analysis for NOxat the La Spezia location (Fig. 10a)) 
points to transport (26.2%, Table 3) and off-road (39.8%) as main 
contributors. 

The contributions from external emissions (29.7%, higher than at 
Genoa) originate mainly from transport, increasing its overall contri
bution to 46.5%. On the contrary, SHERPA7 (Fig. 10b)) indicates a 
significant contribution from the industrial sector (23.5%) which rises to 
70.1% overall.This difference again confirms the need to use a detailed 
emission inventory for the correct quantification of the harbour and 
traffic contributions. In addition, larger scale models prove to be of 
prime importance to accurately quantify the non-local fraction. For 
PM10(Fig. 10c)), the contributions are shared almost equally among 
transport (13.7%), agriculture (9.4%) and off-road (13.2%). The non- 
local contribution is actually higher than at Genoa (52.9%), mainly 
caused by the differences in the agricultural sector. SHERPA7 (Fig. 10d)) 
estimates a non-local contribution of 59.3% and overall industrial and 
agriculture contributions of 36.2% and 29.9%, respectively. This con
firms the significance of the industry sector.Similar considerations can 
be made for PM2.5(Fig. 10e) and f)). The non-local contribution 
modelled by SHERPA7 is slightly lower than for PM10(54.3%). The 
harbour contribution on NOXat Savona (Fig. 11a)) is larger than at other 
locations with 51.8% (Table 4). 

Another significant contibution arises from transport (23.1%).The 
non-local contribution amounts 20.8%, with off-road emissions rising up 
to 60% overall, more than that which was registered at other locations, 
probably due to other non-road machinery transport related to the 
agricultural-industrial activities, imported from the North-West area. 
Similarly to the area of La Spezia, SHERPA7 (Fig. 11b)) models an 
important industrial contribution (23.5%), but lower contributions for 

Table 3 
Percentage contributions at La Spezia, for NOx (top), PM10 (central) and PM2.5 (bottom).   

%Transp.  Indust. Agric. Resid. Offroad Other No control 

NOx 
SHERPA3 26.2 0.4 0.0 3.7 39.8 0.1 29.7 
SHERPA3TOT 46.5 1.5 0.0 6.2 45.6 0.2 −

SHERPA7 15.0 23.5 0.0 2.2 4.5 0.0 54.5 
SHERPA7TOT 17.3 70.1 0.0 3.9 8.6 0.1 −

PM10 
SHERPA3 13.7 4.2 9.4 4.1 13.2 2.3 52.9 
SHERPA3TOT 19.9 7.2 49.0 5.8 14.4 3.6 −

SHERPA7 5.1 23.9 0.5 8.0 2.4 0.8 59.3 
SHERPA7TOT 12.8 36.2 29.9 12.2 5.7 3.2 −

PM2.5 
SHERPA3 14.3 4.9 8.6 4.4 13.1 2.1 52.4 
SHERPA3TOT 20.7 8.3 47.3 6.2 14.3 3.2 −

SHERPA7 5.2 26.3 0.4 10.7 2.6 0.5 54.3 
SHERPA7TOT 11.8 36.2 30.9 12.9 5.6 2.0 −

Table 4 
Percentage contributions at Savona, for NOx (top), PM10 (central) and PM2.5 (bottom).   

%Transp.  Indust. Agric. Resid. Offroad Other No control 

NOx 
SHERPA3 23.1 0.8 0.0 3.3 51.8 0.0 20.8 
SHERPA3TOT 32.5 2.6 0.0 4.7 60.0 0.1 −

SHERPA7 14.1 23.5 0.0 1.3 9.9 0.0 50.9 
SHERPA7TOT 16.7 69.4 0.0 2.3 10.8 0.0 −

PM10 
SHERPA3 16.7 14.2 11.7 16.8 7.5 1.2 31.7 
SHERPA3TOT 19.2 18.2 33.1 18.1 8.8 2.4 −

SHERPA7 6.7 29.4 1.0 3.1 1.9 2.6 55.2 
SHERPA7TOT 14.2 31.9 37.7 6.5 5.0 4.6 −

PM2.5 
SHERPA3 19.5 17.9 9.5 18.5 6.0 1.1 27.4 
SHERPA3TOT 22.1 22.8 25.8 19.8 7.1 2.2 −

SHERPA7 7.1 31.0 0.9 4.0 2.1 2.9 51.8 
SHERPA7TOT 13.9 31.9 38.9 6.2 4.9 4.1 −
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the off-road transport (9.9%). The contribution of the non-local emis
sions reaches 50.9%. This increases the overall industrial contribution to 
69.4%, while off-road remains unchanged. We see from this analysis that 
both a detailed emission inventory and the use of large-scale models for 
the quantification of non-local emissions are of prime importance for 
local assessments.These points are well illustrated in the case of PM10at 
Savona (Fig. 11a)). The regional model (SHERPA3) estimates the 

industrial emissions to 14.2%, and similar values for the transport, 
agriculture and residential sector. The non-local contribution is 31.7% 
and is mainly related to agricultural emissions. With the EU-wide 
approach SHERPA7 (Fig. 11d)), the local industrial contribution rea
ches 29.4%, while other local contributions remain marginal. The non- 
local contribution reaches 55.2%, with a high agricultural component 
(37%). Similar findings can be expressed for the SA of PM2.5(Fig. 11e) 

Fig. 11. SA for Savona location performed by SHERPA3 (Fig. 11a), c) and 11e) and SHERPA7 (Fig. 11b), d) and 11f). The “Total” entry represents the sum of the local 
and non-local contributions from each sector. 
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and f)). The main difference with PM10is that the non-local contribution 
is lower (27.4%), with a reduced relative contribution from the agri
culture (25.8%). In contrast, SHERPA7 models a similar agricultural 
contribution for both PM10and PM2.5.Generally speaking, La Spezia and 
Savona, located closer to the Piedmont and Emilia Romagna regions, 
respectively seem to be more affected by non-local emissions related to 
activities within the Po valley. 

4. Discussion and conclusions 

In this work, air quality modelling is performed with the purpose of 
assessing the impact of emission reduction scenarios on the concentra
tions of primary and secondary pollutants in the atmosphere, with a 
particular focus on the Ligurian coastal region in North western Italy. To 
assess a large number of potential scenarios but also to produce source 
allocation, it is necessary to simplify air quality models which generally 
require important CPU resources. To this aim, we performed 8 yearly 
emission scenario simulations with the multi-scale chemistry-transport 
CHIMERE model, at 3-km resolution over a northwestern Italy domain. 
We then developed a simplified set of emissions-concentrations re
lationships (source-receptors functions) to perform a quantitative source 
allocation.Results were analysed in vicinity of three major seaside cities 
but also within their associated provinces. The analysis of the scenarios 
revealed that NOxemission reductions mostly impact NO2concentrations 
locally, in proximity of traffic lines, especially in the western part of the 
domain and along the coastline with significant impacts close to har
bours. While NOXemissions mostly impact NO2locally (mainly con
cerning the inner transport and maritime activities), the non-local 
contribution is important for particulate matter. PM10and PM25are 
mostly influenced by contributions from the industrial and agricultural 
activities, especially from outside the Liguria territory.As we cannot 
compare source allocation results to observations, we also used a second 
set of source- receptor relationships (EU-wide) based on the CHIMERE 
model, but with a different set of emissions, meteorological drivers and 
for a different reference year. The purpose is to compare the results 
obtained with the two sets of SR but also to combine both results to 
increase the robustness of our source allocation estimates. Because of the 
different methodology used to build the emission inventory (emissions 
based on local vs. EU top-down), this second set of SR provides a slightly 
different signal. It is not possible to say which SR approach is the best or 
the most accurate, but the integrated use of the two sets of information 
can add value to our analysis. In this work, it is clear that the inclusion of 
regional scale information is key for an accurate quantification of the 
impacts of local emission reductions. On the other hand, a comprehen
sive characterization of the non-local contributions requires larger-scale 
models, especially when particulate matter is considered. The integra
tion of local and non-local information is therefore important to assess 
the impact of emission reduction scenarios on concentrations but also 
for source allocation studies to support to the design of regional abate
ment strategies. Finally, it is important to stress that while simplified SR 
approaches are useful to screen different options, it is advisable to use 
the full air quality model to assess and confirm the impact of a designed 
air quality plan. 

Author contribution 

LS made the majority of the analysis and drafted the first version of 
the paper. EP contributed to the analysis and worked to finalize the 
manuscript. PT overviewed and supervised the manuscript finalization, 
and contributed to some of the key ideas implemented in the paper. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

L. Sartini has been funded in the framework of INTERREG V 
ALCOTRA Project CLIMAERA. The research activity was developed at 
ARPA Liguria. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.aeaoa.2020.100088. 

References 

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., Reinhardt, T., 
2011. Operational convective-scale numerical weather prediction with the cosmo 
model: description and sensitivities. Mon. Weather Rev. 139 (12), 3887–3905. 

Ciarelli, G., Colette, A., Schucht, S., Beekmann, M., Andersson, C., Manders-Groot, A., 
Mircea, M., Tsyro, S., Fagerli, H., Ortiz, A.G., Adani, M., Briganti, G., Cappelletti, A., 
D’Isidoro, M., Cuvelier, C., Couvidat, F., Meleux, F., Bessagnet, B., 2019. Long-term 
health impact assessment of total pm2.5 in europe during the 1990–2015 period. 
Atmospheric Environment: X 3 100032. http://www.sciencedirect.com/science/ 
article/pii/S2590162119300358. 

Clappier, A., Pisoni, E., Thunis, P., 2015. A new approach to design source–receptor 
relationships for air quality modelling. Environ. Model. Software 74, 66–74. 

Haines, A., Ebi, K., 2019. The imperative for climate action to protect health. N. Engl. J. 
Med. 380 (3), 263–273. 

Hanna, S.R., Heinold, D.W., 1986. Simple Statistical Methods for Comparative 
Evaluation of Air Quality Models. Springer US, Boston, MA, pp. 441–452. 

Harkat, M.-F., Mansouri, M., Nounou, M., Nounou, H., 2018. Enhanced data validation 
strategy of air quality monitoring network. Environ. Res. 160, 183–194. 

Hu, J., Ying, Q., Wang, Y., Zhang, H., 2015. Characterizing multi-pollutant air pollution 
in China: comparison of three air quality indices. Environ. Int. 84, 17–25. 

Kuenen, J.J.P., Visschedijk, A.J.H., Jozwicka, M., Denier van der Gon, H.A.C., 2014. 
Emission inventory; a multi-year (2003-2009) consistent high-resolution european 
emission inventory for air quality modelling. Atmos. Chem. Phys. 14 (20), 
10963–10976. 

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Sabatino, S.D., Bell, M., 
Norford, L., Britter, R., 2015. The rise of low-cost sensing for managing air pollution 
in cities. Environ. Int. 75, 199–205. 

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S., 
Briant, R., Tuccella, P., Bessagnet, B., Colette, A., Létinois, L., Markakis, K., 
Meleux, F., 2017. Chimere-2017: from urban to hemispheric chemistry-transport 
modeling. Geosci. Model Dev. (GMD) 10 (6), 2397–2423. 

Manders, A.M.M., Builtjes, P.J.H., Curier, L., Denier van der Gon, H.A.C., Hendriks, C., 
Jonkers, S., Kranenburg, R., Kuenen, J.J.P., Segers, A.J., Timmermans, R.M.A., 
Visschedijk, A.J.H., Wichink Kruit, R.J., van Pul, W.A.J., Sauter, F.J., van der 
Swaluw, E., Swart, D.P.J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van 
Velthoven, P., Banzhaf, S., Mues, A.C., Stern, R., Fu, G., Lu, S., Heemink, A., van 
Velzen, N., Schaap, M., 2017. Curriculum vitae of the lotos–euros (v2.0) chemistry 
transport model. Geosci. Model Dev. (GMD) 10 (11), 4145–4173. https://www.ge 
osci-model-dev.net/10/4145/2017/. 

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., 
Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., 
Siour, G., Turquety, S., Valari, M., Vautard, R., Vivanco, M.G., 2013. Chimere 2013: 
a model for regional atmospheric composition modelling. Geosci. Model Dev. (GMD) 
6 (4), 981–1028. 

Miranda, A., Silveira, C., Ferreira, J., Monteiro, A., Lopes, D., Relvas, H., Borrego, C., 
Roebeling, P., 2015. Current air quality plans in europe designed to support air 
quality management policies. Atmospheric Pollution Research 6 (3), 434–443. 

Mueller, M., Meyer, J., Hueglin, C., 2017. Design of an ozone and nitrogen dioxide sensor 
unit and its long-term operation within a sensor network in the city of zurich. 
Atmospheric Measurement Techniques 10 (10), 3783–3799. 

Nicolantonio, W.D., Cacciari, A., Bolzacchini, E., Ferrero, L., Volta, M., Pisoni, E., 2007. 
Modis aerosol optical properties over north Italy for estimating surface-level pm2.5. 
In: European Space Agency, (Special Publication) ESA SP. 

Pernigotti, D., Thunis, P., Cuvelier, C., Georgieva, E., Gsella, A., De Meij, A., Pirovano, G., 
Balzarini, A., Riva, G.M., Carnevale, C., Pisoni, E., Volta, M., Bessagnet, B., 
Kerschbaumer, A., Viaene, P., De Ridder, K., Nyiri, A., Wind, P., 2013. Pomi: a model 
inter-comparison exercise over the po valley. Air Quality, Atmosphere & Health 6 
(4), 701–715. 

Pisoni, E., Albrecht, D., Mara, T., Rosati, R., Tarantola, S., Thunis, P., 2018. Application 
of uncertainty and sensitivity analysis to the air quality sherpa modelling tool. 
Atmos. Environ. 183, 84–93. 

Pisoni, E., Carnevale, C., Volta, M., 2010. Sensitivity to spatial resolution of modeling 
systems designing air quality control policies. Environ. Model. Software 25 (1), 
66–73 cited By :19. URL. www.scopus.com. 

Pisoni, E., Clappier, A., Degraeuwe, B., Thunis, P., 2017. Adding spatial flexibility to 
source-receptor relationships for air quality modeling. Environ. Model. Software 90, 
68–77. 

Popoola, O.A., Carruthers, D., Lad, C., Bright, V.B., Mead, M.I., Stettler, M.E., Saffell, J. 
R., Jones, R.L., 2018. Use of networks of low cost air quality sensors to quantify air 
quality in urban settings. Atmos. Environ. 194, 58–70. 

L. Sartini et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.aeaoa.2020.100088
https://doi.org/10.1016/j.aeaoa.2020.100088
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref2
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref2
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref2
http://www.sciencedirect.com/science/article/pii/S2590162119300358
http://www.sciencedirect.com/science/article/pii/S2590162119300358
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref4
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref4
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref5
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref5
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref6
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref6
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref7
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref7
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref8
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref8
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref9
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref9
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref9
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref9
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref10
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref10
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref10
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref11
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref11
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref11
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref11
https://www.geosci-model-dev.net/10/4145/2017/
https://www.geosci-model-dev.net/10/4145/2017/
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref13
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref13
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref13
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref13
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref13
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref14
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref14
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref14
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref15
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref15
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref15
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref16
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref16
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref16
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref17
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref17
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref17
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref17
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref17
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref18
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref18
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref18
http://www.scopus.com
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref20
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref20
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref20
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref21
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref21
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref21


Atmospheric Environment: X 7 (2020) 100088

14

Seibert, P., Frank, A., 2004. Source-receptor matrix calculation with a Lagrangian 
particle dispersion model in backward mode. Atmos. Chem. Phys. 4 (1), 51–63. 

Shindler, L., 2019. Development of a low-cost sensing platform for air quality 
monitoring: application in the city of rome. Environ. Technol. 1–14. 

Steppeler, J., Doms, G., Schättler, U., Bitzer, H.W., Gassmann, A., Damrath, U., 
Gregoric, G., 2003. Meso-gamma scale forecasts using the nonhydrostatic model lm. 
Meteorol. Atmos. Phys. 82 (1), 75–96. 

Sun, L., Wong, K.C., Wei, P., Ye, S., Huang, H., Yang, F., Westerdahl, D., Louie, P.K., 
Luk, C.W., Ning, Z., 2016. Development and application of a next generation air 
sensor network for the Hong Kong marathon 2015 air quality monitoring. Sensors 16 
(2). 

Thunis, P., Degraeuwe, B., Pisoni, E., Ferrari, F., Clappier, A., 2016. On the design and 
assessment of regional air quality plans: the sherpa approach. J. Environ. Manag. 
183, 952–958. 

Vedrenne, M., Borge, R., Lumbreras, J., Rodríguez, M.E., 2014. Advancements in the 
design and validation of an air pollution integrated assessment model for Spain. 
Environ. Model. Software 57, 177–191. 

Wakefield, S.E., Elliott, S.J., Cole, D.C., Eyles, J.D., 2001. Environmental risk and (re) 
action: air quality, health, and civic involvement in an urban industrial 
neighbourhood. Health Place 7 (3), 163–177. 

Xue, X., Chen, J., Sun, B., Zhou, B., Li, X., 2018. Temporal trends in respiratory mortality 
and short-term effects of air pollutants in shenyang, China. Environ. Sci. Pollut. 
Control Ser. 25 (12), 11468–11479. 

L. Sartini et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2590-1621(20)30028-9/sref22
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref22
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref23
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref23
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref24
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref24
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref24
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref25
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref25
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref25
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref25
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref26
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref26
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref26
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref27
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref27
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref27
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref28
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref28
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref28
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref29
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref29
http://refhub.elsevier.com/S2590-1621(20)30028-9/sref29

	From emissions to source allocation: Synergies and trade-offs between top-down and bottom-up information
	1 Introduction
	2 Models and data
	2.1 CTM model and inventory emissions
	2.2 Source-receptor modelling

	3 Results and discussion
	3.1 Scenario analysis
	3.2 Source allocation results

	4 Discussion and conclusions
	Author contribution
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


