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Abstract :   
 
Five decades ago, a landmark paper in Science titled The Cave Environment heralded caves as ideal 
natural experimental laboratories in which to develop and address general questions in geology, ecology, 
biogeography, and evolutionary biology. Although the ‘caves as laboratory’ paradigm has since been 
advocated by subterranean biologists, there are few examples of studies that successfully translated their 
results into general principles. The contemporary era of big data, modelling tools, and revolutionary 
advances in genetics and (meta)genomics provides an opportunity to revisit unresolved questions and 
challenges, as well as examine promising new avenues of research in subterranean biology. Accordingly, 
we have developed a roadmap to guide future research endeavours in subterranean biology by adapting 

a well‐established methodology of ‘horizon scanning’ to identify the highest priority research questions 
across six subject areas. Based on the expert opinion of 30 scientists from around the globe with 
complementary expertise and of different academic ages, we assembled an initial list of 258 fundamental 
questions concentrating on macroecology and microbial ecology, adaptation, evolution, and conservation. 
Subsequently, through online surveys, 130 subterranean biologists with various backgrounds assisted us 

in reducing our list to 50 top‐priority questions. These research questions are broad in scope and ready 
to be addressed in the next decade. We believe this exercise will stimulate research towards a deeper 

understanding of subterranean biology and foster hypothesis‐driven studies likely to resonate broadly 
from the traditional boundaries of this field 
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I. INTRODUCTION

In the era of the Internet, social media, and open-access mega-journals, the amount of accessible 

scientific information is overwhelming (Landhuis, 2016; Wakeling et al., 2016; Fire & Guestrin, 

2019; Jarić et al., 2020). It is estimated that more than 50 million peer-reviewed scientific papers
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exist (Jinha, 2010) and about 1.5 million new articles are published every year (Laurance et al., 

2013). To capitalize on the volume of this information and make the most of it (e.g. Ioannidis, 

2005; Jeschke et al., 2019), it is becoming increasingly important for scientists to explore 

effective ways to capture the latest advances in their field or related fields of research. Horizon 

scanning – i.e. the systematic examination of information to identify emerging issues and 

opportunities in a given research area – has become a useful tool to summarize and determine 

research priorities and agendas (Sutherland et al., 2011). The most important questions in 

ecology (Sutherland et al., 2013; McGill et al., 2019), island biogeography (Patiño et al., 2017), 

and microbiology (Antwis et al., 2017), the annual identification of emerging issues in global 

conservation (Sutherland et al., 2020), as well as the 100 articles that every ecologist should read

(Courchamp & Bradshaw, 2018), are all instructive examples where horizon scanning has 

successfully synthesized trends or highlighted the most promising future research avenues.

Fifty years ago, in a landmark Science paper titled The Cave Environment, Poulson & 

White (1969) heralded caves as ‘natural laboratories’, i.e. simplified settings that can be used to 

understand the principles governing the dynamics of more complex environments. Characterized 

by stringent environmental constraints and simple communities, subterranean habitats have been 

regarded as ideal systems for investigating many of the unresolved questions in ecology, 

biogeography, and evolutionary biology (Juan et al., 2010; Sánchez-Fernández et al., 2018; 

Mammola, 2019). Scientists have also studied subterranean organisms to understand human 

diseases such as autism (Yoshizawa et al., 2018), diabetes (Riddle et al., 2018), and cancer 

(Gatenby, Gillies & Brown, 2011), to investigate the engineering potential of biologically 

inspired materials (Lepore et al., 2012), and to discover new drugs and pharmaceutical products 

(Cheeptham et al., 2013). Others have even looked at caves through the lens of astrobiology, 
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showing that the subterranean microbiome might hold clues to life beyond Earth (Northup et al., 

2011; Popa et al., 2011). 

Although the ‘caves as laboratory’ paradigm is often advocated by subterranean 

biologists, examples of studies that have successfully translated their results into general 

principles remain few in number. Five decades after Poulson & White (1969), subterranean 

biology is entering a new research era dominated by big data (Zagmajster et al., 2019), 

modelling tools (Flôres et al., 2013; Mammola & Leroy, 2018), and increasingly cheaper 

molecular approaches (Pérez-Moreno, Iliffe & Bracken-Grissom, 2016; Lefébure et al., 2017). 

Concomitantly, we are facing a global crisis that is negatively impacting subterranean 

biodiversity (Mammola et al., 2019b; Boulton, 2020). Therefore, the time is ripe to review the 

outstanding challenges faced by this broad-in-scope discipline, as well as promising new 

research avenues where subterranean-based studies may be helpful in answering general and 

broadly scoped questions. Because gathering multiple views on such an extensive subject is 

difficult, we relied on the well-established methodology of horizon scanning to identify 50 

fundamental, but unresolved questions in subterranean biology. With this intellectual exercise, 

we aimed to develop a roadmap that will guide future research endeavours and stimulate 

hypothesis-driven studies likely to resonate beyond the boundaries of this discipline.

II. HORIZON SCANNING PROTOCOL

(1) Initial list assembly

We used horizon scanning methodology (Sutherland et al., 2011) and adapted the approach 

developed by Patiño et al. (2017) to identify priority research questions in subterranean biology. 

Survey coordinators (S.M. and P.C.) identified seven subject areas within the subterranean 
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biology discipline (Table 1), namely: (1) Adaptation, (2) Origin and evolution, (3) Community 

ecology, (4) Macroecology and biogeography, (5) Conservation biology, (6) Microbiology and 

applied topics, and (7) Other topics. We included the latter subject area to cover additional topics

or ideas that departed from the six core subject areas and may have been overlooked. For each 

subject area, survey coordinators invited a senior researcher (highlighted with asterisks in Table 

1) to act as panel coordinator, with the task of establishing an international panel of experts to 

identify and formulate a set of fundamental questions. Each panel coordinator selected and 

invited three or four members to join their panel, which included at least one early-career 

scientist (i.e. a postdoc or researcher with less than 10 years of experience) to obtain a multi-

generational perspective on the different topics. Survey coordinators encouraged panel members 

to consult broadly with colleagues and select additional researchers to join their panels if deemed

important in providing complementary expertise. In assembling the panels, our goal was to 

maximize multidisciplinarity, while ensuring that research interests within the seven panels 

covered a broad array of geographic areas, model organisms, and networks of international 

collaborators. Members of each panel identified at least 20 questions that they viewed as 

fundamental within their subject area and thus likely to advance the field significantly.

In total, we assembled 258 questions, which were screened for duplication or ambiguity 

by the survey coordinators. In this phase, survey coordinators purged most subterranean-specific 

jargon from questions and homogenized wording to ensure that all questions were presented in a 

clear and straightforward manner. Therefore, throughout the survey we operated under the 

assumption that all questions were characterized by a similar degree of readability (Plavén-

Sigray et al., 2017). After the cleaning procedure and removal of duplicate questions, we 

assembled a final list of 211 survey questions (hereafter ‘List #1’). In assembling List #1, we 
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subsumed questions identified by the panel focusing on ‘Other topics’ into the six main subject 

areas.

(2) Voting procedure and selection of 50 top-priority questions

We subjected List #1 to an initial round of online voting by all panel members (Survey #1) to 

select the most voted 20 questions for each of the six subject areas (Fig. 1). Voting was a binary 

choice, whereby participants scored each question as either of ‘major’ or ‘minor’ importance. 

We randomized question order for each participant. We repeated this voting protocol in all 

subsequent online surveys. Each panel member voted on all questions irrespective of subject 

area, although votes by panelists on their subject area were disregarded in the final ranking of 

Survey #1. As a result, survey coordinators culled List #1 to the 120 most-voted questions (20 

questions from each of six subject areas), referred to as List #2, thus balancing the number of 

questions in subsequent voting rounds.

We then subjected List #2 to online voting (Survey #2) by inviting a broad community of 

subterranean biologists including ca. 170 members of the International Society on Subterranean 

Biology (ISSB), ca. 50 members of the European Cave Organism Network, ca. 100 members of 

the Anchialine mailing list, as well as other working groups and email listservs related to 

subterranean biology that we could identify (e.g. national biospeleological groups). Note that 

members of these different groups often overlapped and some of the emails were no longer 

active. We estimated that Survey #2 reached an upper boundary of between 200 and 250 unique 

recipients. Of these, 133 recipients completed the online survey.

At the end of Survey #2, we gave participants the opportunity to submit one additional 

question if they felt this question was missing from List #2. Thus, 25 additional questions were 
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added to the third list of questions (List #3). Questions in List #3 were voted on by all panel 

members (Survey #3), and then ranked (by percentage of ‘major importance’ votes per question) 

together with the 120 questions from List #2. Finally, we selected the highest ranking questions 

to assemble a list of 50 top-priority questions.

(3) Caveats on interpretation 

Some general caveats should be recognized when interpreting the results of any horizon scanning

survey (e.g. Sutherland et al., 2011, 2013; Seddon et al., 2014; Patiño et al., 2017). First, the 

background knowledge and intellectual passions of the experts involved may introduce 

subjectivity in the formulation of the initial list of topics and questions. Second, subjectivity 

likely plays a role throughout the voting process, as any voting outcome may be affected by the 

interests of a particular group of participants. In our case, potential biases in the composition of 

subterranean biologists sampled may have influenced the final selection of the top-priority 

questions to an extent difficult to quantify precisely. For example, questions related to 

microbiology received the lowest share of ‘major importance’ votes (mean ± SD: 0.69 ± 0.01). It

is understood that microbiology topics are not less important or timely, it is simply that 

microbiologists are probably underrepresented in the subterranean biology community. Also, an 

imbalance in the expertise of participants may explain the substantial difference in how the 

highest priority questions were parsed across the six subject areas – from four in ‘Community 

ecology’ to 12 in ‘Conservation biology’.

To address these potential shortcomings, we adopted four countermeasures. First, we 

increased the survey audience, by addressing the questionnaire to different groups and 

associations of subterranean biologists. Second, we diversified the expertise of panel members 
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by including early-stage to mid- and late-career researchers from different disciplines, research 

laboratories, and geographic areas. Third, we included a seventh panel (‘Other topics’) 

specifically to fill the gaps in the initial composition of proposed questions. Indeed, it has been 

argued that in horizon scanning, the initial division into subject areas may limit lateral thinking 

(Sutherland et al., 2013). Finally, by allowing voters to suggest additional questions when voting

in the survey, we were able to capture the range of priority topics better. 

We are confident these practices minimized some of the biases inherent to this study. 

Importantly, we believe this 50 top-priority survey served to highlight some of the most timely 

and challenging areas of interest in current and future research, rather than providing a 

comprehensive synthesis of research needs in modern subterranean biology.

III. SUMMARY OF THE HORIZON SCAN

In Survey #1, the percentage of ‘major importance’ votes ranged between 89% (top-voted 

question) and 4% (least-voted question). In the extended online voting (Survey #2), 133 voters 

participated, of which 71% identified ‘subterranean biology’ as their primary field of research. 

Although voters’ gender was slightly skewed toward males (76 men versus 57 women), 

deviation from the 1:1 male:female ratio was not significant (χ2 = 2.71; d.f. = 1; P = 0.10), 

indicating that our sample was not gender-biased. 45% of survey voters were experienced 

researchers, with an academic age of more than 10 years since they earned their PhD, while 29% 

were researchers within 10 years from their PhD. PhD and undergraduate students accounted for 

16% of voters. The remaining 10% of participants were other professionals, such as research and

field technicians or recreational cavers.

During Survey #2, participants suggested 28 additional questions; three questions were 
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duplicates and were thus excluded. The remaining 25 questions were evaluated during Survey 

#3, and three made it to the 50 top-priority list. The lower threshold for questions was 67% of 

‘major importance’ votes, whereas the top-voted question garnered 91% votes (Fig. 1).

In the following, we present the 50 top-priority questions in subterranean biology 

according to the results of Surveys #2 and #3 (the full list of questions is provided as online 

supporting information in Appendix S1). For clarity, questions were compiled into our six 

subject areas. We provide information about each question’s final rank (#) and percentage of 

‘major importance’ votes received (%), and highlight the three questions suggested by the

Survey #2 participants with an asterisk (*). A glossary of terms is available in Table 2.

IV. ADAPTATION

Q1 – What are the drivers of adaptive evolution in caves? [#1; 91%]

Q2 – What are the main constraints to subterranean adaptation? [#4; 83%]

Q3 – What are the degrees of adaptive plasticity of organisms across different subterranean 

environments? [#9; 78%]

Q4 – Which traits of subterranean organisms should be considered as ‘adaptive’? [#11; 78%]

Q5 – How have morphological and behavioural traits co-evolved in subterranean organisms? 

[#14; 76%]

Q6 – What is the level and nature of reproductive isolation between cave and surface populations

and what reproductive barriers are typically involved? [#19; 75%]

Q7 – Do similar traits evolve repeatedly in subterranean organisms due to changes in the same 

genes, genetic pathways, and/or developmental processes? [#23; 73%]

Q8 – Have subterranean species evolved a distinct set of convergent behaviours? [#26; 72%]
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Q9 – Are there common developmental pathways that promote or constrain subterranean 

adaptation? [#29; 72%]

Q10 – Do traits that constitute reproductive isolation evolve in the same way across independent 

closely related subterranean populations or species? [#42; 70%]

The morphology of subterranean organisms, which show bizarre convergent adaptations even 

across different animal phyla, has historically attracted the attention of generations of scientists 

(Juan et al., 2010) including Charles Darwin (1859). Therefore, it is no surprise that subterranean

biologists participating in this survey greatly valued the role of subterranean habitats as natural 

laboratories for the study of adaptive evolution. Ten questions focusing on adaptation were 

included in our top-50 list (Fig. 1). 

Colonization of suitable habitat is the initial event leading to subterranean adaptation 

(details in Section V). Whatever the mode or pathway, colonizers often experience a significant 

change upon entering the subterranean environment (i.e. complete darkness), which results in 

visual sensory deprivation, challenges in locating mates and food, limited or modified food 

resources, and physical barriers to dispersal. Adaptive responses to these factors may involve the 

action of selection on plastic traits already existing in the colonizers (i.e. phenotypic plasticity; 

Bilandžija et al., 2020), standing genetic variation, or new beneficial mutations. Understanding 

which of these environmental factors and adaptive responses play a primary role in subterranean 

adaptation, either acting alone or in various combinations, was the most important question (Q1) 

in our survey, selected by 91% of participants. Yet, given that some higher taxa are missing or 

understudied in caves (Culver & Pipan, 2019), it remains unclear what are the main constraints 

to subterranean adaptation (Q2) and whether specific exaptations facilitate successful 
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colonization events (see also Q11 in Section V). Resolving how many phenotypes of 

subterranean dwellers depend on genetic and developmental constraints (Q9), or reflect 

entrapment at local peaks in adaptive landscapes or recent invasions with insufficient time for 

selection to alter traits, is one of the future challenges for evolutionary biologists.

Additional high-priority questions were focused on subsequent refinements of the initial 

adaptive responses, such as the repertoire of adaptive plasticity (Q3), the degree to which pre-

existing genetic variation contributes to subterranean phenotypes, and which traits of 

subterranean organisms can be considered as adaptive (Q4). Historically, reduction or loss of 

traits such as eyes and pigmentation was thought to be driven by random mutations and genetic 

drift or by natural selection, either directly or indirectly. This controversy has continued to the 

present, with strong adaptationist (Carlini & Fong, 2017) and non-adaptationist (Wilkens & 

Strecker, 2017) viewpoints. Depending on the species or ecological context, it is possible that all 

of these mechanisms have roles in subterranean adaptation. Resolving this debate will require 

explanations at the molecular, cellular, and developmental levels in multiple lineages (Jeffery, 

2005), and the integration of this information to infer whether convergent traits evolve repeatedly

in subterranean animals due to changes in the same or different genes, genetic pathways, and 

developmental processes (Q7). Answers to all these questions will contribute to our 

understanding concerning why some species adapt rapidly and evolve when facing new 

environmental conditions, inside or outside caves, which is a critical question given global 

climate change (Walther et al., 2002). In turn, this could provide insights about adaptive 

processes occurring in other ecological settings with a similar set of environmental conditions 

(e.g. permanent darkness, constancy in climatic conditions, food scarcity), such as deep-sea 

habitats (Trontelj, Borko & Delić, 2019; Mammola, 2020).
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Once survival in a subterranean habitat is ensured, the successful colonizers are subject to

adaptive morphological and behavioural (co-)evolution (Q5). Many behavioural changes are 

probably influenced by the essential requirements of finding food and mates in darkness, and 

may be convergent across different subterranean lineages (Q8). Also, some subterranean animals

suddenly attain a new status at the top trophic level and predator release occurs. For example, in 

the Mexican tetra, Astyanax mexicanus (De Filippi) (Actinopterygii: Characidae), the workhorse 

of adaptive evolution studies in caves (Jeffery, 2009; Wilkens & Strecker, 2017; Torres-Paz et 

al., 2018), this new ecological status of an apex predator facilitated the evolution of a range of 

behaviours that may not be sustainable in a predator-limited surface environment (Yoshizawa et 

al., 2010; Hyacinthe, Attia & Rétaux, 2019). 

Most subterranean organisms may also face subsequent invasions of their habitats by new

colonizers, of both former surface-dwelling conspecifics (if they are still extant) and other 

competing species (e.g. Howarth et al., 2007; Wynne et al., 2014). Therefore, to understand 

subterranean adaptations fully, it is crucial to explore the degree and nature of reproductive 

isolation between the subterranean-adapted lineages and invading surface conspecifics (Q6). The

majority of subterranean animals probably arose through the process of ecological speciation in 

which reproductive isolation evolved as a response to divergent selection between environments 

(Niemiller, Fitzpatrick & Miller, 2008; Mammola et al., 2018). Thus, many subterranean 

adaptations should at least indirectly favour non-random mating between individuals of the 

derived subterranean and ancestral surface populations. Understanding this will help to address 

whether traits that constitute reproductive isolation evolve in the same way in independent 

closely related subterranean populations or species (Q10), and therefore whether and how often 

parallel speciation occurs in the subterranean realm. Ultimately, this would shed new light 
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concerning the intriguing hypothesis on the predictability of evolution (Blount, Lenski & Losos, 

2018).

V. ORIGIN AND EVOLUTION

Q11 – Which traits present in surface species (exaptations) facilitate successful subterranean 

colonization and adaptation? [#12; 77%]

Q12 – How do, and which, patterns of subterranean species diversification vary across taxa and 

habitats? [#13; 77%]

Q13 – What evolutionary processes most commonly triggered radiations of subterranean 

organisms? [#15; 76%]

Q14 – Do subterranean organisms lack genetic variation and thus the ability to adapt to a 

changing environment? [#16; 75%]

Q15 – Does the timeline of subterranean evolution differ among taxa, types of subterranean 

habitats, different biogeographic areas, and different ecological settings? [#22; 74%]

Q16 – What are the impact(s) of biotic and abiotic factors on speciation? [#28; 72%]

Q17 – Why are some lineages successful at colonizing subterranean habitats while others are 

not? [#35; 71%]

Q18 – How old are subterranean species? [#36; 71%]

Q19 – The role of evolutionary processes (convergence/divergence/evolutionary 

stasis/parallelisms) in subterranean organisms: what are the most common evolutionary 

processes? [#40; 70%]

Q20 – Are shallow subterranean habitats a gateway to colonize deep zones and is the evolution 

of deep subterranean species conditioned with a colonization of shallow and later deeper zones? 
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[#41; 70%]

Q21 – What is the rate of evolution of different subterranean traits and does the degree of 

subterranean adaptation correlate with duration of subterranean inhabitation? [#44; 69%]

Subterranean animals have long interested biologists as evolutionary models. Studies of these 

species have endeavoured to improve our understanding of evolution, its repeatability at the 

phenotypic (Friedrich, 2013; Porter & Sumner-Rooney, 2018), physiological (Jones, Cooper & 

Seymour, 2019), and molecular level (Leys et al., 2005; Bilandžija, Ćetković & Jeffery, 2012; 

Niemiller et al., 2013), its reversibility (Copilaş-Ciocianu et al., 2018), and the role of drift in 

morphological changes (Martínez et al., 2017; Wilkens, 2020). The eleven questions identified 

highlight how, despite advances in the application of genetic tools and techniques in the last 50 

years, fundamental questions regarding the origin and evolution of subterranean animals remain 

unanswered.

Two high-ranked questions (Q11 and Q17) focused on the traits that enable species to 

successfully colonize and adapt to subterranean habitats. Additional questions focused on the 

most common evolutionary processes (Q19), and the influence of biotic and abiotic factors (Q16)

that lead to different patterns of diversification across subterranean lineages (Q12). Important 

subterranean radiations are known in all major taxonomic groups (Deharveng & Bedos, 2019), 

but only a few of them have been well documented. These include Amphipoda (Zakšek et al., 

2019), Collembola (Lukić et al., 2019), and Coleoptera (Leys et al., 2003; Faille et al., 2010; 

Njunjić et al., 2018). Which evolutionary processes best explain these radiations remains highly 

debated (Q13) and it would be particularly interesting to compare and contrast radiations of 

surface-dwelling plants and animals (Gillespie et al., 2020) with subterranean-adapted species to 
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determine if any universal patterns exist. For many animal groups, subterranean species are 

commonly assumed to have evolved from surface species (Barr & Holsinger, 1985; Peck & 

Finston, 1993), but recent phylogenetic studies suggest that this assumption may not always 

apply (Faille et al., 2010; Juan et al., 2010; Leijs et al., 2012). Speciation and diversification may

also occur within the confines of a subterranean habitat, a process referred to as ‘endogenous 

diversification’ (Trontelj, 2019). Moreover, some phylogenetic studies suggested that 

subterranean colonization is not an evolutionary dead end and surface species may actually arise 

from subterranean ancestors (Prendini, Francke & Vignoli, 2010; Niemiller et al., 2013; Copilaş-

Ciocianu et al., 2018). However, cases of endogenous speciation and ‘subterranean to surface’ 

reversals are potentially confounded by extinction of surface lineages (Juan et al., 2010). 

Therefore, new approaches are needed that avoid reliance on phylogenetic methods alone to 

improve our understanding of these patterns. 

Genetic variation enhances the ability of species to adapt and diversify. Additionally, it 

has been shown that some subterranean species may contain high levels of neutral genetic 

variation (Buhay & Crandall, 2005; Guzik et al., 2009), but it is still unclear whether neutral 

mutations equates to high levels of adaptive genetic variation. This underpins the question 

whether subterranean species lack the ability to adapt to changing environments (Q14), including

increasing temperatures and the introduction of new pathogens (Mammola et al., 2019c). Such 

hypotheses are obviously not exclusive to the subterranean environment. However, this 

ecosystem does provide numerous examples of how low genetic variation was hypothesized to 

be related to low adaptive capacity, a phenomenon more common underground than at the 

surface (Konec et al., 2015; Lefébure et al., 2017; Fumey et al., 2018).

Understanding the timeline and direction of subterranean evolution, as well as the age of 
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subterranean species, featured prominently in several questions (Q15, Q18, Q20, Q21). 

Advances in molecular clock calibration (Drummond et al., 2006) and genomic analyses (Pérez-

Moreno et al., 2016) are considerably promising and permit the development of robust time trees

(Pons et al., 2019). However, these analyses are limited by the availability of extant and fossil 

taxa and the extinction of surface relatives; the latter makes it difficult to pinpoint the initial 

colonization time of a subterranean habitat by a given species. This is particularly important for 

ancient lineages of specialized subterranean organisms with marine origin, which often lack 

surface-dwelling relatives and/or show low levels of fossilization (Pérez-Moreno et al., 2016). 

This is unfortunate because many of these basally branching lineages are required to reconstruct 

trait evolution of major animal lineages (e.g. Johnson et al., 2012; Khodami et al., 2017; Lozano-

Fernandez et al., 2019).

The genetic basis underlying evolution of subterranean traits, and how they are shaped by

natural selection and/or neutral processes, are key factors in determining rates of subterranean 

evolution (Q21). Considerable advances have been made through the study of model 

subterranean species, especially Astyanax mexicanus and the freshwater isopod Asellus 

aquaticus (L.) (Protas & Jeffery, 2012). These species have several independent and recently 

evolved subterranean populations, as well as extant surface populations, which can be hybridized

in the laboratory. Their features allow for the dissection of genes and mutations responsible for 

traits related to subterranean life and provide information on the processes (e.g. selection or 

neutral evolution) that shape their evolution. The role of neutral processes in the evolution of 

subterranean animals has also been explored using alternative model systems (e.g. dytiscid 

beetles and amblyopsid cavefishes). In both cases, species have been evolving underground for 

millions of years, which is sufficient to enable the fixation of deleterious mutations in genes 
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under relaxed selection (Niemiller et al., 2013; Tierney et al., 2018). These model organisms 

offer great potential to investigate major questions on the origin and evolution of subterranean 

animals using comparative genomics, and thus may provide insights for similar processes in 

other, non-subterranean, settings.
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VI. COMMUNITY ECOLOGY

Q22 – What are the main ecological and ecosystem services provided by subterranean 

populations and communities? [#20; 75%]

Q23 – What are the key food-web processes influencing subterranean community dynamics? 

[#24; 73%]

Q24 – How do stochastic events interact with long-term trends in subterranean ecosystems? 

[#30; 72%]

Q25 – How do basic life-history characteristics differ among subterranean communities and 

between subterranean and surface communities? [#33; 71%]

Subterranean habitats are well-suited systems to address general problems in community ecology

(Mammola, 2019). Foremost, caves are often semi-closed environments extensively replicated 

across the Earth (Culver, 1970; Culver & Pipan, 2019; Itescu, 2019; Mammola, 2019). Second, 

subterranean communities generally exhibit lower diversity and abundance of organisms than 

surface ones and are characterized by a bottom-truncated functional diversity (Gibert & 

Deharveng, 2002), allowing us to disentangle the effect of abiotic conditions and biotic 

interactions in filtering species possessing specific traits within the community (Cardoso, 2012). 

Third, caves have some conspicuous environmental gradients from the surface towards the 

subsurface (Howarth, 1982; Tobin, Hutchins & Schwartz, 2013; Mammola et al., 2019d), 

offering a mosaic structure of subterranean microhabitats defined by distinct habitat-filtering 

properties (Trontelj, Blejec & Fišer, 2012; Mammola et al., 2020). 

Four questions in community ecology made it to the top-50 list. This result reflects a 

general trend in subterranean biology, where researchers have primarily focused on caves as 
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model systems for evolutionary studies (Juan et al., 2010), and secondarily used caves as 

convenient settings to address fundamental ecological questions (Mammola, 2019). Yet, these 

four questions fell within general and timely areas of current ecological research (see Sutherland 

et al., 2013).

The top-ranked question underscored the importance of services provided to humans by 

subterranean species and ecosystems (Q22), rather than on theoretical aspects of community 

ecology. Examples of ecosystem services provided by subterranean ecosystems include 

pollination, seed dispersal, and agricultural pest control by bats (Kunz et al., 2011; Medellin, 

Wiederholt & Lopez-Hoffman, 2017), provision of clean water (Griebler & Avramov, 2015), 

serving as a source for new pharmaceutical products (Cheeptham et al., 2013), and even cheese 

production (Ozturkoglu-Budak et al., 2016). While services with direct benefit to humans have 

received some attention, values provided by subterranean ecosystems extend far beyond direct 

human needs. In light of emerging conservation issues associated with subterranean ecosystems 

(Mammola et al., 2019b), investigating ecological services and links between above- and below-

ground diversity in ecosystem functioning is crucial.

Two questions called for more research into life-history characteristics (e.g. growth rates,

age and size at sexual maturity, longevity, and survival rates; Q25) and food-web specificities of 

subterranean communities (Q23). Interactions among life-history traits determine the fitness of 

each population, while interactions between populations and the environment dictate the 

distribution of species (Steranrs, 1992). Only a few studies have described life histories of 

subterranean species, and this is partially explained by the challenges of captive breeding and the

technical problems and effort necessary to conduct in situ comprehensive studies (Vonk & 

Nijman, 2006; Voituron et al., 2011; Venarsky, Huryn & Benstead, 2012; Riesch et al., 2016; 
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Simon et al., 2017). Consequently, the lack of knowledge on cave species traits limits our 

understanding of evolutionary and ecological processes occurring in subterranean ecosystems.

Energy limitation is considered a primary mechanism influencing both evolutionary and 

ecological processes in subterranean environments (Venarsky & Huntsman, 2018). However, a 

more nuanced understanding of subterranean food-web dynamics (Q23) will require other 

research actions, including to (i) understand the spatial and temporal dynamics of energy 

resources; (ii) compare resource quality with consumers’ physiological requirements; and (iii) 

compare consumption rates with resource availability in subterranean habitats with different 

environmental conditions (e.g. terrestrial versus aquatic, fresh versus salt water, and detrital 

versus chemolithoautotrophic food webs).

Finally, understanding the role of stochastic events in caves was highlighted as a deficient

area in community ecology (Q24). Given that these events are increasing in frequency amid the 

environmental crisis of the new millennium (Rahmstorf & Coumou, 2011), the study of 

stochastic phenomena has emerged as a central topic in ecology (Scheffer et al., 2001). Recent 

papers used groundwater crustaceans to elucidate some of the mechanisms by which earthquakes

affect the composition and structure of biological communities (Galassi et al., 2014; Fattorini et 

al., 2017; Fattorini, Di Lorenzo & Galassi, 2018; Morimura et al., 2020). Additional studies have

focused on the effect of other events, such as heavy precipitation (Calderón-Gutiérrez, Sánchez-

Ortiz & Huato-Soberanis, 2018) and flooding (Pacioglu et al., 2019). Although it may seem 

counterintuitive to study stochastic environmental shifts in caves, as they have been traditionally 

perceived as stable ecosystems, these examples show how caves may represent promising model 

systems for quantifying the impacts of abrupt environmental shifts driving ecosystem evolution 

(Mammola, 2019). 
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VII. MACROECOLOGY AND BIOGEOGRAPHY

Q26 – What drives subterranean patterns of phylogenetic and functional diversity? [#21; 75%]

Q27 – Would the use of novel molecular methods (e.g. metabarcoding, environmental DNA) 

provide new insights on subterranean biodiversity patterns and affect known patterns? [#27; 

72%]

Q28 – What is the species richness pattern of subterranean organisms globally? [#31; 72%]

Q29 – What factors drive the relative importance of speciation, extinction, and dispersal in 

shaping subterranean diversity patterns across regions? [#34; 71%]

Q30 – Are current subterranean biodiversity patterns best explained by history of colonization of 

surface ancestors or by in situ speciation and dispersal in subterranean habitats? [#39; 70%]

Q31 – How can sampling effort be standardized so that comparisons of species richness are 

unbiased? [#43; 69%]

Over the last 20 years, research in subterranean ecology is shifting from local to landscape 

studies aiming to document and understand biodiversity patterns at regional to global scales 

(Zagmajster et al., 2019). This transition is not without difficulties, as it requires linking 

biodiversity patterns to eco-evolutionary processes with little to no possibility for manipulative 

experiments. Six questions in ‘Macroecology and biogeography’ were identified in the top-50 

list (Fig. 1). These questions mirror the main challenges faced when documenting and 

understanding broad-scale biodiversity patterns at the surface. The first challenge is assembling 

the data required to bring out the characteristic features of biodiversity patterns at such broad 

scales, while ensuring these patterns are not biased by sampling effort (Q28, Q31). Secondly, to 

combine multiple sampling techniques, species identification methods (e.g. morphological and 
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DNA-based identification), and biodiversity metrics (e.g. alpha, beta, and gamma diversity) in a 

meaningful way to elucidate the many facets of biodiversity patterns (e.g. taxonomic, 

phylogenetic, and/or functional diversity; Jarzyna & Jetz, 2016) (Q27, Q26). Lastly, the relative 

contributions of different evolutionary processes (Q29) and diversification hypotheses (Q30) in 

shaping biodiversity patterns should be fully examined.

The publication of global subterranean diversity maps and databases is a recent 

phenomenon (Culver & Pipan, 2019; Zagmajster et al., 2019). While diversity maps are 

informative as they portray differences in species richness among regions or countries, we still 

lack global maps showing species richness for spatial units of equal area [but see Zagmajster, 

Culver & Sket (2008), Niemiller & Zigler (2013), and Eme et al. (2015) for examples of 

regional- and continental-scale diversity maps]. Several approaches have been developed to 

minimize differences in species richness due to sampling bias (Q31). This issue is particularly 

germane to difficulties in sampling subterranean habitats. For example, sampling protocols were 

typically standardized among sites and completeness of species inventories were assessed using 

accumulation and rarefaction curves (Zagmajster et al., 2008; Dole-Olivier et al., 2009; Wynne 

et al., 2018). Also, observed species richness patterns were tested for robustness using species 

richness estimators (Zagmajster et al., 2014), or complemented with species richness predictions 

modelled from environmental data (Mokany et al., 2019). 

Beyond accounting for sampling biases, molecular methods are increasingly useful in 

understanding subterranean biodiversity patterns (Q27). For example, a recent study comparing 

latitudinal patterns of crustacean species range size obtained from morphology- and DNA-based 

species delimitation showed that the pattern of increasing median range size at higher latitudes 

was more evident when delimiting species with DNA (Eme et al., 2018) (Fig. 2). As sequencing 
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becomes increasingly applied to subterranean taxa, environmental DNA sampling and 

monitoring may be also used to detect these species in areas difficult to access (Gorički et al., 

2017; Niemiller et al., 2018), thus resulting in more accurate maps of their distributions. To our 

knowledge, patterns of phylogenetic and functional diversity at continental to global scales have 

not been documented for any subterranean taxon (Q26), despite the growing knowledge of 

phylogenetic relationships and species traits (Morvan et al., 2013; Fernandes, Batalha & 

Bichuette, 2016; Fišer et al., 2019; Mammola et al., 2020). Documenting these patterns will 

further underscore the relative importance of dispersal, extinction, and different speciation 

modes in shaping geographic variation of species richness. Given the differences in global 

diversity patterns between subterranean and surface habitats, comparing the two systems might 

help further to elucidate the key drivers of diversity.

Recent macroecological studies have shown that historical climatic variability, spatial 

heterogeneity, and energy contribute to species richness patterns of subterranean taxa in Europe. 

However, the contributions of these factors vary regionally and across taxa (Eme et al., 2015; 

Bregović & Zagmajster, 2016; Bregović, Fišer & Zagmajster, 2019; Mammola et al., 2019a). At 

a landscape scale, linking environmental factors with speciation, extinction, and dispersal 

dynamics (Q29), as well as diversification processes (Q30), remains challenging and requires the

use of phylogenetic methods and a large number of specimens for DNA analysis (Stern et al., 

2017). Yet phylogenetic methods encompass uncertainties that are highly sensitive to sampling 

bias and the confounding effect of extinction, both obscuring the inference of transitions to 

subterranean life. To ameliorate this, genes that lose their function soon after the transition 

should be used (Lefébure et al., 2017) (see also Section V).
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VIII. CONSERVATION

Q32 – How does climate change affect subterranean-adapted organisms? [#2; 84%]

Q33 – What are the effects of pollution on subterranean-restricted microorganisms, arthropods, 

and vertebrates? [#3; 84%]

Q34 – What is the impact of above-ground disturbance on subterranean environments and their 

fauna? [#5; 82%]

Q35 – How can we evaluate the ecological status of subterranean ecosystems? [#6; 80%]

Q36 – How can we protect subterranean-adapted species from invasive species? [#7; 80%]

Q37 – How can we combine policy, education, research, and management to safeguard 

subterranean biodiversity effectively? [#8; 80%]

Q38* – What factors determine the size and location of effective protected areas in subterranean 

environments? [#10; 78%]

Q39* – How can we effectively involve governments and key stakeholders in the conservation of

caves and other subterranean systems? [#17; 75%]

Q40 – What would be the best monitoring protocols to quantify long-term changes in the 

distribution and abundance of subterranean invertebrates? [#18; 75%]

Q41 – How do we address the lack of knowledge (biodiversity shortfalls) about the biology of 

subterranean species to enhance proper conservation measures? [#25; 73%]

Q42 – Can subterranean-adapted organisms be used as bioindicators of the health of 

subterranean ecosystems? [#45; 69%]

Q43 – How does the use of caves by humans (e.g. tourism, religious, therapeutic, and 

recreational activities) affect subterranean ecosystems? [#48; 68%]
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Ecosystems are experiencing biodiversity loss at an unprecedented rate worldwide (Barnosky et 

al., 2011; Dirzo et al., 2014; IPBES, 2018; Cardoso et al., 2020). Thus, conservation and 

management of cave biological diversity is of the utmost concern among subterranean biologists 

(Mammola et al., 2019b). Conservation questions comprised most of the questions (24%) in our 

top-50 list (Fig. 1). Of these, 10 questions were part of the initial List #1, while two additional 

questions were suggested by survey participants. Three questions (Q32, Q33, and Q36) 

highlighted three of the greatest threats to biodiversity worldwide – climate change (Ripple et al.,

2019), pollution (Ripple et al., 2017), and invasive alien species (Pyšek et al., 2020) – whose 

effects are pervasive also underground (Mammola et al., 2019b). Additional questions were 

centred on the impacts of above-ground disturbance (Q34) and human activities (Q43) on 

subterranean habitats. All these threats can be combined and described as ‘habitat loss and 

degradation’, which is one of the most important drivers of biodiversity loss globally (IPBES, 

2018). Subterranean habitat loss and degradation is primarily due to surface activities, such as 

agricultural expansion and intensification, urbanization, and mining activities (Reboleira et al., 

2013; Mammola et al., 2019b; Castaño-Sánchez, Hose & Reboleira, 2020). Human activities 

inside caves may also constitute localized threats, with recreational use and tourism activities 

being of particular concern (Fernandez-Cortes et al., 2011; Faille, Bourdeau & Deharveng, 

2015). In certain areas, people are even poaching rare invertebrate species for private collections 

(Simičević, 2017), as in the discussed case of Anophthalmus hitleri Scheibel (Coleoptera: 

Carabidae) (Berenbaum, 2010).

Evaluating, understanding, and mitigating these threats are primarily hampered by our 

scarce knowledge of subterranean organisms’ biology (Q41), especially life-history traits (see 

Q25 in Section VI). Understanding changes in species’ abundance and distribution will be 
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crucial to halting biodiversity loss in subterranean habitats. Studies aimed at identifying 

bioindicator species (Q42) to help bolster long-term monitoring programs (Q40) are needed. 

Additionally, improved sampling procedures and characterizing cave communities in previously 

undocumented areas would both enhance our knowledge of subterranean biodiversity (Mammola

et al., 2019b) and improve the effectiveness of conservation measures (Q41).

Furthermore, it is crucial to adopt innovative approaches to safeguard subterranean 

biodiversity (Q37), as well as to determine the size and location of effective protected areas 

(Q38). Standardized systematic sampling techniques have been applied to terrestrial (Wynne et 

al., 2018, 2019) and aquatic subterranean invertebrate species (Dole-Olivier et al., 2009); to be 

optimally beneficial to conservation and monitoring, these techniques will need to be further 

scrutinized across a large breadth of taxa and systems. Recently, a cave vulnerability assessment 

protocol has been developed for bat cave roosts (Tanalgo, Tabora & Hughes, 2018) and, if 

refined, would hold promise for use with other subterranean animals. 

Protected areas are the most crucial measure to safeguard specific subterranean habitats 

and the sensitive animal populations they often support (Q38). Indices have been developed for 

site selection and conservation prioritization (e.g. Borges et al., 2012; Rabelo, Souza-Silva & 

Ferreira, 2018; Strona et al., 2019; Fattorini et al., 2020) which are often based on 

complementarity, flexibility, and irreplaceability principles (Michel et al., 2009). Yet, rigorous 

geospatial analysis is still rarely applied when the extents of protected areas are being 

determined. Further considerations should include managing lands upslope from caves or entire 

watersheds supporting sensitive subterranean habitats. If a species-level approach is taken for 

establishing a protected area, it would be reasonable to protect the land at the hydrogeologic unit 

(i.e. watershed or karst/volcanic unit) level – as animals are expected to use mesocaverns or 
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unconsolidated sediments for dispersal (Howarth, 1983; Malard et al., 2017; Trontelj, 2019). 

Importantly, such an approach should be based on the most accurate estimation of the relevant 

animal’s distributional range. 

While effective legislation and/or management plans exist for some subterranean species 

and some regions of the world, overall management policies for most regions of speleological 

importance are lacking (Q39). Only a few countries have national cave protection laws. For 

example, the United States Federal Cave Protection Act of 1988 has been used as a tool to 

manage caves on federally owned lands, while Brazil requires geological and biological 

assessments of caves and stipulates mitigation of any human activities that may negatively 

impact cave natural resources. In any case, to be fully operational, such legislative and 

management tools need to be based on the best available science including a comprehensive 

knowledge of fauna distribution (Brooks, Da Fonseca & Rodrigues, 2004; Samways et al., 2020)

and traits of the species of concern (Chichorro, Juslén & Cardoso, 2019; Fattorini et al., 2020). 

Importantly, management plans will require both financial, governmental, and local community 

support for their implementation. Unfortunately, most countries lack the capacity or legislation to

protect and conserve sensitive subterranean resources.

IX. MICROBIOLOGY AND APPLIED TOPICS

Q44 – What is the role of Bacteria, Archaea, fungi, and viruses in nutrient cycling in 

subterranean systems? [#32; 71%]

Q45 – How adaptable are cave microorganisms to changing environmental conditions (e.g. 

climate change)? [#37; 70%]

Q46 – How do other organisms (humans and other animals), and their activities (e.g. visiting 
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humans and global climate change) influence cave microbiome diversity patterns? [#38; 70%]

Q47 – How does the range of energy sources and quantity influence the diversity of subterranean

microbiota? [#46; 68%]

Q48 – What are the limiting nutrients for subterranean microbiota and how do they affect overall

subterranean microbial diversity? [#47; 68%]

Q49 – How do subterranean microorganisms cycle key elements – nitrogen, iron, carbon, sulfur, 

and phosphorus? [#49; 67%]

Q50* – What is the role of microorganisms in cave-formation processes (speleogenesis) in 

subterranean environments? [#50; 67%]

Without a doubt, topics such as adaptation, origin and evolution, community dynamics, and 

biogeographic distribution patterns are similarly important and actively targeted in microbial 

ecology (Antwis et al., 2017). However, research in macroecology and microbial ecology is 

often conducted separately rather than hand-in-hand. For nearly 200 years, subterranean 

ecosystems have been studied from a macroscopic perspective. Subterranean microbiological 

research is a relatively new discipline with most research having been conducted since the 

middle of the last century (Griebler & Lueders, 2009). A modern ecosystem approach to 

subterranean biota requires consideration across all trophic levels and scales (Hershey & Barton, 

2019), especially since the 1980s, when the first cave ecosystems fully sustained by in situ 

chemosynthetic primary production were discovered (Sarbu, Kane & Kinkle, 1996; Kumaresan 

et al., 2014).

The seven questions on the top-50 list address general problems that have been frequently

examined for various subterranean ecosystems, such as alluvial aquifers, however, less 
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systematically for cave environments. Three questions focused on the active role of 

microorganisms in nutrient cycling (Q44, Q49) and how nutrient limitations influence microbial 

diversity (Q48). Although we know that microbes rule the subsurface in terms of element cycles 

(Ortiz et al., 2014; Kimble et al., 2018) and constitute the basis of the food web, we still lack 

detailed information on conversion rates and growth kinetics. In addition, subterranean 

organisms often persist with limited energy resources. Thus, understanding their specific 

adaptations would help advance our understanding of adaptive strategies for microorganisms in 

other ecosystems (e.g. mountain-summit and deep-sea habitats). Additionally, the role of viruses,

which only recently has been recognized as ‘tremendous’ for groundwater ecosystems (Griebler, 

Malard & Lefébure, 2014), has not been investigated for terrestrial subterranean systems (Q44).

Two questions further addressed the resistance and resilience of cave microbial 

communities to disturbance from changes in environmental conditions (Q45) (Cavicchioli et al., 

2019), and the impacts of other organisms (in particular, humans; Moldovan et al., 2020; 

Martínez et al., 2020) on microbial diversity (Q46). These questions also were related to 

conservation issues from a microbiological perspective. The adverse impacts of the fungus 

Pseudogymnoascus destructans that causes white-nose syndrome in North American bats is a 

prominent example. To date, P. destructans occurs in 38 U.S. states and seven Canadian 

provinces (see http://www.whitenosesyndrome.org), which raises serious concerns for the 

conservation of hibernating bat species and the ecosystem services they provide (Kunz et al., 

2011; Boyles et al., 2011; Medellin et al., 2017; Mammola et al., 2019b). The fungus is an 

opportunistic environmental pathogen, which can remain in the subterranean environment and 

contribute to the cave microbiome even in the absence of its host (Lorch et al., 2013). 

It has been hypothesized that microbial communities with high diversity and functional 
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redundancy do not select for ecosystems poor in energy and stable in environmental conditions 

(Griebler & Lueders, 2009). Thus, the introduction of novel species may have a destabilizing 

effect on a cave’s biological equilibrium (Q46). The same is true for the introduction of 

contaminants, such as organic compounds and nutrients that provide additional energy. We are 

only beginning to understand whether and how energy–diversity relationships known from 

macroecology apply to complex natural bacterial communities (Q47). In fact, there is a growing 

body of evidence that diversity–productivity relationships also drive microbial communities 

(Smith, 2007), but this question has not been examined systematically in subterranean 

ecosystems yet. 

Finally, Q50 points to the potential contribution of microorganisms in speleogenetic 

processes, such as weathering and rock formation via inducing precipitation. Specifically, in 

terms of (inorganic) carbon cycling in face of climate change, the role of microbes in the 

formation of caves may be of great relevance, and has yet to be fully examined. 

X. CONCLUSIONS

(1) The 50th anniversary of Poulson & White’s (1969) article was the perfect time to reflect on 

milestone scientific achievements obtained in the natural laboratories offered by caves, while 

also delineating the most important research priorities for years to come. We have shown how 

subterranean biology has contributed strongly to general scientific questions via the study of 

evolutionary and ecological processes along the vertical dimension (i.e. the evolutionary 

transition from the surface to the subsurface). These accomplishments resonate with the 

sentiments of Poulson & White (1969) and we anticipate that biologists will continue to unravel 

the mysteries of subterranean ecosystems and contribute to scientific knowledge more broadly, 
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insofar as revolutionary advances in approaches and technologies continue to foster and nurture 

novel paradigms.

(2) There is a significant lack of knowledge concerning eco-evolutionary processes underlying 

biodiversity patterns along the horizontal gradient (i.e. within subterranean habitats). This is 

largely driven by a paucity of functional ecology studies, the weakness of trait-based approaches 

(Cardoso, 2012; Fernandes et al., 2016; Fišer et al., 2019; Mammola et al., 2020), and the lack of

robust systematic sampling techniques for most taxonomic groups (Wynne et al., 2019). 

Bridging these gaps will significantly influence how we address and prioritize future research on 

the conservation and ecosystem services of subterranean habitats (e.g. Fattorini et al., 2020), as 

emphasized by the large number of unresolved questions in conservation biology (representing 

nearly 25% of the top-50 list).

(3) We also invite scientists to redouble their efforts to understand the diversity of subterranean 

life across all its components, with a special focus on linking macroscopic and microbial ecology

(Foulquier et al., 2011; Mermillod-Blondin, 2011). This will enable us to achieve a mechanistic 

understanding of subterranean eco-evolutionary processes and ecosystem function. This 

information will be critical in guiding future policy decisions as human activities and global 

environmental change increasingly impact and strain the subterranean realm.

(4) There is a concern that simple voting exercises such as this one may favour general over 

specific questions. Perhaps as a result of this bias, some of the top-voted questions appear to be 

broad in scope (e.g. Q1, Q2, and Q32). While these questions were able to capture important 

general lines of inquiry, specific questions may be more useful for setting applied agendas. 

Therefore, we invite interested readers to consult Appendix S1, which contains our complete list 

of 120 questions.
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(5) While the ‘caves as laboratory’ paradigm is an effective way to frame broadly scoped studies,

we recognize the top-50 list of questions primarily pertains to unresolved issues within the 

borders of subterranean biology. Yet subterranean habitats offer much more. Deep subterranean 

habitats are one of the few natural systems defined by highly stable and homogenous climatic 

conditions tantamount to those maintained in a laboratory (Sánchez-Fernández et al., 2018). 

These systems have an island-like nature (Itescu, 2019), and often support communities 

characterized by highly specialized organisms interacting in simplified ecological networks 

(Mammola, 2019). By extension, a robust understanding of these rather simplified settings may 

enable researchers to disentangle the complexities of more diverse systems (e.g. deep-sea 

habitats). 

(6) Ultimately, all these features point at subterranean ecosystems as ideal settings in which to 

tackle general questions. We strived to provide examples of how some of our survey questions 

may aid in addressing non-cave specific agendas. Our hope is that this horizon scan exercise both

underscores the importance of caves for addressing a range of eco-evolutionary questions, as 

well as stimulates researchers to redouble their efforts to address some of these lingering 

questions in subterranean biology.
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the end of the article.

Appendix S1. Questions from List #2 (i.e. 120 questions selected from List #1 during Survey#1)

and List #3 (i.e. 25 additional questions suggested by Survey #2 participants) ranked based on 

the percentage of ‘major importance’ votes.
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Table 1. Subject areas, general topics addressed, panel member composition (*= panel 

coordinator; °= postdoc or early career researcher), and number of questions included in the top-

50 list out of the total retained in List #1. Panel members are listed alphabetically by surname.

Subject area General topics Panel members
Number of 
questions 

Adaptation Morphological, physiological 
and behavioural adaptations to 
the subterranean environment

Žiga Fišer°, Daniel W. Fong, Tanja 
Pipan*, William R. Jeffery, Jure 
Jugovic

10 out of 43

Origin and 
evolution

Cave ontology and past climate 
change, migration–speciation–
extinction dynamics, and 
speciation and diversification

Steven J.B. Cooper*, Matthew 
Niemiller, Alejandro Martínez°, 
Meredith Protas

11 out of 36 

Community 
ecology

Population dynamics, community
assembly, biotic interaction, 
trophic webs, and energy flows

Rodrigo L. Ferreira*, Cene Fišer, Thais
G. Pellegrini°, Michael Venarsky°

4 out of 32

Macroecology 
and 
biogeography

Global diversity patterns 
(taxonomic, phylogenetic, 
functional), biogeography theory,
and diversity drivers

Maria E. Bichuette, David Eme°, 
Florian Malard*, Maja Zagmajster° 

6 out of 32 

Conservation 
biology

Climate change, habitat loss, 
invasive species, conservation 
and management policies, and 
show-cave-related issues

Isabel R. Amorim°, Paulo A. V. 
Borges*, Louis Deharveng, J. Judson 
Wynne, Ana Sofia P. S. Reboleira

12 out of 37 

Microbiology 
and applied 
topics

Microbial communities, 
industrial and pharmaceutical 
potential, epidemics, and 
exobiology

Naowarat Cheeptham, Thomas M. 
Lilley*, Melissa B. Meierhofer°, Diana 
E. Northup

7 out of 31

Other topics Any topic falling outside the 
scope of the six core subject 
areas

David C. Culver*, Christian Griebler, 
Johanna Kowalko, Raoul Manenti°

n/a (merged within 
the other subject 
areas)
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Table 2. Glossary of terms.

Term General definition

Cave A human-accessible subterranean space, either a single chamber or series of chambers,
formed within different substrata (Curl, 1964). Note that a cave is just one among the 
wide variety of subterranean habitats (see definition below).

Exaptation A trait shaped by selection or neutral evolution co-opted for a new function (Gould & 
Vrba, 1982).

Speleogenetic process The process of water dissolving surrounding rock, gradually forming passages that 
evolve into cave systems (Audra & Palmer, 2011).

Subterranean habitat(s) / 
ecosystem(s)

The breadth of underground voids of different sizes, either dry or filled with water, 
sharing two main ecological features: the absence of sunlight and buffered climatic 
conditions. Examples of subterranean habitats include caves, groundwater, anchialine 
systems, artificially excavated underground voids, shallow subterranean habitats, as 
well as deep maze of fissures and pore spaces with size prohibiting human entry 
(Culver & Pipan, 2019).
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FIGURE LEGENDS 

Fig. 1. Survey workflow, summary statistics of survey participants, and the breakdown by 

subject area of the 50 highest priority research questions.

Fig. 2. The relationship between median range size (maximum linear extent) per latitudinal band 

and latitude for 147 European groundwater species of Niphargidae (Amphipoda) and Aselloidea 

(Isopoda) delimited using morphology (A) and a molecular species delimitation method (B). 

Molecular delimitation was performed by a Bayesian implementation of the Poisson tree 

processes (Zhang et al., 2013) approach based on molecular phylogenies inferred from 2883 

cytochrome c oxidase subunit I sequences. Black horizontal bars, dots, and boxes show the 

median, average, and interquartile range, respectively, for 0.9° latitudinal bands. The maximum 

length of each whisker is up to 1.5 times the interquartile range. Trend lines (with 95% 

confidence intervals) represent the fit of a gamma generalized linear model to the averages of 

latitudinal bands and its quadratic (A) and cubic (B) term. Data re-analysed from Eme et al. 

(2018).
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