FN Archimer Export Format PT J TI Specific regulations of gill membrane fatty acids in response to environmental variability reveal fitness differences between two suspension-feeding bivalves (Nodipecten subnodosus and Spondylus crassisquama) BT AF Mathieu-Resuge, Margaux Le Grand, Fabienne Schaal, Gauthier Lluch-Cota, Salvador E Racotta, Ilie S Kraffe, Edouard Todgham, Anne AS 1:1,2;2:1;3:1;4:3;5:3;6:1;7:; FF 1:;2:;3:;4:;5:;6:;7:; C1 Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, F-29280, Plouzane, France WasserCluster Lunz—Inter-University Centre for Aquatic Ecosystem Research, Dr. Carl Kupelwieser Promenade 5, A-3293, Lunz am See, Austria Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, Mexico C2 CNRS, FRANCE WASSERCLUSTER LUNZ, AUSTRIA CIBNOR, MEXICO UM LEMAR IN WOS Cotutelle UMR DOAJ copubli-europe copubli-int-hors-europe copubli-sud IF 3.079 TC 5 UR https://archimer.ifremer.fr/doc/00648/75991/76893.pdf LA English DT Article DE ;Bivalves;coastal lagoon;gill membrane fatty acids;diet influence;physiological regulation;trophic ecophysiology AB Bivalves’ physiological functions (i.e. growth, reproduction) are influenced by environmental variability that can be concomitant with trophic resource variations in terms of quality and quantity. Among the essential molecules that bivalves need to acquire from their diet to maintain physiological functions, fatty acids (FAs) such as polyunsaturated fatty acids (e.g. 20:4n-6 (arachidonic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid)) have been described to play a critical role. The present study examined the FA composition of gill membrane lipids of two bivalve species, Nodipecten subnodosus and Spondylus crassisquama, sampled in a coastal lagoon of the Northeastern Pacific (Ojo de Liebre, Mexico), at two contrasting locations (inner versus outer part of the lagoon) and at two different periods (February and August 2016). Spatiotemporal variations showed that FA composition of gill membrane lipids was highly correlated to FA composition of reserve lipids from digestive gland. This highlights the marked impact of the diet on FA composition of gill membranes. Interestingly, both species presented differences in the seasonal accumulations of plasmalogens and of particular FA that are not found in their diet (e.g. non-methylene interrupted FA, 22:4n-9trans, 20:1n-11), suggesting specific regulations of FA incorporation and lipid class composition in gill membranes to maintain optimal membrane function in their specific and changing environment. This study highlights the importance to characterize the spatial and temporal variability of food resources in order to apprehend the physiological consequences of environmental variability, as well as species differential regulation capacities in a changing world. PY 2020 PD AUG SO Conservation Physiology SN 2051-1434 PU Oxford University Press (OUP) VL 8 IS 1 UT 000562767300001 DI 10.1093/conphys/coaa079 ID 75991 ER EF