A functional m 6 A- RNA methylation pathway in the oyster Crassostrea gigas assumes epitranscriptomic regulation of lophotrochozoan development

Le Franc Lorane ^{1, 2}, Bernay Benoit ³, Petton Bruno ⁴, Since Marc ⁵, Favrel Pascal ^{1, 2}, Rivière Guillaume ^{1, 2, *}

¹ UNICAEN CNRS BOREA Normandie Univ Caen, France

² Laboratoire Biologie des organismes et Ecosystèmes aquatiques (BOREA) Muséum d'Histoire naturelle CNRS IRD Sorbonne Université, Université de Caen NormandieUniversité des Antilles Caen ,France

³ UNICAEN, ICOREPROTEOGEN Core Facility Caen SF, France

⁴ Ifremer, Laboratoire des Sciences de l'Environnement Marin UMR 6539 CNRS/UBO/IRD/Ifremer Centre Bretagne Normandie Univ Plouzané, France

⁵ UNICAEN ,Comprehensive Cancer Center F. Baclesse, SF ICORE PRISMM Core Facility Normandie Univ Caen ,France

* Corresponding author : Guillaume Rivière, email address : guillaume.riviere@unicaen.fr

Abstract :

N6-methyladenosine (m6A) is a prevalent epitranscriptomic mark in eukaryotic RNA, with crucial roles for mammalian and ecdysozoan development. Indeed, m6A-RNA and the related protein machinery are important for splicing, translation, maternal-to-zygotic transition and cell differentiation. However, to date, the presence of an m6A-RNA pathway remains unknown in more distant animals, questioning the evolution and significance of the epitranscriptomic regulation. Therefore, we investigated the m6A-RNA pathway in the oyster Crassostrea gigas, a lophotrochozoan model whose development was demonstrated under strong epigenetic influence. Using mass spectrometry and dot blot assays, we demonstrated that m6A-RNA is actually present in the oyster and displays variations throughout early oyster development, with the lowest levels at the end of cleavage. In parallel, by in silico analyses, we were able to characterize at the molecular level a complete and conserved putative m6A machinery. The expression levels of the identified putative m6A writers, erasers and readers were strongly regulated across oyster development. Finally, RNA pull-down coupled to LC-MS/MS allowed us to prove the actual presence of readers able to bind m6A-RNA and exhibiting specific developmental patterns. Altogether, our results demonstrate the conservation of a complete m6A-RNA pathway in the oyster and strongly suggest its implication in early developmental processes including MZT. This first demonstration and characterization of an epitranscriptomic regulation in a lophotrochozoan model, potentially involved in the embryogenesis, bring new insights into our understanding of developmental epigenetic processes and their evolution.

Keywords : development, epitranscriptomics, methylation, oyster, RNA

10		
11 12	26	Abbreviations
13 14 15	27	N ⁶ -methyladenosine (m ⁶ A), Methyltransferase like (METTL), Wilms' tumor 1-associated
16 17 18	28	protein (WTAP), RNA-binding motif 15 (RBM15), Ring finger E3 ubiquitin ligase (HAKAI), Zinc
19 20	29	finger CCCH-type containing 13 (ZC3H13), AlkB homologue 5 (ALKBH5), Fat mass and
21 22 23	30	obesity associated protein (FTO), YTH domain family protein (YTHDF), YTH domain
24 25	31	containing protein (YTHDC), Heterogeneous nuclear ribonucleoproreins A2 B1
26 27 28	32	(HNRNPA2B1), Proline rich coiled-coil 2a (Prrc2a), Eukaryotic initiation factor 3 (eIF3), Sterile
29 30 31	33	sea water (SSW), Oocytes (E), Fertilized oocytes (F E), Two to eight cell embryos (2/8 C),
32 33	34	Hours post fertilization (hpf), Morula (M), Blastula (B), Gastrula (G), D larvae (D), solid-phase
34 35 36	35	reversible immobilization (SPRI), TPM (Transcripts Per Million), Gene ontology (GO), oyster
37 38 30	36	m ⁶ A-interacting protein (Cg-m ⁶ A-BPs), S-adenosyl-methionine (SAM), maternal-to-zygotic
40 41 42	37	transition (MZT), acetonitrile (ACN)

Introduction

The N⁶-methyladenosine (m⁶A) is the prevalent chemical RNA modification in all eukaryotic coding and non-coding RNAs [1]. Messenger RNAs are the most heavily m⁶A methylated RNAs, with m⁶A bases lying mostly in their 3' UTRs, at the vicinity of their stop codon [2–4] and also in 5' UTRs and long internal exons [4,5]. N⁶-methylation of RNA adenosines is responsible for RNA processing and, like DNA methylation or histone modifications, contributes to the regulation of gene expression without changing the DNA or mRNA sequence. Therefore m⁶A constitutes a new layer of post-transcriptional gene regulation, which is emerging or has been proven critical in various biological processes, and referred to as epitranscriptomic [2].

The dynamics and biological outcomes of m⁶A levels are the results of the activity of a complex protein machinery comprising writers, erasers and readers. The addition of a methyl group to the 6th nitrogen of RNA adenosines is catalysed by m⁶A writers with distinct properties. Methyltransferase like 16 (METTL16) is a 'stand-alone' class I methyltransferase that recognizes the UACA*GAGAA consensus sequence (with * indicating the target adenosine) [6]. By contrast, METTL3 transfers methyl groups to adenosines within the RRA*CH motif [2,3,7]. METTL3 is only active within a tripartite 'core complex' [8] comprising METTL3, METTL14 which enhances the methyltransferase activity supported by the MTA-70 domain of METTL3 [9,10] and the regulator protein Wilms' tumor 1-associated protein (WTAP) [4,9,11]. This core complex can interact with Virilizer-like (or KIAA1429) [12], ring finger E3 ubiquitin

The FEBS Journal

ligase (HAKAI) [12,13], zinc finger CCCH-type containing 13 (ZC3H13) [12,14], RNA-binding motif 15 (RBM15) and RBM15B [7,15] which are suspected to intervene in the core complex activity and target specificity. The demethylation of adenosines has been demonstrated to be an active process catalysed by eraser enzymes belonging to the Fe(II)/2-oxoglutarate dioxygenase family: AlkB homologue 5 (ALKBH5) [16,17] and the fat mass and obesity associated protein (FTO) [17,18].

A growing number of reader proteins which recognize the m⁶A-RNA mark is being described. They may be divided into two classes depending on the presence of a YT521 B Homology (YTH) domain in their primary sequence. The YTH protein family includes YTH domain family protein 1-3 (YTHDF1-3) and YTH domain containing protein 2 (YTHDC2), which are cytosolic m⁶A readers involved in m⁶A-RNA stability and translation [19–22]. The fifth YTH member is YTHDC1, which is present in the nucleus and controls splicing [23] and nuclear export [24] of m⁶A-RNA. The second class of readers comprises proteins without YTH domain which are involved in several molecular mechanisms. For example, the heterogeneous nuclear ribonucleoprotein A2 B1 (HNRNPA2B1) is important for miRNA processing [25]. Insulin-like growth factor 2 mRNA binding protein 1-3 (IGF2BP 1-3) [26] and proline-rich coiled-coil 2a (Prrc2a) [27] participate in RNA stability while eukaryotic initiation factor 3 (eIF3) guides capindependent translation [5].

The m⁶A epitranscriptomes underlie important biological functions, most of which being related to developmental processes, including the control of cell differentiation [27-32], maternal to zygotic transition (MZT) [33], sex determination [7,34] and gametogenesis [16,21,35,36]. Such

Page 6 of 151

critical epitransriptomic outcomes are conserved in the animal evolution and werecharacterized in both vertebrates and ecdysozoans, i.e. mammals and drosophila.

However, such conserved biological significance originates in diverse epitranscriptomic mechanisms. Indeed, not all ecdysozoans bear a complete m⁶A-RNA machinery, such as C. elegans whose genome is devoid of the related protein machinery with the exception of a putative orthologue of METTL16 [37,38]. In addition, no m⁶A eraser has been described to date in non-vertebrate models, and especially ecdysozoans such as the drosophila or C. elegans [38–40], where it cannot be excluded that m⁶A-RNA methylation could be removed by the activity of characterised 6mA-DNA demethylases [41,42]. This situation may illustrate a growing complexity of epitranscriptomic mechanisms during the animal phylogeny and raises fundamental questions about its evolution and its presence in organisms distant from mammals and ecdysozoans. However, to date, no data about a possible epitranscriptomic regulation is available to our knowledge in lophotrochozoans, the understudied sister group of ecdysozoans within protostomes, although representing an important range of metazoan biodiversity.

The Pacific oyster *Crassostrea gigas* (i.e. *Magallana gigas*) is a bivalve mollusc whose great ecological an economical significance allowed its emergence as a model species within lophotrochozoan organisms. As such, an important amount of genetic, transcriptomic and epigenetic data have been generated in this model. Interestingly, the embryolarval development of *C. gigas* is described to be under the strong epigenetic influence of DNA methylation [43–47] and histone marks [48–50]. Besides, oyster development occurs exposed to external environmental conditions, and in other models the m⁶A methylation of RNA and/or

the expression of its machinery can be induced by heat stress, UV exposure or endocrine

2 3 4	132
5	133
7 8 9	134
10 11 12	135
12 13 14	136
15 16 17	137
18 19	138
20 21 22	139
23 24 25	140
25 26 27	141
28 29 30	142
31 32	143
33 34 35	144
36 37	
38 39 40	145
41 42	146
43 44 45	147
46 47 48	148
48 49 50	149
51 52 53	150
55 54 55	151
56 57 58	152
59 60	153

disruptors [5,51–54], questioning the presence of an m⁶A pathway in *C. gigas* and its significance in oyster early development. To investigate this, we measured m⁶A levels in RNA across the entire embryolarval life of the oyster using mass spectrometry and dot-blot. We also searched the available in silico resources for putative conserved m⁶A-related proteins in *C. gigas* genomic data as well as their cognate expression kinetics using RNAseq assembly analyses. We also performed RNApulldown with a synthetic m⁶A-RNA oligonucleotide coupled to liquid chromatography and mass spectrometry (LC-MS/MS) to characterize potential oyster m⁶A-binding proteins. To our knowledge, this study is the first report unravelling epitranscriptomic mechanisms outside vertebrate and ecdyzosoan animal models. **Results:** m⁶A is present in oyster RNA, differentially affects distinct RNA populations and displays variations during embryonic life. Mass spectrometry measurements revealed that m⁶A is present in oyster RNA, with global m⁶A/A levels of ca. 0.3%, a value comparable to what has been found in the human and the fruit fly (Figure 1A). Immunoblot assays indicate that total and polyA+ RNA present variable amounts of m⁶A during oyster development and that these variations display distinct profiles suggesting specific methylation patterns between RNA populations. Indeed, N⁶A-methylation in total RNA is the highest in the early stages (oocytes and fertilized oocytes) then gradually

decreases until the morula stage before gradually increasing again up to the trochophore stage when it recovers its maximum (Figure 1B). In contrast, m⁶A levels in polyA+ RNA are hardly detected in early stages but display a peak in the gastrula and trochophore stages (Figure 1C). m⁶A machinery is conserved at the molecular level in the oyster. In silico analyses led to the identification of oyster sequences encoding putative orthologues

of m⁶A writers, erasers and readers that are present in the human and/or in the human and the fruit fly.

All the eight m⁶A-RNA writers characterized in the human and/or drosophila at the time of the study, namely METTL3, METTL14, WTAP, Virilizer-like, HAKAI, ZC3H13, RBM15/15B and METTL16, were present in the oyster at the gene level. The encoded protein primary sequences all display the specific domains required for enzymatic activity and/or binding. They include MT-A70 and AdoMetMtases SF domains for METTL3, METTL14 and METTL16, respectively, that bear the methyltransferase activity. Oyster WTAP and Virilizer-like orthologues exhibit WTAP and VIR N domains, respectively, that are required in their human counterparts to bind and activate the catalytic subunit of the m⁶A-RNA methyltransferase complex. Oyster Hakai and RBM15/15B present RHHL, RHF-Zn-BS and specific RRM domains, respectively, similar to human and fruit fly orthologues. Besides, the oyster ZC3H13 bears the Rho SF domain present in the human, but not in the fruit fly orthologue (Figure 2A). C. gigas also presents a putative m⁶A-RNA eraser, ALKBH5, which is present in the human but has not been characterized in drosophila. The oyster ALKBH5 exhibits a 20G-FeII Oxy domain suggestive of a presumably conserved catalytic functionality through fe2+-dependent

1 2		
2 3 4	176	oxoglutarate oxidation. Of note, no orthologue of the human FTO eraser could be identified in
5 6 7	177	the oyster genomic or transcriptomic databases available to date (Figure 2B).
8 9 10	178	Many m ⁶ A reader orthologues have also been found in the oyster, including proteins containing
10 11 12	179	a YTH domain, such as YTHDF, YTHDC1 and YTHDC2. An oyster Prrc2a-like protein
13 14 15	180	produces homology with the human Prrc2a, especially within the m ⁶ A-binding GRE-rich
16 17	181	domain. Oyster readers also include a heterogeneous nuclear ribonucleoprotein-coding gene,
18 19 20	182	hnRNPA2B1 with greater sequence similarity with the drosophila counterpart than with the
21 22 23	183	human orthologue. Similarly, the IGF2BP-coding sequence has also been found in C. gigas
23 24 25 26 27 28	184	(Figure 2C). Five oyster sequences display homologies with eIF3a which is able to bind m ⁶ A-
	185	RNA [5] but it was not possible to discriminate whether a unique oyster predicted protein was
29 30	186	an elF3a orthologue.
31 32 33	187	Overall, these results indicate the conservation of a complete m ⁶ A-RNA machinery in the
34 35 36	188	oyster. The complete list of the identified genes encoding the conserved m ⁶ A machinery actors
37 38	189	and their isoforms, as well as the related information is given in the supplementary data (Data
39 40 41	190	S1).
42 43	191	
44 45 46	192	Oyster putative m ⁶ A actors display expression level variations across development.
47 48 49	193	RNAseq data analyses showed that all the oyster m ⁶ A-related genes were expressed during
50 51	194	the early life (Figure 3). Their expression level displayed gene-specific profiles, most of them
52 53 54	195	being variable throughout oyster development.
55 56	196	The expression of writers belonging to the core methylation complex is weak overall. METTL3
57 58 59 60	197	and WTAP share similar profiles with little expression increasing up to the gastrulation and

remaining stable afterwards. In contrast METTL14 displays a weak expression level across the embryo larval life. The expression profile of Virilizer-like resembles WTAP, while HAKAI, RBM15/15B and METTL16 seem to have mRNA levels which decrease after cleavage, whereas those of ZC3H13 transcript variants seem to drop at the D larva stage. Interestingly, METTL16 mRNA levels display an opposite developmental profile when compared to METTL3 expression; with the highest values during cleavage which decrease later on (Figure 3A). ALKBH5 transcripts are weakly represented within oyster early embryos and the higher TPM values are found in gastrulas. However, maximum levels are observed after metamorphosis in juveniles (Figure 3B). Regarding m⁶A putative readers, the expression of YTH family genes during development showed different patterns. In fact, YTHDF is the most represented YTH-domain bearing actor and YTHDF TPM values are ca. 5-fold higher than all the other oyster YTH readers. YTHDF is strongly expressed at the beginning of development until a peak at the morula stage. Prrc2a is the most represented reader at the mRNA level in oyster embryos, and the sum of the TPM of the two Prrc2a oyster isoforms are at most ca. 20-fold higher than those of YTH family. However, Prrc2a and YTHDF transcript content profiles are similar across oyster development, and also remind of the IGF2BP mRNA levels. By contrast, the two isoforms of YTHDC1 identified by in silico analysis, YTHDC1.1 and YTHDC1.2, display similar patterns together with YTHDC2, with a maximum representation in gastrulas. The expression of hnRNPA2B1 isoforms has likewise patterns except for a marked drop at the D larvae stage (Figure 3 C).

The FEBS Journal

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
2U 21	
∠ ו כר	
∠∠ ?2	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
ک⊂ ⊿	
54 55	
55 56	
50	
57 58	
50	
50	

Oyster orthologues of m⁶A-RNA interacting proteins bind m⁶A RNA in vitro. 220

221 To determine whether oyster proteins can bind m⁶A-RNA, we performed RNA-pulldown of cytoplasmic and nuclear embryonic cell extracts using a methylated versus a non-methylated 222 oligonucleotide, followed by LC/MS-MS characterisation and identification of the captured 223 proteins with the Mascot software. 224

In nuclear extracts, we detected 591 proteins able to bind both the methylated and 225 226 unmethylated oligos. We identified 43 proteins specific to unmethylated RNA while 131 proteins specifically bind the m⁶A-methylated oligo. In cytosolic extracts, there were 227 respectively 646, 436 and 36 of such proteins, respectively. Regardless of the methylation 228 status, more proteins in the cytoplasmic extracts can bind to the RNA oligonucleotides than in 229 230 the nuclear extracts (1118 proteins vs. 765, respectively). However, more nuclear proteins are found exclusively bound to the m⁶A-containing oligo than cytoplasmic proteins (131 vs. 36, i.e. 231 17 % vs. 3 %, respectively). In addition, many nuclear and cytoplasmic proteins can bind both 232 the methylated and the non-methylated oligo (591 vs. 646, i.e. 77 % vs. 58 %). An important 233 number of proteins in the cytoplasmic extract were found exclusively bound to the non-234 methylated oligo, whereas only a limited number of nuclear proteins display such a specificity 235 236 (436 vs. 43, i.e. 39 % vs. 6 %). Among the 167 m⁶A-specific proteins in oyster extracts, only 5 were found in both the nuclear and cytoplasmic extracts. These results show that oyster 237 proteins can directly or indirectly bind m⁶A-RNA, and suggest an important 238 239 compartmentalization of m⁶A-related processes.

Among the identified proteins in this assay, four of the putative oyster m⁶A readers are found, 240 YTHDC1, hnRNPA2B1, IGF2BP and eIF3. In the nuclear extracts YTHDC1 is uncovered as 241 60

Page 12 of 151

m⁶A-specific whereas hnRNPA2B1 and IGF2BP were present complexed with both the m⁶Aand A-oligos. In the cytoplasmic extracts, YTHDC1 and eIF3a are m⁶A-specific while
hnRNPA2B1, IGF2BP were pulled down by both methylated and unmethylated oligos (Figure
4A).
These results demonstrate that some proteins in the oyster can specifically bind m⁶A-RNA and

that the putative m⁶A reader orthologues in the oyster are conserved at the protein level and
are able to interact with m⁶A-RNA.

250 The m⁶A-interacting protein-coding genes display clustered expression regulation and 251 functional annotation during oyster development.

The mRNA expression level of the genes encoding the 162 oyster m⁶A-interacting protein (Cgm⁶A-BPs) was examined using RNAseq databases. Most of them display a specific and regulated expression level across oyster developmental stages. However, three main expression clusters could be distinguished according to their developmental mRNA expression level profile. Cluster 1 includes genes that show high expression at the beginning of the embryo life (i.e. cleavage) and strongly decrease after gastrulation; the second cluster contains weakly expressed genes except in the latest examined larval phases, after gastrulation (i.e. Trochophore and D Larvae); cluster 3 groups genes that show an expression peak during gastrulation (Figure 4B).

The Gene Ontology annotation of the Cg-m⁶A-BP genes reveal that the distinct clusters are related to distinct functional pathways as indicated by the little - if any - common GO terms between them (Figure 4C). However, the functional pathways of all three gene clusters point

264 out to their implication in translation and its regulation, although the terms enriched in each 265 cluster illustrate different aspects of translation, such as translation initiation (cluster 1), splicing 266 and nuclear export (cluster 2) and ribosomal and mitochondrial processes (cluster 3) 267 respectively (Figure 4D).

Discussion

This work demonstrates that m⁶A-RNA is present and variable during the embryo-larval life of the oyster, and that *C. gigas* exhibits putative conserved and functional m⁶A-RNA writers, eraser and readers. The dynamics of such mark and of its actors strongly suggest a biological significance of the epitranscriptomic pathway in the control of development of a lophotrochozoan species, which has, to date, never been demonstrated to our knowledge.

275 <u>m⁶A-RNA levels vary across oyster development.</u>

Using mass spectrometry and immunological measurements, we showed that oyster RNA is m⁶A-methylated. The global proportion of N⁶-methyladenosine in RNA in the developing oyster (0.28 %) is similar to those observed elsewhere in the animal kingdom, such as in the fruit fly (0.24 %) [34] or the human (0.11- 0.23 %) [55] (Figure 1A), despite those values are difficult to compare because they were not measured within the same developmental phase (adult flies and human cell lines vs. oyster embryos). However, the comparable magnitude of m⁶A-RNA amounts between taxa, in contrast to DNA methylation [46], may indicate conserved biological significance of epitranscriptomic processes between groups. The amount of m⁶A in total RNA displays a striking decrease during cleavage and then recovers its maximum levels at the end of the gastrulation (Figure 1B). Therefore, the m⁶A decrease in total RNA during cleavage, i.e.

before the transcription of the zygotic genome starts, reflects a degradation of maternal m⁶A-RNAs or their demethylation. However, all RNA populations do not exhibit the same pattern, indeed polyA+ RNAs are m⁶A methylated only after cleavage. The extent of polyadenylation of oyster maternal messenger RNAs accumulating during vitellogenesis is unknown. Therefore, which maternal RNA population(s) is methylated in oyster oocytes is unclear. Nevertheless, the observation that m⁶A-RNA levels are variable and affecting distinct RNA populations across embryonic stages strongly favours an important biological significance of m⁶A-RNA in oyster development. We hypothesize that oyster maternal messenger RNAs are poorly polyadenylated, and that m⁶A, aside polyadenylation, might play a role in the stability of quiescent maternal mRNAs. Alternatively, other maternal RNA populations such as snRNA, miRNA, rRNA or IncRNA might be methylated [6,15,25,56], which become demethylated or degraded up to the morula stage. The later increase in m⁶A RNA after cleavage could therefore be the result of the methylation of the increasingly transcribed RNAs from the blastula stage, including polyadenylated mRNAs. The m⁶A-RNA machinery is conserved in the oyster and regulated during development. The important regulation of m⁶A levels during oyster development assumes the presence of a

related protein machinery. We identified *in silico* cDNA sequences encoding conserved putatively functional orthologues of m⁶A-RNA writers, eraser and readers in the oyster, with great confidence (homologies ranging from ca. 30 to 65 % with their human counterpart, see Data S1). The writers include all the members of the methylation complex (METTL3, METTL14, WTAP, Virilizer-like, Hakai, ZC3H13, RBM15/15B) identified to date in the human and the fruit fly [7,11,12,14,15,57]. We also identified an orthologue of the stand-alone METTL16 m⁶A Page 15 of 151

The FEBS Journal

methyltransferase. Each orthologue bears the conserved domain(s) demonstrated to be implicated in the catalytic and/or binding activity of their cognate counterpart in other species, such as the MT-A70 domain which transfers methyl groups from the S-adenosyl-methionine (SAM) to the N⁶ nitrogen of RNA adenines [57]. Of the two proteins that can erase RNA methylation, only ALKBH5, which is important for mouse spermatogenesis [16], was identified at the cDNA level in the oyster. Indeed, no C. gigas sequence displayed significant homology with the mammalian FTO protein, whose functional significance remains controversial [17]. Most the characterized m⁶A-RNA readers are also present at the molecular level in the oyster and are putatively able to bind m⁶A regarding their primary sequence, such as the YTHDC and YTHDF family members [19,21,23,58], Prrc2A [27], HnRNPA2B1 [25] and IGF2BP [26]. Of note, some of these readers have not been characterized to date in D. melanogaster but display strong homologies between humans and oysters. In mammals, eIF3a has important functional outcomes in cap-independent translational stress response [5]. However, it was not possible to ascribe a single oyster sequence as a unique eIF3a orthologue (Data S1), although its presence was demonstrated by RNA pull down (see below) (see Data S2). Altogether, in silico results show the conservation of a complete m⁶A-RNA machinery in the oyster. To date to our knowledge, this is the first demonstration in a lophotrochozoan organism of an epitranscriptomic pathway. Its presence suggests its ancestral origin, and questions its biological significance in oyster development. To investigate this, we analysed the expression level of the m⁶A machinery genes using RNA-

seq data. Our results indicate that the core methylation complex (METTL3, METTL14 and
 WTAP) would not be active during cleavage because of the absence of METTL3 and little

WTAP expression. METTL16 catalyses the downregulation of SAM methyl donor availability in mammals [59]. If METTL16 function is conserved in the oyster as suggested by the high sequence homology, the peak in METTL16 expression, together with the weak expression of the core complex in 2/8 cell embryos is consistent with an absence of m⁶A-RNA up to the blastula stage. Then, the core complex would likely be active as soon as the end of cleavage (i.e. since the blastula stage), in line with the increase in m⁶A levels observed at the same time. The correlation between the increasing METTL3 expression and m⁶A-RNA levels after cleavage strongly favours the conservation of the methyltransferase activity of the oyster MT-A70 domain. Interpreting the regulation of the m⁶A activity by the other methyltransferase complex members (i.e. Virilizer-like, HAKAI, ZC3H13 and RBM15/15B) is difficult because how - or even if - oyster orthologues act within the complex is not known. Nevertheless, their specific expression profiles may reflect their implication in the regulation of distinct biological contexts. There might be little functional significance of active m⁶A-RNA erasure during oyster development, consistent with the normal embryonic phenotype of ALKBH5 knockdown mice [16]. Overall, the m⁶A readers display distinct developmental expression patterns. While YTHDF and Prrc2a peak during cleavage, YTHDC1, YTHDC2, IGF2BP and hnRNPA2B1 mRNA levels gradually increase up to the gastrulation and remain mostly highly expressed afterwards (except for hnRNPA2B1 and IGF2BP). These profiles evoke the mediation of distinct biological functions depending on the reader and the developmental phases. Therefore, we hypothesized that YTHDF and Prrc2a might participate in the blastulean transition in the oyster. Indeed, in the zebrafish, a YTHDF reader triggers the maternal-to-zygotic transition through the decay of the maternal m⁶A RNAs during cleavage [33]. The role

The FEBS Journal

in the axon myelination and specification of mouse oligodendrocytes [27] is unlikely conserved for Prrc2a because the oyster orthologue is expressed before the neurogenesis is detected in trochophore stages [60]. Alternatively, the early expression of Prrc2a suggests that it might rather compete with YTHDF for m⁶A-RNA targets [27], thereby possibly acting in oyster MZT, bringing new perspectives into this process which remains poorly understood in lophotrochozoans. In mammals m⁶A is implicated in the embryonic cell fate [30,31] notably via the regulation of cell differentiation by YTHDC2 [32] or hnRNPA2B1 [29]. In the oyster, YTHDC1, YTHDC2, IGF2BP and hnRNPA2B1 have their maximum expression during gastrulation correlated to the second m⁶A peak, suggesting similar implications.

361 Putative oyster m⁶A readers actually bind m⁶A-RNA *in vitro*.

To better approach the developmental processes involving m⁶A in the oyster, we characterized the proteins that can interact with m⁶A-RNA using a methylated-RNA-pulldown / mass spectrometry assay. We identified 162 proteins able to specifically bind the m⁶A-RNA oligo in embryonic cell extracts, demonstrating the actual presence of genuine m⁶A-readers in the oyster. Most (ca. 75%) of these proteins were found in nuclear extracts and only 5 were found in both the cytoplasmic and nuclear fractions, showing an important compartmentalization of the epitranscriptomic pathway. Regarding the little number of m⁶A readers in other animals, and because the assay conditions do not discriminate between direct and indirect interactions, we hypothesize that most these proteins indirectly bind m⁶A via a limited number of 'scaffold' m⁶A readers. Such authentic readers that only bind the m⁶A-RNA oligo in our assay likely include YTHDC1 and eIF3a, which have been demonstrated to directly bind m⁶A in other species, demonstrating the conservation of the m⁶A-binding capacity and specificity of the YTH

domain in the oyster. Besides, YTHDC1 is found in both cell fractions, suggesting its implication in the trafficking of m⁶A-RNA across the nuclear envelope [24], and reinforcing the hypothesis that YTH proteins could participate in oyster MZT and cell differentiation. The presence of the oyster eiF3a in the cytoplasm is consistent with a conserved role in m⁶Amediated translation processes, such as cap-independent translation [5].

9 Possible functions of m⁶A-RNA in oyster development.

We investigated the expression level and the functional annotation of the 162 genes encoding the m⁶A-interacting proteins across oyster early life. These genes can be clustered into three successive expression phases corresponding to three distinct functional pathways, which are independent albeit all mostly related to translation regulation. The cluster 1 is mostly expressed during the cleavage and the associated GO terms are related to the initiation of translation, consistent with maternal RNA consumption before MZT is complete and the zygotic genome becomes fully activated. The genes within cluster 3 show an expression peak during gastrulation. Their ontology terms evoke ribosomal and mitochondrial processes, the latter being required for energy supply and signalling integration during gastrulation [61–64]. The cluster 2 contains genes that peak after gastrulation and which are related to splicing and nuclear export. Such functional annotations are in line with a fine regulation of transcript variant translation within the distinct cell lineages in the three cell layers of the late embryos.

Taken together, our findings bring to light a possible implication of m⁶A in oyster development.
 First, during cleavage the decrease of m⁶A-RNA, the weak expression of methyltransferase
 complex genes, the maximum of YTHDF gene expression and the expression of *Cg*-m⁶A-BPs

The FEBS Journal

related to the initiation of the translation strongly suggest the implication of m⁶A in MZT in C. gigas. Second, the increasing m⁶A level during gastrula stage is correlated to the increase of methyltransferase complex gene expression. In addition, the increased RNA level of readers putatively related to cell differentiation and the peak of gene expression of Cg-m⁶A-BPs associated to ribosomal and mitochondrial processes, support the hypothesize of a m⁶A implication in gastrulation. Finally, the highest m⁶A level at the trochophore stage, the gene expression of the methyltransferase complex and of readers associated to cell differentiation, as well as high RNA level of Cg-m⁶A-BPs related to splicing and nuclear export is correlated with the fine cell differentiation taking place at this stage. However, inferring the biological significance of m⁶A in development from the indirect and incomplete functional annotation of the oyster genome is only limited. Characterization of the precise targets of m⁶A and how their individual methylation is regulated across development, for example using high throughput sequencing of precipitated m⁶A-RNA (MeRIP-seq), could be extremely relevant to better understand this issue. In addition, despite sequence conservation and binding ability of oyster actor orthologues strongly suggest functional conservation, future dedicated studies such as biochemical inhibition or gene inactivation could help demonstrate their genuine biological function. Besides, there seems to be an inverse correlation between m⁶A-RNA and 5mC-DNA levels during the considered oyster developmental window [46]. This may suggest an interplay between epigenetic and epitranscriptomic marks, possibly reflecting competition for methyldonor availability [59] or a link by histone epigenetic pathways [65,66]. Regarding the potential influence of the environment on m⁶A and the accumulation of RNA in oocytes, we are at present investigating our hypothesis that m⁶A may convey intergenerational

epitranscriptomic inheritance of maternal life traits in the oyster. On an evolutionary perspective, the presence of a putatively fully conserved epitranscriptomic pathway in the oyster suggests that it was already present in the bilaterian common ancestor thereby in favour of an important biological significance. Why Drosophila and Caenorhabditis seem to have lost specific m⁶A-RNA erasers could be related to a sub-functionalization of the DMAD [41] and NMAD-1 [42] N⁶-methyladenine DNA demethylase activity broadened towards RNA. However, more work in required to better understand the evo-devo implications of our results. To conclude, in this work we report the discovery and characterisation of a putatively complete epitranscriptomic pathway in a lophotrochozoan organism, the oyster Crassostrea gigas. This pathway includes the m⁶A mark in RNA and the actors of all the aspects of its regulation (writers, eraser, readers) which are conserved at the molecular level and putatively functional. We show that m⁶A levels are variable across oyster development and that m⁶A differentially affects distinct RNA populations. Expression levels of the related enzymatic machinery is consistent with the observed m⁶A level variations. We demonstrate the m⁶A binding capacity and specificity of putative oyster m⁶A readers in the cytoplasm and nucleus of embryolarval cells. These readers mediate distinct putative biological outcomes depending on the development stage considered. From these results we hypothesize that early decay of maternal m⁶A RNA participates in maternal-to-zygotic transition during cleavage and that later de novo zygotic m6A methylation contributes to gastrulation and cell differentiation. This first characterisation of an m⁶A-epitranscriptomic pathway in a lophotrochozoan organism, together with its potential implication in development, opens new perspectives on the evolution of

1		
2 3 4	440	epigenetic mechanisms and on the potential epitranscriptomic inheritance of environmentally-
5 6 7	441	induced life traits.
8 9 10	442	
10 11 12 13 14	443	Methods:
15 16 17	444	
18 19 20	445	Animals:
21 22	446	Broodstock oysters [67] and oyster embryos [46] were obtained at the IFREMER marine
23 24 25	447	facilities (Argenton, France) as previously described. Briefly, gametes of mature broodstock
26 27 28	448	oysters were obtained by stripping the gonads and filtering the recovered material on a 60 μm
29 30 31	449	mesh to remove large debris. Oocytes were collected as the remaining fraction on a 20 μm
32 33	450	mesh and spermatozoa as the passing fraction on a 20 μm mesh. Oocytes were pre-incubated
34 35 36	451	in 5 L of UV-treated and 1 μm filtered sterile sea water (SSW) at 21 °C until germinal vesicle
37 38 39	452	breakdown. Fertilization was triggered by the addition of ca.10 spermatozoids per oocyte. After
40 41	453	the expulsion of the second polar body was assessed by light microscopy, embryos were
42 43 44	454	transferred in 150 L tanks of oxygenated SSW at 21 °C. The development stages were
45 46 47	455	determined by light microscopy observation. The stages collected were oocytes (E,
48 49	456	immediately before sperm addition), fertilized oocytes (F E, immediately before transfer to
50 51 52	457	150L tanks), two to eight cell embryos (2/8 C, ca. 1.5 hours post fertilization (hpf)), morula (M,
53 54 55	458	ca. 4 hpf), blastula (B, ca. 6 hpf), gastrula (G, ca. 10 hpf), trochophore (T, ca 16 hpf) and D
56 57	459	Iarvae (D, ca. 24 hpt). For each development stage, 3 million embryos were collected as the
58 59 60	460	remaining fraction on a 20 μ m mesh and centrifuged at 123 g for 5min at room temperature.

Supernatant was discarded and samples of 1 million embryos were then snap-frozen in liquid nitrogen directly of after resuspension in Tri-Reagent (Sigma-Aldrich, St Louis, MO, USA) (1 mL/10⁶ embryos) and stored at -80 °C. Three distinct experiments were realized (February to May 2019) using the gametes of 126 to 140 broodstock animals, respectively.

RNA extraction:

total RNA extraction

RNA was extracted using phenol-chloroform followed by affinity chromatography as previously described [68]. Briefly, embryos were ground in Tri-Reagent (Sigma-Aldrich) and RNA was purified using affinity chromatography (Nucleospin RNA II kit, Macherey-Nagel, Duren, Germany). Potential contaminating DNA was removed by digestion with rDNase (Macherey-Nagel) according to the manufacturer's instructions for 15 min at 37 °C then RNA was purified using Beckman Coulter's solid-phase reversible immobilization (SPRI) paramagnetic beads (AgencourtAMPure XP, Beckman Coulter, Brea, CA, USA) according to the manufacturer's instructions. Briefly, paramagnetic beads and RNAs were mixed slowly and incubated 5 min at room temperature followed by 2 min on a magnetic rack. Cleared supernatant was removed, and beads were washed three times with 70 % ethanol. After 4 min of drying at room temperature, RNAs were mixed slowly with RNase free water and incubated for 1 min at room temperature on the magnetic rack. Eluted total RNA was stored at -80 °C.

PolyA RNA enrichment

481 Poly-A RNA was extracted from total RNA by oligo-dT affinity chromatography (NucleoTrap
 8
 9
 482 mRNA kit, Macherey-Nagel) according to the manufacturer's instructions. Briefly, up to 130 μg

4	
5	
6	
7	
8	
Q Q	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
20	
21	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
10	
77 15	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	

503

60

of total RNAs were mixed with oligo-dT latex beads and incubated for 5 min at 68 °C then 10 483 min at room temperature. After centrifugation (2,000 g then 11,000 g), the pellets were washed 484 three times on the microfilter and dried by centrifugation at 11,000 g for 1 min. Finally, polyA+ 485 RNA was incubated with RNAse-free water for 7 min at 68 °C then centrifuged at 11,000 g for 486 1 min. Eluted polyA+ RNA was stored at -80 °C until needed. 487 Total and polyA-enriched RNA purity and concentrations were assayed by spectrophotometry 488 489 (Nanodrop, Thermo Scientific, Waltham, MA, USA). 490 m⁶A quantification by LC-MS/MS: 491 **RNA** hydrolysis 492 To generate nucleosides for quantification against standard curves, 5 µg of total RNA were 493 denatured for 10 min at 70 °C followed by 10 min on ice, and hydrolyzed with 100 U Nuclease 494 495 S1 (50 U/µL, Promega, Madison, WI, USA) in Nuclease S1 buffer (Promega) in a final reaction volume of 25 µL for 2 h at 37 °C under gentle shaking. Samples were then incubated with 496 497 alkaline phosphatase buffer (Promega) for 5 min at room temperature, before 10 U alkaline phosphatase (Promega) were added and incubated further for 2 h at 37 °C under gentle 498 shaking. Ten extra units of alkaline phosphatase were added after 1 hour of incubation to 499 complete the reaction. Finally, samples were centrifuged at 13,000 rpm for 10 min at 4 °C and 500 the supernatant containing digested total RNA was collected and kept at -20 °C before 501 quantification. 502

• m⁶A quantification:

The apparatus was composed of a NexeraX² UHPLC system coupled with LCMS8030 Plus (Shimadzu, Kyoto, Japan) mass spectrometer using an electrospray interface in positive mode. The column (1.7 µm, 100x3 mm) was a HILIC Aquity® Amide (Waters, Millford, MA, USA) maintained at 35 °C. The injection volume and run-to-run time were 3 µL and 10 min, respectively. The flow rate was set to 1 mL/min. Mobile phase was initially composed of a mixture of ammonium formate solution (10 mM) containing 0.2 % (v/v) formic acid and 95 % acetonitrile (ACN) and it was maintained for 1 min. Then, a linear gradient was applied to reach 83 % ACN for 6 min. The composition returned to the initial conditions and the column was equilibrated for 3 min. The mass spectrometer was running in the Multiple Reaction Monitoring (MRM) acquisition mode. LabSolutions 5.86 SP1 software was used to process the data. The desolvatation temperature was 230 °C, source temperature was 400 °C and nitrogen flows were 2.5 L/min for the cone and 15 L/min for the desolvatation. The capillary voltage was +4.5 kV. For each compound, two transitions were monitored from the fragmentation of the [M+H]⁺ ion. The first transition (A in Table S1) was used for quantification and the second one (B in Table S1) for confirmation of the compound according to European Commission Decision 2002/657/EC (Table S1). Blank plasma samples were analysed to check specificity. Calibrators were prepared using diluted solutions of A (Toronto Research Chemical, Toronto, Canada) and m⁶A (Carbosynth, Berkshire, UK) in water at 1, 2, 5, 10, 20 50, 100 ng/mL The calibration curves were drawn by plotting the ratio of the peak area of A and m⁶A. For both nucleosides, a quadratic regression

525 with 1/C weighting resulted in standard curves with R²>0.998 and more than 75% of standards

1 2		
2 3 4	526	with back-calculated concentrations within 15% of their nominal values as recommended for
5 6 7	527	by the European medicines agency for bioanalytical methods [69]. The limits of quantifications
8 9	528	for both compounds were considered as the lowest concentrations of the calibration curve.
10 11 12	529	m ⁶ A/A ratios were calculated for each single sample using the determined concentrations.
13 14 15	530	Final results are the average of three technical replicates.
16 17	531	
18 19 20	532	m ⁶ A quantification by immunoblotting:
21 22	533	Immunological quantification of m ⁶ A was performed by dot-blot using total and polyA+ RNAs.
23 24 25	534	Dogfish total RNA (Dr. A. Gautier, personal communication) and a synthetic unmethylated
26 27 28	535	RNA oligo (Eurogentec, Liege, Belgium) were used as positive and negative controls,
29 30	536	respectively. RNA samples were denatured for 15 min at 55 $^\circ C$ with gentle shaking in
31 32 33	537	denaturing solution (2.2 M formaldehyde, 50 % formamide, 0.5X MOPS, DEPC water) followed
34 35 36	538	by 2 min on ice. Blotting was performed on a vacuum manifold as follows: a nylon membrane
37 38	539	(Amersham Hybond-N+, GE Healthcare life Sciences, Chicago, IL, USA) was pre-hydrated in
39 40 41	540	DEPC water for 5 min, then each well was washed twice with 10X SSC (Sigma-Aldrich) before
42 43	541	RNA was spotted onto the membrane and incubated for 15 min at room temperature. Then,
44 45 46	542	vacuum aspiration was applied and each well was washed twice with 10X SSC. After heat
47 48 49	543	crosslinking for 2 h at 70 $^\circ$ C, the membrane was rehydrated with DEPC water for 5 min, washed
50 51	544	with PBS then PBST (PBS, 0.1 % Tween-20) for 5 min each and blocked with two 5 min
52 53 54	545	incubations with blocking buffer (PBS, 0.1 % Tween-20, 10 % dry milk, 1 % BSA) at room
55 56 57	546	temperature. The blocked membrane was incubated overnight at 4 °C under gentle shaking
58 59 60	547	with the anti-m ⁶ A primary antibody (Total RNA: Millipore (Burlington, MA, USA) ABE572, 1 :

563	In silico analyses:
562	
561	signal subtraction.
560	under the curve of the signal of each dot after membrane background and negative control
559	determined as 'integrated densities as a percentage of the total' which corresponds to the area
558	inferred from dot intensity measurements using ImageJ (v.1.49). Signal intensities were
557	nm (Pro Xpress, Perkin-Elmer, Waltham, MA, USA), respectively. The amount of m ⁶ A was
556	visualized using chemiluminescence (ECL kit, Promega) or fluorescence scanning at 480-530
555	RNA and 5 min then 1 h for polyA+ RNA) then total and polyA+ RNA immunoblots were
554	shaking. Membranes were extensively washed in PBST (at least 4 washes of 5 min for total
553	membrane for 1 h 30 (total RNA) or 1 h (polyA+ RNA) at room temperature under gentle
552	1 : 250 dilution) was diluted in PBST supplemented with 5 % dry milk and added onto the
551	dilution; polyA+ RNA: Invitrogen (Carlsbad, CA, USA) A21202 donkey anti-mouse Alexa 488,
550	(Total RNA: Dako (Santa Clara, CA, USA) P0447 goat anti-mouse HRP antibody, 1 : 10,000
549	dilution in blocking buffer) followed by four washes of PBST for 5 min. The secondary antibody
548	1,000 dilution in blocking buffer; polyA+ RNA: Diagenode (Liege, Belgium) C15200082, 1 : 500

All protein and RNA sequences of the m⁶A machinery of Homo sapiens and Drosophila melanogaster (Data S1) were recovered by their published designation (i.e., 'METTL3' or 'YTHDF' etc.) and their identified protein sequence (ie. RefSeq accession number NP...) collected from NCBI and used as query sequences to search for putative homologue sequences in Crassostrea gigas databases. The presence of oyster orthologue RNA and investigated reciprocal protein sequences by were

The FEBS Journal

BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi) on the Crassostrea gigas GigaTON [70] and NCBI databases and results were compared between the two oyster databases. Domain prediction performed with **CD-search** software was (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) with default settings on protein sequences of Homo sapiens, Drosophila melanogaster and Crassostrea gigas. The GRE-rich domain identified in vertebrate Prrc2a sequence [27] was performed with ProtParam (https://web.expasy.org/cgi-bin/protparam/protparam). Protein machinery mRNA expression analyses: The transcriptome data of the different development stages are available on the GigaTON database [70,71]. The correspondence between development stages in our study, and the GigaTON database were assessed using light microscopy based on the morphological description by Zhang et al., 2012 [71] (Table S2). Expression data was expressed in TPM (Transcripts Per Million) [72] to provide a normalized comparison of gene expression between all samples. The actual presence of some transcripts that display unclear or chimeric sequences within available oyster databases was assessed using RT-PCR (Data S1). Protein m⁶A RNA pull down: Protein extraction and RNA affinity chromatography Protein extraction and RNA affinity chromatography were performed as described previously [27] with some modifications as follows. Equal amounts (1 million individuals) of each

591 developmental stage (oocyte to D larvae) were pooled together then homogenized in 3.5

volumes of buffer A (10 mM KCl, 1.5 mM MgCl2, 10 mM HEPES, pH 7.9, DEPC water, 1X Protease inhibitor cocktail, DTT 0.5 mM) by extensive pipetting (ca. 30 times) and incubated 10 min at 4 °C. Embryos were ground with 10 slow 23G-needle syringe strokes and centrifuged at 2,000 rpm for 10 min at 4 °C. The supernatant was diluted in 0.11 volume of buffer B (1.4 M KCI, 0.03 M MgCl2, HEPES 0.3 M, pH 7.9, DEPC water), centrifuged at 10,000 g for 1 h at 4 °C and the supernatant containing cytosolic proteins was stored at -80 °C. The pellet of the first centrifugation, containing nuclei, was re-suspended in two volumes of buffer C (0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25 % glycerol, 20 mM HEPES, pH 7.9, 0.5 mM PMSF, 0.5 mM DTT, water DEPC). Nuclei were then lysed with a 23 G needle (10 vigorous syringe strokes) followed by centrifugation at 30,000 rpm for 30 min at 4 °C and the supernatant containing nuclear proteins was stored at -80 °C. To identify putative proteins able to bind m⁶A-RNA, the cytosolic and nuclear fractions were submitted to affinity chromatography using 5'-biotin-labelled RNA oligonucleotides either

bearing N^6 -methylated adenosines or not. The methylated adenosines were designed to lie within RRACH motifs, according to the conserved methylated consensus sequence in other organisms [2,3,7,33,73] (oligo-m⁶A: 5'Biotin-AGAAAAGACAACCAACGAGRR-m⁶A-CWCAUCAU-3', oligo-A: 5'Biotin-AGAAAAGACAACCAACGAGRRACWCAUCAU-3', R = A or G, W = A or U, Eurogentec).

For RNA pull down, streptavidin-conjugated magnetic beads (Dynabeads Myone Streptavidin,
 Invitrogen) were pre-blocked with 0.2 mg/mL tRNA (Sigma-Aldrich) and 0.2 mg/mL BSA for 1
 h at 4 °C under gentle rotation followed by three washes with 0.1 M NaCl. To avoid the
 identification of non-target proteins, cytosolic and nuclear protein extracts were cleared with

The FEBS Journal

3 4	614	pre-blocked magnetic beads in binding buffer (50 mM Tris-HCl, 250 mM NaCl, 0.4 mM EDTA,
5 6 7	615	0.1 % NP-40, DEPC water, 1 mM DTT, 0.4 U/µL RNAsin) for 1 h at 4 $^\circ\text{C}$ under gentle rotation.
8 9	616	After incubation on magnetic rack, the supernatants containing putative target proteins were
10 11 12	617	collected and mixed with pre-blocked magnetic beads and oligo-m ⁶ A or oligo-A for 2 h at 4 $^\circ$ C
13 14 15	618	under gentle rotation. The beads binding putative target proteins were washed three times with
16 17	619	binding buffer and diluted in 50 mM ammonium bicarbonate.
18 19 20 21	620	 Identification of m⁶A-binding proteins by LC-MS/MS:
22 23	621	Protein samples were first reduced, alkylated and digested with trypsin then desalted and
24 25 26	622	concentrated onto a μ C18 Omix (Agilent, Santa Clara, CA, USA) before analysis.
27 28 29	623	The chromatography step was performed on a NanoElute (Bruker Daltonics, Billerica, MA,
30 31	624	USA) ultra-high pressure nano flow chromatography system. Peptides were concentrated onto
32 33 34	625	a C18 pepmap 100 (5 mm x 300 μ m i.d.) precolumn (Thermo Scientific) and separated at 50
35 36 27	626	$^\circ\text{C}$ onto a reversed phase Reprosil column (25 cm x 75 μm i.d.) packed with 1.6 μm C18 coated
37 38 39	627	porous silica beads (Ionopticks, Parkville, Victoria, Australia). Mobile phases consisted of 0.1
40 41 42	628	% formic acid, 99.9 % water (v/v) (A) and 0.1 % formic acid in 99.9 % ACN (v/v) (B). The
43 44	629	nanoflow rate was set at 400 nL/min, and the gradient profile was as follows: from 2 to 15 $\%$ B
45 46 47	630	within 60 min, followed by an increase to 25 % B within 30 min and further to 37 % within 10
48 49 50	631	min, followed by a washing step at 95 % B and re-equilibration.
51 52	632	MS experiments were carried out on an TIMS-TOF pro mass spectrometer (Bruker Daltonics)
53 54 55	633	with a modified nano-electrospray ion source (CaptiveSpray, Bruker Daltonics). The system
56 57	634	was calibrated each week and mass precision was better than 1 ppm. A 1600 spray voltage
58 59 60	635	with a capillary temperature of 180 °C was typically employed for ionizing. MS spectra were

acquired in the positive mode in the mass range from 100 to 1700 m/z. In the experiments described here, the mass spectrometer was operated in PASEF mode with exclusion of single charged peptides. A number of 10 PASEF MS/MS scans was performed during 1.16 seconds from charge range 2-5. The fragmentation pattern was used to determine the sequence of the peptide. Database searching was performed using the Mascot 2.6.1 program (Matrix Science) with a Crassostrea gigas Uniprot database (including 25,982 entries). The variable modifications allowed were as follows: C-Carbamidomethyl, K-acetylation, methionine oxidation, and Deamidation (NQ). The 'Trypsin' parameter was set to 'Semispecific'. Mass accuracy was set to 30 ppm and 0.05 Da for MS and MS/MS mode respectively. Mascot data were then transferred to Proline validation software (http://www.profiproteomics.fr/proline/) for data filtering according to a significance threshold of <0.05 and the elimination of protein redundancy on the basis of proteins being evidenced by the same set or a subset of peptides (Data S2). Gene ontology analysis: The mRNA sequences of the characterized m⁶A-binding proteins were identified using tBlastn [74-76] against the GigaTON database [70] with default settings. Gene ontology (GO) analyses were carried out with the GO annotations obtained from GigaTON database gene universe [70]. GO term-enrichment tests were performed using the goseg (V1.22.0) R package [77] with p-values calculated by the Wallenius method and filtered using REVIGO [78]. GO

terms with a p-value < 0.05 were considered significantly enriched (Data S3).

7 656

657 Statistical analyses and graph production:

The FEBS Journal

2 3 4	658	Results are given as the mean \pm SD of three independent experiments unless otherwise stated.
5 6 7	659	They were analysed using one-way ANOVA or Kruskall-wallis tests when required, depending
8 9	660	on the normality of result distribution. The normality was tested using the Shapiro-Wilk's test
10 11 12	661	and homoscedasticity of variances with Bartlett's tests. Statistics and graphics were computed
13 14 15	662	with Prism v.6 (Graphpad), R (v.3.6.1) and RStudio (v.1.0.153) softwares. The R packages
16 17	663	eulerr [79] and Complexheatmap [80] were used for production of specific figures.
18 19 20	664	
21 22 23 24	665	
25 26	666	Author contribution
27 28 29	667	Experiment design: GR, LLF.
30 31 32	668	Benchwork and bioinformatics: LLF, GR, BB, BP, MS.
33 34 35	669	Data analysis: LLF, GR, BB, MS.
36 37	670	Manuscript writing and editing: LLF, GR, PF, BB, MS, BP.
38 39 40	671	
41 42 43	672	Acknowledgements
44 45	673	The authors would like to acknowledge PRISMM core facility collaborators R. Delepée and S.
46 47 48	674	Lagadu for their expertise in m ⁶ A/A UHPLC-MS/MS quantification. We also thank J. Pontin for
49 50 51	675	technical assistance and J. Le Grand for help with sampling.
52 53	676	
54 55 56 57 58 59 60	677	Funding sources and disclosure of conflicts of interest

1 2		
3 4	678	This work was supported by the French National program CNRS EC2CO (Ecosphère
5 6 7	679	Continentale et Côtière 'HERITAGe' to G. Rivière) and the council of the Normandy Region
8 9	680	(RIN ECUME to P. Favrel). The authors declare they have no conflict of interest.
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 13\\ 23\\ 34\\ 55\\ 36\\ 73\\ 89\\ 40\\ 14\\ 23\\ 44\\ 56\\ 47\\ 48\\ 950\\ 51\\ 52\\ 54\\ 55\\ 56\\ 57\\ 58\\ 960 \end{array}$	681	

1		
2 3 4	682	References:
5 6 7	683 684	1 Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S & Mason CE (2012) The birth of the Epitranscriptome: deciphering the function of RNA modifications. <i>Genome Biol.</i> 13, 175.
7 8 9 10 11	685 686 687	2 Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE & Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. <i>Cell</i> 149, 1635–1646.
12 13 14 15 16	688 689 690 691	3 Dominissini D, Moshitch-moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-hirsch J, Amariglio N, Kupiee M, Sorek R & Rechavi G (2012) Topology of the human and mouse m 6 A RNAmethylomes revealed bym6A-seq. Nature 485, 201–206.
17 18 19 20 21 22	692 693 694 695 696	4 Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, Vågbø CB, Kusśnierczyk A, Klungland A, Darnell JE, Darnell RB, Kuśnierczyk A, Klungland A, Darnell JE, Darnell RB, Kusśnierczyk A, Klungland A, Darnell JE & Darnell RB (2015) A majority of m 6 A residues are in the last exons, allowing the potential for 3' UTR regulation. <i>Genes Dev.</i> 29, 2037–2053.
23 24 25 26	697 698 699	5 Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova T V., Qian SB & Jaffrey SR (2015) 5' UTR m6A Promotes Cap-Independent Translation. <i>Cell</i> 163 , 999–1010.
27 28 29 30	700 701 702	6 Pendleton KE, Chen B, Liu K, Hunter O V., Xie Y, Tu BP & Conrad NK (2017) The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. <i>Cell</i> 169, 824-835.e14.
31 32 33 34	703 704 705	7 Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M & Roignant JY (2016) M6A modulates neuronal functions and sex determination in Drosophila. <i>Nature</i> 540, 242–247.
35 36 37 38	706 707 708	8 Bokar JA, Shambaugh ME, Polayes D, Matera AG & Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)- methyltransferase. RNA 3, 1233–47.
39 40 41 42	709 710 711	9 Liu J, Yue Y, Han D, Wang X, Fu YY, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W & He C (2013) A METTL3–METTL14 complex mediates mammalian nuclear RNA N6- adenosine methylation. <i>Nat. Chem. Biol.</i> 10 , 93–95.
43 44 45 46	712 713 714	10 Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T & Yin P (2016) Structural basis of N6-adenosine methylation by the METTL3- METTL14 complex. <i>Nature</i> 534, 575–578.
47 48 49 50 51 52	715 716 717 718 719	11 Ping X-LL, Sun B-FF, Wang L, Xiao W, Yang X, Wang W-JJ, Adhikari S, Shi Y, Lv Y, Chen Y-SS, Zhao X, Li A, Yang YGYY-G, Dahal U, Lou X-MM, Liu X, Huang J, Yuan W- PP, Zhu X-FF, Cheng T, Zhao Y-LL, Wang X, Danielsen JMRR, Liu F & Yang YGYY-G (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. <i>Cell Res.</i> 24, 177–189.
53 54 55 56 57	720 721 722 723	12 Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, Wang F, Wang X, Shen B, Wang Y, Feng X, He C & Liu J (2018) VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. <i>Cell Discov.</i> 4, 10.
58 59 60	724 725 726	13 Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, Saleh M, Eeckhout D, El-Showk S, Li H, Zhong S, Jaeger G De, Mongan NP, Hejátko J, Helariutta Y & Fray RG (2017) Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a

1 2		
3 4 5 6 7 8 9 10 11 2 13 4 15 16 7 18 19 20 1 22 3 24 25 26 7 28 9 30 1 3 23 3 4 5 3 37 38 9 40 1 42 3 44 5 46 7 8 49 50 1 52 3 55 55 7 58 59 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	727	role for the conserved E3 ubiquitin ligase HAKAI. <i>New Phytol.</i> 215 , 157–172.
	728 729 730 731 732	14 Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, Andrade-Navarro MA, Biggiogera M, Helm M, Soller M, Bühler M & Roignant J-YY (2018) Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m 6 A machinery component Wtap/Fl(2)d. Genes Dev. 32, 1–15.
	733 734 735	15 Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M & Jaffrey SR (2016) m6A RNA methylation promotes XIST-mediated transcriptional repression. <i>Nature</i> 537, 369–373.
	736 737 738 739 740	16 Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG & He C (2013) ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. <i>Mol. Cell</i> 49, 18–29.
	741 742 743 744	17 Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik A V, Patil DP, Linder B, Pickering BF, Vasseur J-J, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M & Jaffrey SR (2017) Reversible methylation of m6Am in the 5' cap controls mRNA stability. <i>Nature</i> 541, 371– 375.
	745 746 747	18 Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang YGYY-GGYY-G, Yi C, Lindahl T, Pan T, Yang YGYY-GGYY-G & He C (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. <i>Nat. Chem. Biol.</i> 7, 885–887.
	748 749 750 751	19 Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C, Zhike L, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Ärisien M, Dai Q, Jia G, Ren B, Pan T & He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. <i>Nature</i> 505 , 117–120.
	752 753 754	20 Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H & He C (2015) N6-methyladenosine modulates messenger RNA translation efficiency. <i>Cell</i> 161 , 1388–1399.
	755 756 757	21 Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G, Dai Q, Liu M, Guo X, Sha J, Shen B & He C (2017) Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. <i>Cell Res.</i> 27, 1115–1127.
	758 759	22 Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C & He C (2017) YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. <i>Cell Res.</i> 27, 315–328.
	760 761 762 763	23 Xiao W, Adhikari S, Dahal U, Chen Y-S, Hao Y-J, Sun B-F, Sun H-Y, Li A, Ping X-L, Lai W-Y, Wang XX-J, Ma H-L, Huang C-M, Yang YY-G, Huang N, Jiang G-B, Wang H-L, Zhou Q, Wang XX-J, Zhao Y-L & Yang YY-G (2016) Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. <i>Mol. Cell</i> 61, 507–519.
	764 765 766	24 Roundtree IA, Luo G-ZZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, He E, Shen B & He C (2017) YTHDC1 mediates nuclear export of N6- methyladenosine methylated mRNAs. <i>Elife</i> 6, 1–28.
	767 768 769	25 Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie SFSSF & Tavazoie SFSSF (2015) HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. <i>Cell</i> 162, 1299–1308.
	770 771	26 Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Hüttelmaier S, Skibbe JR, Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S,

1		
2		
4	//2 272	Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, Guan JL, He C, Yang J & Chen J (2018) Recognition of RNA N6 methyladenosine by IGE2RP proteins enhances
5	777	mRNA stability and translation Nat Cell Biol 20 285–295
6	//4	The transmitty and translation. Nat. Och Diol. 20, 200–200.
7	775	27 Wu R, Li A, Sun B, Sun J-GG, Zhang J, Zhang T, Chen Y, Xiao Y, Gao Y, Zhang Q, Ma J,
8	776	Yang X, Liao Y, Lai W-YY, Qi X, Wang S, Shu Y, Wang H-LL, Wang F, Yang Y-GG &
9 10	777	Yuan Z (2018) A novel m6A reader Prrc2a controls oligodendroglial specification and
11	778	myelination. <i>Cell Res.</i> 29, 23–41.
12	779	28 Bertero A. Brown S. Madrigal P. Osnato A. Ortmann D. Yiangou I. Kadiwala J. Hubner
13	780	NC, De Los Mozos IR, Sadee C, Lenaerts A-SS, Nakanoh S, Grandy R, Farnell E, Ule
14	781	J, Stunnenberg HG, Mendjan S, Vallier L, Sadée C, Lenaerts A-SS, Nakanoh S, Grandy
15	782	R, Farnell E, Ule J, Stunnenberg HG, Mendjan S & Vallier L (2018) The SMAD2/3
10 17	783	interactome reveals that TGF β controls m 6 A mRNA methylation in pluripotency.
18	784	<i>Nature</i> 555 , 256–259.
19	785	29 Kwon J. Jo Y.I. Namgoong S & Kim NH (2019) Eurotional roles of hnRNPA2/B1 regulated
20	786	by METTL3 in mammalian embryonic development. Sci. Rep. 9, 8640
21	/00	
22	787	30 Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AAF, Kol N, Salmon-Divon M,
23	788	Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y,
25	789	Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y,
26	790	Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Neverabtern N, Dechevi C, & Hanna, IH (2015) m6A mDNA methylation facilitates
27	791	resolution of païve pluripotency toward differentiation. Science (80-) 347, 1002, 1006
28	192	resolution of harve plunpotency toward differentiation. Science (80). 347 , 1002–1000.
29	793	31 Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B,
31	794	Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC,
32	795	Xing Y, Giallourakis CC, Chang HY, Howard Y, Batista PJ, Molinie B, Wang J, Qu K,
33	796	Zhang J, Li L, Bouley DM, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC &
34	797	Chang HY (2014) M ⁶ A RNA modification controls cell fate transition in mammalian
35	798	embryonic stem cells. <i>Cell Stem Cell</i> 15 , 707–719.
36 27	799	32 Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R & Pillai RS (2017)
37 38	800	Regulation of m6A Transcripts by the 3' \rightarrow 5' RNA Helicase YTHDC2 Is Essential for a
39	801	Successful Meiotic Program in the Mammalian Germline. Mol. Cell 68, 374-387.e12.
40	002	22 Theo DO Wenn V. Deedell A.V. Jul Z. Child Kuuseelu A. He DK & He C (2017) MCA
41	802	33 Zhao BS, Wang X, Beadell A V., Lu Z, Shi H, Kuuspalu A, Ho KK & He C (2017) MoA-
42	803 804	Nature 542 475–478
43 11	004	
45	805	34 Kan L, Grozhik A V., Vedanayagam J, Patil DP, Pang N, Lim K-S, Huang Y-C, Joseph B,
46	806	Lin C-J, Despic V, Guo J, Yan D, Kondo S, Deng W-M, Dedon PC, Jaffrey SR & Lai EC
47	807	(2017) The m6A pathway facilitates sex determination in Drosophila. <i>Nat. Commun.</i> 8,
48	808	15737.
49	809	35 Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM & Wang PJ
50 51	810	(2018) Nuclear m 6 A reader YTHDC1 regulates alternative polyadenvlation and splicing
52	811	during mouse oocyte development. <i>PLoS Genet.</i> 14 , 1–28.
53		
54	812	36 Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C,
55	813	Enright AJ, O'Carroll D, Giacomo M Di, Azzi C, Morgan M, Moreira PN, Monahan J,
56	814 015	Cameri C, Enright AJ, O carroll D, DI Glacomo M, AZZI C, Morgan M, Moreira PN, Monaban L, Carrieri C, Enright AJ & O'carroll D (2017) The DNA m & A Deader
57	012 815	Wonanian J, Cameri C, Ennymi AJ α O Canon D (2017) The RNA III 0 A Reduct VTHDE2 is Essential for the Post-transcriptional Regulation of the Maternal
50 50	817	Transcriptome and Oocyte Competence Mol Cell 67 1050-1067 e4
60	017	

37 Lence T, Paolantoni C, Worpenberg L & Roignant JY (2019) Mechanistic insights into m 6 A RNA enzymes. Biochim. Biophys. Acta - Gene Regul. Mech. 1862, 222–229. 38 Balacco DL & Soller M (2018) The m⁶ A writer: Rise of a machine for growing tasks. Biochemistry 58, acs.biochem.8b01166. 39 Lence T, Soller M & Roignant JY (2017) A fly view on the roles and mechanisms of the m6A mRNA modification and its players. RNA Biol. 14, 1232-1240. 40 Robbens S, Rouzé P, Cock JM, Spring J, Worden AZ & Van De Peer Y (2008) The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J. Mol. Evol. 66, 80-84. 41 Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, Li C, Liu B, Luo Y, Zhu Y, Zhang N, He S, He C, Wang H & Chen D (2015) N6-methyladenine DNA modification in Drosophila. Cell 161, 893-906. 42 Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C & Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161, 868–878. 43 Riviere G, He Y, Tecchio S, Crowell E, Sourdaine P, Guo X & Favrel P (2017) Dynamics of DNA methylomes underlie oyster development. PLOS Genet. 13, 1-16. 44 Sussarellu R, Lebreton M, Rouxel J, Akcha F, Riviere G & Rivière G (2018) Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. Aquat. Toxicol. 196, submitted. 45 Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C, Montagnani C, Mitta G, Bachère E, Akcha F & Cosseau C (2017) Effects of a parental exposure to diuron on Pacific ovster spat methylome. *Environ. Epigenetics* **3**, 1–13. 46 Riviere G, Wu G-CC, Fellous A, Goux D, Sourdaine P & Favrel P (2013) DNA Methylation Is Crucial for the Early Development in the Oyster C. gigas. Mar. Biotechnol. 15, 1–15. 47 Saint-Carlier E & Riviere G (2015) Regulation of Hox orthologues in the oyster Crassostrea gigas evidences a functional role for promoter DNA methylation in an invertebrate. FEBS Lett. 589, 1459-1466. 48 Fellous A, Favrel P & Riviere G (2015) Temperature influences histone methylation and mRNA expression of the Jmj-C histone-demethylase orthologues during the early development of the oyster Crassostrea gigas. Mar. Genomics 19, 23-30. 49 Fellous A, Favrel P, Guo X & Riviere G (2014) The Jumonii gene family in Crassostrea gigas suggests evolutionary conservation of Jmi-C histone demethylases orthologues in the oyster gametogenesis and development. Gene 538, 164-175. 50 Fellous A, Le Franc L, Jouaux A, Goux D, Favrel P & Rivière G (2019) Histone Methylation Participates in Gene Expression Control during the Early Development of the Pacific Oyster Crassostrea gigas. Genes (Basel). 10, 695. 51 Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR & Qian S-B (2015) Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591-594. 52 Lu Z, Ma Y, Li Q, Liu E, Jin M, Zhang L & Wei C (2019) The role of N6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries). Cell Stress Chaperones 24, 333-342. 53 Xiang Y, Laurent B, Hsu C, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J,
1		
2 3 4 5	860 861	Wang S, Ling D, Hsu P, Zou L, Jambhekar A & He C (2017) m6A RNA methylation regulates the UV-induced DNA damage response. <i>Nature</i> 543 , 573–576.
6 7 8 9	862 863 864	54 Cayir A, Barrow TM, Guo L & Byun HM (2019) Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes. <i>Environ. Res.</i> 175 , 228–234.
10 11 12 13	865 866 867	55 Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Fan J & Yi C (2019) Landscape and Regulation of M ⁶ A and M ⁶ Am Methylome Across Human and Mouse Tissues. SSRN Electron. J., 1–56.
14 15 16	868 869	56 Ren W, Lu J, Huang M, Gao L, Li D, Greg Wang G & Song J (2019) Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. <i>Nat. Commun.</i> 10 , 5042.
17 18 19 20	870 871 872	57 Bokar JA, Shambaugh ME, Polayes D, Matera AG & Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. <i>RNA</i> 3 , 1233–1247.
21 22 23	873 874 875	58 Theler D, Dominguez C, Blatter M, Boudet J & Allain FHT (2014) Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. <i>Nucleic Acids Res.</i> 42 , 13911–13919.
24 25 26 27 28 29	876 877 878 879	59 Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T & Igarashi K (2017) S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. <i>Cell Rep.</i> 21, 3354–3363.
30 31 32	880 881 882	60 Yurchenko O V., Skiteva OI, Voronezhskaya EE & Dyachuk VA (2018) Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). <i>Front. Zool.</i> 15, 1–21.
34 35 36	883 884	61 Ratnaparkhi A (2013) Signaling by folded gastrulation is modulated by mitochondrial fusion and fission. <i>J. Cell Sci.</i> 126 , 5369–5376.
37 38 39	885 886 887	62 Ren L, Zhang C, Tao L, Hao J, Tan K, Miao K, Yu Y, Sui L, Wu Z, Tian J & An L (2017) High-resolution profiles of gene expression and DNA methylation highlight mitochondrial modifications during early embryonic development. J. Reprod. Dev. 63, 247–261.
40 41 42 43 44 45	888 889 890 891	63 Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R, Lopez J, Gonzalo P, Rimokh R, Manon S, Houart C, Herbomel P, Aouacheria A & Gillet G (2013) Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. <i>Nat. Commun.</i> 4 .
46 47 48	892 893	64 Dumollard R, Duchen M & Carroll J (2007) The Role of Mitochondrial Function in the Oocyte and Embryo. <i>Curr. Top. Dev. Biol.</i> 77 , 21–49.
49 50 51 52 53 54 55	894 895 896 897 898 899	65 Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun MM, Chen Z, Deng X, Xiao G, Auer F, Klemm L, Wu H, Zuo Z, Qin X, Dong Y, Zhou Y, Qin H, Tao S, Du J, Liu J, Lu Z, Yin H, Mesquita A, Yuan CL, Hu Y-CC, Sun W, Su R, Dong L, Shen C, Li C, Qing Y, Jiang X, Wu X, Sun MM, Guan J-LL, Qu L, Wei M, Müschen M, Huang G, He C, Yang J & Chen J (2019) Histone H3 trimethylation at lysine 36 guides m6A RNA modification co- transcriptionally. <i>Nature</i> 567 , 414–419.
56 57 58 59 60	900 901 902 903	66 Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M, Duester G & Zhao JC (2018) N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. <i>Nat. Neurosci.</i> 21, 195–206.

67 Petton B, Pernet F, Robert R & Boudry P (2013) Temperature influence on pathogen transmission and subsequent mortalities in juvenile pacific oysters Crassostrea gigas. Aquac. Environ. Interact. 3, 257–273. 68 Riviere G, Fellous A, Franco A, Bernay B & Favrel P (2011) A crucial role in fertility for the ovster angiotensin-converting enzyme orthologue CgACE. PLoS One 6. 69 EMA (2011) Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009. 70 Riviere G, Klopp C, Ibouniyamine N, Huvet A, Boudry P & Favrel P (2015) GigaTON: An extensive publicly searchable database providing a new reference transcriptome in the pacific oyster Crassostrea gigas. BMC Bioinformatics 16, 1–12. 71 Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N & Huang Z (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49-54. 72 Li B, Ruotti V, Stewart RM, Thomson JA & Dewey CN (2010) RNA-Seg gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493-500. 73 Qi ST, Ma JY, Wang ZB, Guo L, Hou Y & Sun QY (2016) N6 -methyladenosine sequencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in xenopus laevis. J. Biol. Chem. 291, 23020-23026. 74 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402. 75 Cock PJA, Chilton JM, Grüning B, Johnson JE & Soranzo N (2015) NCBI BLAST+ integrated into Galaxy. Gigascience 4, 0-6. 76 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K & Madden TL (2009) BLAST+: Architecture and applications. BMC Bioinformatics 10, 1-9. 77 Young MD, Wakefield MJ, Smyth GK & Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14. 78 Supek F, Bošnjak M, Škunca N & Šmuc T (2011) Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One 6. 79 Larsson J (2019) eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. . 80 Gu Z, Eils R & Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847-2849.

Figure legends

1	
י ר	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
26	
50	
37	
38	
39	
10	
4U 1	
41	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
50 E1	
21	
52	
53	
54	
55	
55	
50	
57	
58	
59	

6 7 8	940	Figure 1: m ⁶ A levels across oyster development.
9 10 11	941	A. m ⁶ A level quantified by LC-MS/MS in Crassostrea gigas embryo-larval stages pooled from
12 13 14	942	oocytes to D-larvae (n= 3) is compared to the m ⁶ A level in Homo sapiens and Drosophila
15 16 17	943	melanogaster; B. Dot blot quantification of m ⁶ A in total RNA throughout oyster development
17 18 19	944	(n=3); C. Dot blot quantification of m ⁶ A in polyA+ RNAs throughout oyster development (n=3)
20 21 22	945	Kruskal-Wallis test, α < 0,05. E: Egg, F E: fertilized egg, 2/8C: two to eight cell embryos, M:
23 24 25	946	Morula, B: Blastula, G: Gastrula, T: Trochophore, D: D larvae. Chemiluminescence (B) and
25 26 27	947	fluorescence (C) are measured as a ratio between dot intensity of development stages and
28 29 30	948	their respective controls for each amount of RNA (120ng, 60ng and 30ng).
31 32 33	949	
34 35 36	950	Figure 2: The putative conserved m ⁶ A machinery in Crassostrea gigas.
37 38	951	Domain architecture of actors of the m ⁶ A machinery identified by <i>in silico</i> analyses in the oyster
39 40 41	952	compared to the fruit fly and human, A. Writer proteins; B. Eraser protein; C. Reader proteins.
42 43 44	953	Putative domains involved in m ⁶ A processes are coloured (writers, green; eraser, red; readers,
45 46	954	blue). Other domains identified but not involved in m ⁶ A processes are indicated in grey. Only
47 48 49	955	one isoform is represented for each protein and each species for clarity (see supplementary
50 51 52	956	figure S2 for other isoforms).
53 54	957	
55 56 57 58 59 60	958	Figure 3: Gene expression of the putative m ⁶ A machinery throughout oyster development

Expression levels of writers (A), eraser (B) and readers (C) identified by in silico analysis at each development stage were inferred from the GigaTON database. Expression levels are given in Transcripts Per kilobases per Million Reads (TPM) as the mean of the GigaTON values according to the table S2. E: Egg, 2/8C: two to eight cell, M: Morula, B: Blastula, G: Gastrula, T: Trochophore, D: D larvae, S: Spat, J: Juvenile. Figure 4: Characterization of m⁶A-RNA binding proteins in oyster development. A. Venn diagrams representation of proteins bound to the A- and/or m⁶A- oligos in nuclear and cytosolic fractions of oyster embryo-larval stages. The number of proteins identified is indicated. Some actors characterized in this study are highlighted: eIF3, YTHC1, hnRNPA2B1 and IGF2BP. B. Heatmap of gene expression levels of the proteins that bind specifically to the m⁶A-oligo throughout oyster development. The expression level is normalized regarding the maximum value for each gene according to the GigaTON database. C. GO term distribution among the three expression clusters in B. D. Examples of GO term enrichment within the expression clusters of the m⁶A-bound proteins. The -log10(p-value) associated to each term is given. E: Egg, 2/8C: two to eight cells, M: Morula, B: Blastula, G: Gastrula, T: Trochophore, D: D larvae, S: Spat, J: Juvenile.

1 2		
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 90\\ 41\\ 42\\ 43\\ 44\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	977	Supporting information:
	978	Data S1: Complete list of in silico identified putative m ⁶ A machinery proteins and their
	979	respective BLAST results
	980	Data S2: Identified proteins by RNA pull down coupled with mass spectrometry with m ⁶ A or
	981	A-oligo, in nuclear or cytosolic protein extracts
	982	Data S3: Complete list of GO terms of clustered genes of m ⁶ A interacting proteins (p-
	983	value<0,05)
	984	Table S1: Transitions used for each compound. A: first transition, B: second transition
	985	Table S2: Table of correspondence between development stages in our study, and the
	986	GigaTON database.
	987	

2 3 4	1	A functional m ⁶ A-RNA methylation pathway in the oyster Crassostrea gigas		
5 6 7	2	assumes epitranscriptomic regulation of lophotrochozoan development		
8 9 10	3			
11 12 13	4	Authors		
14 15 16	5	Lorane LE FRANC ¹ , Benoit BERNAY ² , Bruno PETTON ³ , Marc SINCE ⁴ , Pascal FAVREL ¹ and		
17 18 10	6	Guillaume RIVIERE ¹		
20 21	7			
22 23 24	8	Addresses		
25 26 27	9	¹ Normandie Univ, UNICAEN, CNRS, BOREA, 14000 Caen, France.		
28 29	10	Laboratoire Biologie des organismes et Ecosystèmes aquatiques (BOREA), Muséum		
30 31 32	11	d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, Université des		
33 34 35	12	Antilles, CNRS, IRD, Esplanade de la paix, 14032 Caen, France.		
36 37	13	² Normandie Univ, UNICAEN, SF ICORE, PROTEOGEN core facility, 14000 Caen, France		
38 39 40	14	CNRS/URD//framer Centre Protegne 20280 Plauzené France		
41 42 43	15	⁴ Normandie Univ UNICAEN Comprehensive Cancer Center E Baclesse SE ICORE		
44 45	10	PRISMM core facility 14000 Caen France		
46 47 48	18			
49 ¹⁸ 50 51 10 Corresponding outbor		Corresponding author		
52 53	20	Guillaume Rivière (0033231565113 : guillaume riviere@unicaen.fr) . Normandie Univ.		
54 55 56	21	UNICAEN, CNRS, BOREA, 14000 Caen, France (https://borea.mnhn.fr/), Tel :		
57 58 59	22	· · · · · · · · · · · · · · · · · · ·		
60				

1				
2	22	Dunging title		
5 4	23	Running title		
5				
6	24	m ⁶ A-RNA methylation pathway in oyster development		
7				
8	25			
9	20			
10				
11	26	Abbreviations		
12				
14	27	N ⁶ -methyladenosine (m ⁶ A), Methyltransferase like (METTL), Wilms' tumor 1-associated		
15				
16	28	protein (WTAP) RNA-binding motif 15 (RBM15) Ring finger F3 ubiquitin ligase (HAKAI) Zinc		
17	20			
18				
19	29	finger CCCH-type containing 13 (ZC3H13), AlkB homologue 5 (ALKBH5), Fat mass and		
20				
21	30	obesity associated protein (FTO), YTH domain family protein (YTHDF), YTH domain		
22				
24	21	containing protein (YTHDC) Heterogeneous nuclear ribonucleoproreins A2 B1		
25	21	containing protein (TTTDC), Treterogeneous nuclear fiboriucieoproteins Az BT		
26				
27	32	(HNRNPA2B1), Proline rich coiled-coil 2a (Prrc2a), Eukaryotic initiation factor 3 (eIF3), Sterile		
28				
29	33	sea water (SSW), Oocytes (E), Fertilized oocytes (F E), Two to eight cell embryos (2/8 C),		
30 21				
32	24	Hours post fortilization (hpf) Morula (M) Plastula (P) Castrula (C) D Januas (D) solid phase		
33	54	Tiours post leitilization (hpr), wordia (w), blastula (b), Gastrula (G), D laivae (D), solid-priase		
34		7		
35	35	reversible immobilization (SPRI), TPM (Transcripts Per Million), Gene ontology (GO), oyster		
36				
37	36	m ⁶ A-interacting protein (Cg-m ⁶ A-BPs), S-adenosyl-methionine (SAM), maternal-to-zygotic		
38				
39 40	27	transition (MZT) acetonitrile (ACN)		
41	57			
42				
43	38			
44				
45	39	Keywords		
46		-		
4/ 10	10	PNA methylation enitranscriptomics oyster development		
40	40	RNA, methylation, epitranscriptomics, byster, development.		
50				
51	41			
52				
53				
54	42	Conflicts of interest		
55 56	-			
57				
58	43	The authors declare they have no competing conflict of interest		
59				
60				

44 Abstract

N⁶-methyladenosine (m⁶A) is a prevalent epitranscriptomic mark in eukaryotic RNA, with crucial roles for mammalian and ecdysozoan development. Indeed, m⁶A-RNA and the related protein machinery are important for splicing, translation, maternal-to-zygotic transition and cell differentiation. However, to date, the presence of an m⁶A-RNA pathway remains unknown in more distant animals, questioning the evolution and significance of the epitranscriptomic regulation. Therefore, we investigated the m⁶A-RNA pathway in the oyster Crassostrea gigas, a lophotrochozoan model whose development was demonstrated under strong epigenetic influence.

Using mass spectrometry and dot blot assays, we demonstrated that m⁶A-RNA is actually present in the oyster and displays variations throughout early oyster development, with the lowest levels at the end of cleavage. In parallel, by in silico analyses, we were able to characterize at the molecular level a complete and conserved putative m⁶A-machinery. The expression levels of the identified putative m⁶A writers, erasers and readers were strongly regulated across oyster development. Finally, RNA pull-down coupled to LC-MS/MS allowed us to prove the actual presence of readers able to bind m⁶A-RNA and exhibiting specific developmental patterns.

Altogether, our results demonstrate the conservation of a complete m⁶A-RNA pathway in the
oyster and strongly suggest its implication in early developmental processes including MZT.
This first demonstration and characterization of an epitranscriptomic regulation in a
lophotrochozoan model, potentially involved in the embryogenesis, brings new insights into
our understanding of developmental epigenetic processes and their evolution.

Introduction

The N⁶-methyladenosine (m⁶A) is the prevalent chemical RNA modification in all eukaryotic coding and non-coding RNAs [1]. Messenger RNAs are the most heavily m⁶A methylated RNAs, with m⁶A bases lying mostly in their 3' UTRs, at the vicinity of their stop codon [2–4] and also in 5' UTRs and long internal exons [4,5]. N⁶-methylation of RNA adenosines is responsible for RNA processing and, like DNA methylation or histone modifications, contributes to the regulation of gene expression without changing the DNA or mRNA sequence. Therefore m⁶A constitutes a new layer of post-transcriptional gene regulation, which is emerging or has been proven critical in various biological processes, and referred to as epitranscriptomic [2].

The dynamics and biological outcomes of m⁶A levels are the results of the activity of a complex protein machinery comprising writers, erasers and readers. The addition of a methyl group to the 6th nitrogen of RNA adenosines is catalysed by m⁶A writers with distinct properties. Methyltransferase like 16 (METTL16) is a 'stand-alone' class I methyltransferase that recognizes the UACA*GAGAA consensus sequence (with * indicating the target adenosine) [6]. By contrast, METTL3 transfers methyl groups to adenosines within the RRA*CH motif [2,3,7]. METTL3 is only active within a tripartite 'core complex' [8] comprising METTL3, METTL14 which enhances the methyltransferase activity supported by the MTA-70 domain of METTL3 [9,10] and the regulator protein Wilms' tumor 1-associated protein (WTAP) [4,9,11]. This core complex can interact with Virilizer-like (or KIAA1429) [12], ring finger E3 ubiquitin

ligase (HAKAI) [12,13], zinc finger CCCH-type containing 13 (ZC3H13) [12,14], RNA-binding motif 15 (RBM15) and RBM15B [7,15] which are suspected to intervene in the core complex activity and target specificity. The demethylation of adenosines has been demonstrated to be an active process catalysed by eraser enzymes belonging to the Fe(II)/2-oxoglutarate dioxygenase family: AlkB homologue 5 (ALKBH5) [16,17] and the fat mass and obesity associated protein (FTO) [17,18].

A growing number of reader proteins which recognize the m⁶A-RNA mark is being described. They may be divided into two classes depending on the presence of a YT521 B Homology (YTH) domain in their primary sequence. The YTH protein family includes YTH domain family protein 1-3 (YTHDF1-3) and YTH domain containing protein 2 (YTHDC2), which are cytosolic m⁶A readers involved in m⁶A-RNA stability and translation [19–22]. The fifth YTH member is YTHDC1, which is present in the nucleus and controls splicing [23] and nuclear export [24] of m⁶A-RNA. The second class of readers comprises proteins without YTH domain which are involved in several molecular mechanisms. For example, the heterogeneous nuclear ribonucleoprotein A2 B1 (HNRNPA2B1) is important for miRNA processing [25]. Insulin-like growth factor 2 mRNA binding protein 1-3 (IGF2BP 1-3) [26] and proline-rich coiled-coil 2a (Prrc2a) [27] participate in RNA stability while eukaryotic initiation factor 3 (eIF3) guides capindependent translation [5].

The m⁶A epitranscriptomes underlie important biological functions, most of which being related to developmental processes, including the control of cell differentiation [27-32], maternal to zygotic transition (MZT) [33], sex determination [7,34] and gametogenesis [16,21,35,36]. Such

The FEBS Journal

110 critical epitransriptomic outcomes are conserved in the animal evolution and were 111 characterized in both vertebrates and ecdysozoans, i.e. mammals and drosophila.

However, such conserved biological significance originates in diverse epitranscriptomic mechanisms. Indeed, not all ecdysozoans bear a complete m⁶A-RNA machinery, such as C. elegans whose genome is devoid of the related protein machinery with the exception of a putative orthologue of METTL16 [37,38]. In addition, no m⁶A eraser has been described to date in non-vertebrate models, and especially ecdysozoans such as the drosophila or C. elegans [38–40], where it cannot be excluded that m⁶A-RNA methylation could be removed by the activity of characterised 6mA-DNA demethylases [41,42]. This situation may illustrate a growing complexity of epitranscriptomic mechanisms during the animal phylogeny and raises fundamental questions about its evolution and its presence in organisms distant from mammals and ecdysozoans. However, to date, no data about a possible epitranscriptomic regulation is available to our knowledge in lophotrochozoans, the understudied sister group of ecdysozoans within protostomes, although representing an important range of metazoan biodiversity.

The Pacific oyster *Crassostrea gigas* (i.e. *Magallana gigas*) is a bivalve mollusc whose great ecological an economical significance allowed its emergence as a model species within lophotrochozoan organisms. As such, an important amount of genetic, transcriptomic and epigenetic data have been generated in this model. Interestingly, the embryolarval development of *C. gigas* is described to be under the strong epigenetic influence of DNA methylation [43–47] and histone marks [48–50]. Besides, oyster development occurs exposed to external environmental conditions, and in other models the m⁶A methylation of RNA and/or

the expression of its machinery can be induced by heat stress, UV exposure or endocrine disruptors [5,51-54], questioning the presence of an m⁶A pathway in C. gigas and its significance in oyster early development.

To investigate this, we measured m⁶A levels in RNA across the entire embryolarval life of the oyster using mass spectrometry and dot-blot. We also searched the available in silico resources for putative conserved m⁶A-related proteins in *C. gigas* genomic data as well as their cognate expression kinetics using RNAseq assembly analyses. We also performed RNApulldown with a synthetic m⁶A-RNA oligonucleotide coupled to liquid chromatography and mass spectrometry (LC-MS/MS) to characterize potential oyster m⁶A-binding proteins. To our knowledge, this study is the first report unravelling epitranscriptomic mechanisms outside vertebrate and ecdyzosoan animal models. íez O,

Results:

m⁶A is present in oyster RNA, differentially affects distinct RNA populations and displays variations during embryonic life.

Mass spectrometry measurements revealed that m⁶A is present in oyster RNA, with global m⁶A/A levels of ca. 0.3%, a value comparable to what has been found in the human and the fruit fly (Figure 1A). Immunoblot assays indicate that total and polyA+ RNA present variable amounts of m⁶A during oyster development and that these variations display distinct profiles suggesting specific methylation patterns between RNA populations. Indeed, N⁶A-methylation in total RNA is the highest in the early stages (oocytes and fertilized oocytes) then gradually

1 2		
2 3 4	154	decreases until the morula stage before gradually increasing again up to the trochophore stage
5 6 7	155	when it recovers its maximum (Figure 1B). In contrast, m ⁶ A levels in polyA+ RNA are hardly
8 9 10	156	detected in early stages but display a peak in the gastrula and trochophore stages (Figure 1C).
10 11 12	157	
13 14 15	158	m ⁶ A machinery is conserved at the molecular level in the oyster.
16 17	159	In silico analyses led to the identification of oyster sequences encoding putative orthologues
18 19 20	160	of m ⁶ A writers, erasers and readers that are present in the human and/or in the human and
21 22 23	161	the fruit fly.
24 25	162	All the eight m ⁶ A-RNA writers characterized in the human and/or drosophila at the time of the
26 27 28	163	study, namely METTL3, METTL14, WTAP, Virilizer-like, HAKAI, ZC3H13, RBM15/15B and
29 30 31	164	METTL16, were present in the oyster at the gene level. The encoded protein primary
32 33	165	sequences all display the specific domains required for enzymatic activity and/or binding. They
34 35 36	166	include MT-A70 and AdoMetMtases SF domains for METTL3, METTL14 and METTL16,
37 38 30	167	respectively, that bear the methyltransferase activity. Oyster WTAP and Virilizer-like
39 40 41	168	orthologues exhibit WTAP and VIR_N domains, respectively, that are required in their human
42 43 44	169	counterparts to bind and activate the catalytic subunit of the m ⁶ A-RNA methyltransferase
45 46	170	complex. Oyster Hakai and RBM15/15B present RHHL, RHF-Zn-BS and specific RRM
47 48 49	171	domains, respectively, similar to human and fruit fly orthologues. Besides, the oyster ZC3H13
50 51 52	172	bears the Rho SF domain present in the human, but not in the fruit fly orthologue (Figure 2A).
53 54	173	C. gigas also presents a putative m ⁶ A-RNA eraser, ALKBH5, which is present in the human
55 56 57	174	but has not been characterized in drosophila. The oyster ALKBH5 exhibits a 2OG-FeII_Oxy
58 59 60	175	domain suggestive of a presumably conserved catalytic functionality through fe2+-dependent

Page 50 of 151

2	
3	
1	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ⊃1	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
13	
- 1 F	
45 46	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
58	
59	
60	

1

oxoglutarate oxidation. Of note, no orthologue of the human FTO eraser could be identified in
the oyster genomic or transcriptomic databases available to date (Figure 2B).

Many m⁶A reader orthologues have also been found in the oyster, including proteins containing 178 a YTH domain, such as YTHDF, YTHDC1 and YTHDC2. An oyster Prrc2a-like protein 179 produces homology with the human Prrc2a, especially within the m⁶A-binding GRE-rich 180 domain. Oyster readers also include a heterogeneous nuclear ribonucleoprotein-coding gene, 181 182 hnRNPA2B1 with greater sequence similarity with the drosophila counterpart than with the human orthologue. Similarly, the IGF2BP-coding sequence has also been found in C. gigas 183 (Figure 2C). Five oyster sequences display homologies with eIF3a which is able to bind m⁶A-184 RNA [5] but it was not possible to discriminate whether a unique oyster predicted protein was 185 186 an elF3a orthologue.

Overall, these results indicate the conservation of a complete m⁶A-RNA machinery in the
oyster. The complete list of the identified genes encoding the conserved m⁶A machinery actors
and their isoforms, as well as the related information is given in the supplementary data (Data
S1).

2 3 191

192 Oyster putative m⁶A actors display expression level variations across development.

193 RNAseq data analyses showed that all the oyster m⁶A-related genes were expressed during
194 the early life (Figure 3). Their expression level displayed gene-specific profiles, most of them
195 being variable throughout oyster development.

The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 The expression of writers belonging to the core methylation complex is weak overall. METTL3 Page 51 of 151

1 2

The FEBS Journal

3 ⊿		
4 5		
כ ג		
7		
/ Q		
0 0		
9 10	、	
11	,	
11))	
12	<u>`</u>	
12) 1	
14	•	
12	;	
10	7	
1/	,	
10))	
נו רי	, ,	
2U 21	,	
21 วา)	
22	<u>`</u>	
23 27) 1	
24	•	
23 26	;	
20	, ,	
2/ วง	>	
20	י ג	
22	, \	
21	,	
27)	
22	2	
יר ז/	, 1	
25	г	
36	5	
37	,	
22	2	
20	, ג	
Δ(Ś	
Δ1		
42	,	
43	2	
44	ļ	
45	5	
46	5	
47	7	
48	3	
49)	
50)	
51		
52	2	
53	3	
54	ł	
55	5	
56	5	
57	7	
58	3	
50)	

remaining stable afterwards. In contrast METTL14 displays a weak expression level across 198 199 the embryo larval life. The expression profile of Virilizer-like resembles WTAP, while HAKAI, 200 RBM15/15B and METTL16 seem to have mRNA levels which decrease after cleavage, 201 whereas those of ZC3H13 transcript variants seem to drop at the D larva stage. Interestingly, METTL16 mRNA levels display an opposite developmental profile when compared to METTL3 202 expression; with the highest values during cleavage which decrease later on (Figure 3A). 203 204 ALKBH5 transcripts are weakly represented within oyster early embryos and the higher TPM values are found in gastrulas. However, maximum levels are observed after metamorphosis in 205 juveniles (Figure 3B). 206 Regarding m⁶A putative readers, the expression of YTH family genes during development 207 208 showed different patterns. In fact, YTHDF is the most represented YTH-domain bearing actor and YTHDF TPM values are ca. 5-fold higher than all the other oyster YTH readers. YTHDF is 209 210 strongly expressed at the beginning of development until a peak at the morula stage. Prrc2a is the most represented reader at the mRNA level in oyster embryos, and the sum of the TPM 211 of the two Prrc2a oyster isoforms are at most ca. 20-fold higher than those of YTH family. 212 However, Prrc2a and YTHDF transcript content profiles are similar across oyster development, 213 214 and also remind of the IGF2BP mRNA levels. By contrast, the two isoforms of YTHDC1 identified by in silico analysis, YTHDC1.1 and 215 216 YTHDC1.2, display similar patterns together with YTHDC2, with a maximum representation in 217 gastrulas. The expression of hnRNPA2B1 isoforms has likewise patterns except for a marked drop at the D larvae stage (Figure 3 C). 218

60

219

220 Oyster orthologues of m⁶A-RNA interacting proteins bind m⁶A RNA *in vitro*.

To determine whether oyster proteins can bind m⁶A-RNA, we performed RNA-pulldown of cytoplasmic and nuclear embryonic cell extracts using a methylated versus a non-methylated oligonucleotide, followed by LC/MS-MS characterisation and identification of the captured proteins with the Mascot software.

In nuclear extracts, we detected 591 proteins able to bind both the methylated and unmethylated oligos. We identified 43 proteins specific to unmethylated RNA while 131 proteins specifically bind the m⁶A-methylated oligo. In cytosolic extracts, there were respectively 646, 436 and 36 of such proteins, respectively. Regardless of the methylation status, more proteins in the cytoplasmic extracts can bind to the RNA oligonucleotides than in the nuclear extracts (1118 proteins vs. 765, respectively). However, more nuclear proteins are found exclusively bound to the m⁶A-containing oligo than cytoplasmic proteins (131 vs. 36, i.e. 17 % vs. 3 %, respectively). In addition, many nuclear and cytoplasmic proteins can bind both the methylated and the non-methylated oligo (591 vs. 646, i.e. 77 % vs. 58 %). An important number of proteins in the cytoplasmic extract were found exclusively bound to the non-methylated oligo, whereas only a limited number of nuclear proteins display such a specificity (436 vs. 43, i.e. 39 % vs. 6 %). Among the 167 m⁶A-specific proteins in oyster extracts, only 5 were found in both the nuclear and cytoplasmic extracts. These results show that oyster proteins can directly or indirectly bind m⁶A-RNA, and suggest an important compartmentalization of m⁶A-related processes.

Among the identified proteins in this assay, four of the putative oyster m⁶A readers are found,
 41 YTHDC1, hnRNPA2B1, IGF2BP and eIF3. In the nuclear extracts YTHDC1 is uncovered as

The FEBS Journal

Δ	
-	
5	
6	
7	
Q	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
23	
26	
27	
28	
20	
20	
30	
31	
32	
33	
31	
25	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
15	
45	
40	
47	
48	
49	
50	
- 1	
51	
52	
53	
54	
57	
22	
56	
57	
58	
EO	

60

249

m⁶A-specific whereas hnRNPA2B1 and IGF2BP were present complexed with both the m⁶Aand A-oligos. In the cytoplasmic extracts, YTHDC1 and eIF3a are m⁶A-specific while
hnRNPA2B1, IGF2BP were pulled down by both methylated and unmethylated oligos (Figure
4A).

- These results demonstrate that some proteins in the oyster can specifically bind m⁶A-RNA and that the putative m⁶A reader orthologues in the oyster are conserved at the protein level and are able to interact with m⁶A-RNA.
- The m⁶A-interacting protein-coding genes display clustered expression regulation and
 functional annotation during oyster development.

252 The mRNA expression level of the genes encoding the 162 oyster m⁶A-interacting protein (Cgm⁶A-BPs) was examined using RNAseq databases. Most of them display a specific and 253 regulated expression level across oyster developmental stages. However, three main 254 expression clusters could be distinguished according to their developmental mRNA expression 255 level profile. Cluster 1 includes genes that show high expression at the beginning of the embryo 256 257 life (i.e. cleavage) and strongly decrease after gastrulation; the second cluster contains weakly expressed genes except in the latest examined larval phases, after gastrulation (i.e. 258 Trochophore and D Larvae); cluster 3 groups genes that show an expression peak during 259 gastrulation (Figure 4B). 260

The Gene Ontology annotation of the Cg-m⁶A-BP genes reveal that the distinct clusters are related to distinct functional pathways as indicated by the little - if any - common GO terms between them (Figure 4C). However, the functional pathways of all three gene clusters point 264 out to their implication in translation and its regulation, although the terms enriched in each 265 cluster illustrate different aspects of translation, such as translation initiation (cluster 1), splicing 266 and nuclear export (cluster 2) and ribosomal and mitochondrial processes (cluster 3) 267 respectively (Figure 4D).

Discussion

This work demonstrates that m⁶A-RNA is present and variable during the embryo-larval life of the oyster, and that *C. gigas* exhibits putative conserved and functional m⁶A-RNA writers, eraser and readers. The dynamics of such mark and of its actors strongly suggest a biological significance of the epitranscriptomic pathway in the control of development of a lophotrochozoan species, which has, to date, never been demonstrated to our knowledge.

275 m⁶A-RNA levels vary across oyster development.

Using mass spectrometry and immunological measurements, we showed that oyster RNA is m⁶A-methylated. The global proportion of N⁶-methyladenosine in RNA in the developing oyster (0.28 %) is similar to those observed elsewhere in the animal kingdom, such as in the fruit fly (0.24 %) [34] or the human (0.11- 0.23 %) [55] (Figure 1A), despite those values are difficult to compare because they were not measured within the same developmental phase (adult flies and human cell lines vs. oyster embryos). However, the comparable magnitude of m⁶A-RNA amounts between taxa, in contrast to DNA methylation [46], may indicate conserved biological significance of epitranscriptomic processes between groups. The amount of m⁶A in total RNA displays a striking decrease during cleavage and then recovers its maximum levels at the end of the gastrulation (Figure 1B). Therefore, the m⁶A decrease in total RNA during cleavage, i.e.

The FEBS Journal

before the transcription of the zygotic genome starts, reflects a degradation of maternal m⁶A-RNAs or their demethylation. However, all RNA populations do not exhibit the same pattern, indeed polyA+ RNAs are m⁶A methylated only after cleavage. The extent of polyadenylation of oyster maternal messenger RNAs accumulating during vitellogenesis is unknown. Therefore, which maternal RNA population(s) is methylated in oyster oocytes is unclear. Nevertheless, the observation that m⁶A-RNA levels are variable and affecting distinct RNA populations across embryonic stages strongly favours an important biological significance of m⁶A-RNA in oyster development. We hypothesize that oyster maternal messenger RNAs are poorly polyadenylated, and that m⁶A, aside polyadenylation, might play a role in the stability of quiescent maternal mRNAs. Alternatively, other maternal RNA populations such as snRNA, miRNA, rRNA or IncRNA might be methylated [6,15,25,56], which become demethylated or degraded up to the morula stage. The later increase in m⁶A RNA after cleavage could therefore be the result of the methylation of the increasingly transcribed RNAs from the blastula stage, including polyadenylated mRNAs.

The m⁶A-RNA machinery is conserved in the oyster and regulated during development. The important regulation of m⁶A levels during oyster development assumes the presence of a related protein machinery. We identified in silico cDNA sequences encoding conserved putatively functional orthologues of m⁶A-RNA writers, eraser and readers in the oyster, with great confidence (homologies ranging from ca. 30 to 65 % with their human counterpart, see Data S1). The writers include all the members of the methylation complex (METTL3, METTL14, WTAP, Virilizer-like, Hakai, ZC3H13, RBM15/15B) identified to date in the human and the fruit fly [7,11,12,14,15,57]. We also identified an orthologue of the stand-alone METTL16 m⁶A

methyltransferase. Each orthologue bears the conserved domain(s) demonstrated to be implicated in the catalytic and/or binding activity of their cognate counterpart in other species, such as the MT-A70 domain which transfers methyl groups from the S-adenosyl-methionine (SAM) to the N⁶ nitrogen of RNA adenines [57]. Of the two proteins that can erase RNA methylation, only ALKBH5, which is important for mouse spermatogenesis [16], was identified at the cDNA level in the oyster. Indeed, no C. gigas sequence displayed significant homology with the mammalian FTO protein, whose functional significance remains controversial [17]. Most the characterized m⁶A-RNA readers are also present at the molecular level in the oyster and are putatively able to bind m⁶A regarding their primary sequence, such as the YTHDC and YTHDF family members [19,21,23,58], Prrc2A [27], HnRNPA2B1 [25] and IGF2BP [26]. Of note, some of these readers have not been characterized to date in D. melanogaster but display strong homologies between humans and oysters. In mammals, eIF3a has important functional outcomes in cap-independent translational stress response [5]. However, it was not possible to ascribe a single oyster sequence as a unique eIF3a orthologue (Data S1), although its presence was demonstrated by RNA pull down (see below) (see Data S2). Altogether, in silico results show the conservation of a complete m⁶A-RNA machinery in the oyster. To date to our knowledge, this is the first demonstration in a lophotrochozoan organism of an epitranscriptomic pathway. Its presence suggests its ancestral origin, and questions its biological significance in oyster development. To investigate this, we analysed the expression level of the m⁶A machinery genes using RNA-

327 To investigate this, we analysed the expression level of the m⁶A machinery genes using RNA 328 seq data. Our results indicate that the core methylation complex (METTL3, METTL14 and
 329 WTAP) would not be active during cleavage because of the absence of METTL3 and little

The FEBS Journal

WTAP expression. METTL16 catalyses the downregulation of SAM methyl donor availability in mammals [59]. If METTL16 function is conserved in the oyster as suggested by the high sequence homology, the peak in METTL16 expression, together with the weak expression of the core complex in 2/8 cell embryos is consistent with an absence of m⁶A-RNA up to the blastula stage. Then, the core complex would likely be active as soon as the end of cleavage (i.e. since the blastula stage), in line with the increase in m⁶A levels observed at the same time. The correlation between the increasing METTL3 expression and m⁶A-RNA levels after cleavage strongly favours the conservation of the methyltransferase activity of the oyster MT-A70 domain. Interpreting the regulation of the m⁶A activity by the other methyltransferase complex members (i.e. Virilizer-like, HAKAI, ZC3H13 and RBM15/15B) is difficult because how - or even if - oyster orthologues act within the complex is not known. Nevertheless, their specific expression profiles may reflect their implication in the regulation of distinct biological contexts. There might be little functional significance of active m⁶A-RNA erasure during oyster development, consistent with the normal embryonic phenotype of ALKBH5 knockdown mice [16]. Overall, the m⁶A readers display distinct developmental expression patterns. While YTHDF and Prrc2a peak during cleavage, YTHDC1, YTHDC2, IGF2BP and hnRNPA2B1 mRNA levels gradually increase up to the gastrulation and remain mostly highly expressed afterwards (except for hnRNPA2B1 and IGF2BP). These profiles evoke the mediation of distinct biological functions depending on the reader and the developmental phases. Therefore, we hypothesized that YTHDF and Prrc2a might participate in the blastulean transition in the oyster. Indeed, in the zebrafish, a YTHDF reader triggers the maternal-to-zygotic transition through the decay of the maternal m⁶A RNAs during cleavage [33]. The role

in the axon myelination and specification of mouse oligodendrocytes [27] is unlikely conserved for Prrc2a because the oyster orthologue is expressed before the neurogenesis is detected in trochophore stages [60]. Alternatively, the early expression of Prrc2a suggests that it might rather compete with YTHDF for m⁶A-RNA targets [27], thereby possibly acting in oyster MZT, bringing new perspectives into this process which remains poorly understood in lophotrochozoans. In mammals m⁶A is implicated in the embryonic cell fate [30,31] notably via the regulation of cell differentiation by YTHDC2 [32] or hnRNPA2B1 [29]. In the oyster, YTHDC1, YTHDC2, IGF2BP and hnRNPA2B1 have their maximum expression during gastrulation correlated to the second m⁶A peak, suggesting similar implications.

361 Putative oyster m⁶A readers actually bind m⁶A-RNA *in vitro*.

To better approach the developmental processes involving m⁶A in the oyster, we characterized the proteins that can interact with m⁶A-RNA using a methylated-RNA-pulldown / mass spectrometry assay. We identified 162 proteins able to specifically bind the m⁶A-RNA oligo in embryonic cell extracts, demonstrating the actual presence of genuine m⁶A-readers in the oyster. Most (ca. 75%) of these proteins were found in nuclear extracts and only 5 were found in both the cytoplasmic and nuclear fractions, showing an important compartmentalization of the epitranscriptomic pathway. Regarding the little number of m⁶A readers in other animals, and because the assay conditions do not discriminate between direct and indirect interactions, we hypothesize that most these proteins indirectly bind m⁶A via a limited number of 'scaffold' m⁶A readers. Such authentic readers that only bind the m⁶A-RNA oligo in our assay likely include YTHDC1 and eIF3a, which have been demonstrated to directly bind m⁶A in other species, demonstrating the conservation of the m⁶A-binding capacity and specificity of the YTH

Page 59 of 151

domain in the oyster. Besides, YTHDC1 is found in both cell fractions, suggesting its implication in the trafficking of m⁶A-RNA across the nuclear envelope [24], and reinforcing the hypothesis that YTH proteins could participate in oyster MZT and cell differentiation. The presence of the oyster eiF3a in the cytoplasm is consistent with a conserved role in m⁶Amediated translation processes, such as cap-independent translation [5].

Possible functions of m⁶A-RNA in oyster development.

We investigated the expression level and the functional annotation of the 162 genes encoding the m⁶A-interacting proteins across oyster early life. These genes can be clustered into three successive expression phases corresponding to three distinct functional pathways, which are independent albeit all mostly related to translation regulation. The cluster 1 is mostly expressed during the cleavage and the associated GO terms are related to the initiation of translation, consistent with maternal RNA consumption before MZT is complete and the zygotic genome becomes fully activated. The genes within cluster 3 show an expression peak during gastrulation. Their ontology terms evoke ribosomal and mitochondrial processes, the latter being required for energy supply and signalling integration during gastrulation [61–64]. The cluster 2 contains genes that peak after gastrulation and which are related to splicing and nuclear export. Such functional annotations are in line with a fine regulation of transcript variant translation within the distinct cell lineages in the three cell layers of the late embryos.

Taken together, our findings bring to light a possible implication of m⁶A in oyster development. First, during cleavage the decrease of m⁶A-RNA, the weak expression of methyltransferase complex genes, the maximum of YTHDF gene expression and the expression of *Cg*-m⁶A-BPs

related to the initiation of the translation strongly suggest the implication of m⁶A in MZT in C. gigas. Second, the increasing m⁶A level during gastrula stage is correlated to the increase of methyltransferase complex gene expression. In addition, the increased RNA level of readers putatively related to cell differentiation and the peak of gene expression of Cg-m⁶A-BPs associated to ribosomal and mitochondrial processes, support the hypothesize of a m⁶A implication in gastrulation. Finally, the highest m⁶A level at the trochophore stage, the gene expression of the methyltransferase complex and of readers associated to cell differentiation, as well as high RNA level of Cg-m⁶A-BPs related to splicing and nuclear export is correlated with the fine cell differentiation taking place at this stage. However, inferring the biological significance of m⁶A in development from the indirect and incomplete functional annotation of the oyster genome is only limited. Characterization of the precise targets of m⁶A and how their individual methylation is regulated across development, for example using high throughput sequencing of precipitated m⁶A-RNA (MeRIP-seq), could be extremely relevant to better understand this issue. In addition, despite sequence conservation and binding ability of oyster actor orthologues strongly suggest functional conservation, future dedicated studies such as biochemical inhibition or gene inactivation could help demonstrate their genuine biological function. Besides, there seems to be an inverse correlation between m⁶A-RNA and 5mC-DNA levels during the considered oyster developmental window [46]. This may suggest an interplay between epigenetic and epitranscriptomic marks, possibly reflecting competition for methyldonor availability [59] or a link by histone epigenetic pathways [65,66]. Regarding the potential influence of the environment on m⁶A and the accumulation of RNA in oocytes, we are at present investigating our hypothesis that m⁶A may convey intergenerational

Page 61 of 151

The FEBS Journal

epitranscriptomic inheritance of maternal life traits in the oyster. On an evolutionary perspective, the presence of a putatively fully conserved epitranscriptomic pathway in the oyster suggests that it was already present in the bilaterian common ancestor thereby in favour of an important biological significance. Why Drosophila and Caenorhabditis seem to have lost specific m⁶A-RNA erasers could be related to a sub-functionalization of the DMAD [41] and NMAD-1 [42] N⁶-methyladenine DNA demethylase activity broadened towards RNA. However, more work in required to better understand the evo-devo implications of our results. To conclude, in this work we report the discovery and characterisation of a putatively complete epitranscriptomic pathway in a lophotrochozoan organism, the oyster Crassostrea gigas. This pathway includes the m⁶A mark in RNA and the actors of all the aspects of its regulation (writers, eraser, readers) which are conserved at the molecular level and putatively functional. We show that m⁶A levels are variable across oyster development and that m⁶A differentially affects distinct RNA populations. Expression levels of the related enzymatic machinery is consistent with the observed m⁶A level variations. We demonstrate the m⁶A binding capacity and specificity of putative oyster m⁶A readers in the cytoplasm and nucleus of embryolarval cells. These readers mediate distinct putative biological outcomes depending on the development stage considered. From these results we hypothesize that early decay of maternal m⁶A RNA participates in maternal-to-zygotic transition during cleavage and that later de novo zygotic m6A methylation contributes to gastrulation and cell differentiation. This first characterisation of an m⁶A-epitranscriptomic pathway in a lophotrochozoan organism, together with its potential implication in development, opens new perspectives on the evolution of

2		
3 4	440	epigenetic mechanisms and on the potential epitranscriptomic inheritance of environmentally-
5 6 7	441	induced life traits.
8 9 10	442	
10 11 12 13 14	443	Methods:
15 16 17	444	
18 19 20	445	Animals:
20 21 22	446	Broodstock oysters [67] and oyster embryos [46] were obtained at the IFREMER marine
23 24 25	447	facilities (Argenton, France) as previously described. Briefly, gametes of mature broodstock
26 27 28	448	oysters were obtained by stripping the gonads and filtering the recovered material on a 60 μm
29 30 31	449	mesh to remove large debris. Oocytes were collected as the remaining fraction on a 20 μm
32 33	450	mesh and spermatozoa as the passing fraction on a 20 μm mesh. Oocytes were pre-incubated
34 35 36	451	in 5 L of UV-treated and 1 μm filtered sterile sea water (SSW) at 21 $^\circ C$ until germinal vesicle
37 38 20	452	breakdown. Fertilization was triggered by the addition of ca.10 spermatozoids per oocyte. After
39 40 41	453	the expulsion of the second polar body was assessed by light microscopy, embryos were
42 43 44	454	transferred in 150 L tanks of oxygenated SSW at 21 °C. The development stages were
45 46	455	determined by light microscopy observation. The stages collected were oocytes (E,
47 48 49	456	immediately before sperm addition), fertilized oocytes (F E, immediately before transfer to
50 51 52	457	150L tanks), two to eight cell embryos (2/8 C, ca. 1.5 hours post fertilization (hpf)), morula (M,
53 54	458	ca. 4 hpf), blastula (B, ca. 6 hpf), gastrula (G, ca. 10 hpf), trochophore (T, ca 16 hpf) and D
55 56 57	459	larvae (D, ca. 24 hpf). For each development stage, 3 million embryos were collected as the
58 59 60	460	remaining fraction on a 20 μm mesh and centrifuged at 123 g for 5min at room temperature.

Page 63 of 151

465

467

1 2

The FEBS Journal

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49 50	
5U 51	
5 I 5 7	
52 52	
55 ⊑ ^	
54 57	
55	
50 77	
5/	
20 20	
29	

480

Supernatant was discarded and samples of 1 million embryos were then snap-frozen in liquid
nitrogen directly of after resuspension in Tri-Reagent (Sigma-Aldrich, St Louis, MO, USA) (1
mL/10⁶ embryos) and stored at -80 °C. Three distinct experiments were realized (February to
May 2019) using the gametes of 126 to 140 broodstock animals, respectively.

466 **RNA extraction:**

total RNA extraction

468 RNA was extracted using phenol-chloroform followed by affinity chromatography as previously described [68]. Briefly, embryos were ground in Tri-Reagent (Sigma-Aldrich) and RNA was 469 purified using affinity chromatography (Nucleospin RNA II kit, Macherey-Nagel, Duren, 470 Germany). Potential contaminating DNA was removed by digestion with rDNase (Macherey-471 Nagel) according to the manufacturer's instructions for 15 min at 37 °C then RNA was purified 472 473 using Beckman Coulter's solid-phase reversible immobilization (SPRI) paramagnetic beads (AgencourtAMPure XP, Beckman Coulter, Brea, CA, USA) according to the manufacturer's 474 instructions. Briefly, paramagnetic beads and RNAs were mixed slowly and incubated 5 min 475 at room temperature followed by 2 min on a magnetic rack. Cleared supernatant was removed, 476 and beads were washed three times with 70 % ethanol. After 4 min of drying at room 477 temperature, RNAs were mixed slowly with RNase free water and incubated for 1 min at room 478 temperature on the magnetic rack. Eluted total RNA was stored at -80 °C. 479

PolyA RNA enrichment

481 Poly-A RNA was extracted from total RNA by oligo-dT affinity chromatography (NucleoTrap
 58
 59
 482 mRNA kit, Macherey-Nagel) according to the manufacturer's instructions. Briefly, up to 130 μg

of total RNAs were mixed with oligo-dT latex beads and incubated for 5 min at 68 °C then 10 min at room temperature. After centrifugation (2,000 g then 11,000 g), the pellets were washed three times on the microfilter and dried by centrifugation at 11,000 g for 1 min. Finally, polyA+ RNA was incubated with RNAse-free water for 7 min at 68 °C then centrifuged at 11,000 g for 1 min. Eluted polyA+ RNA was stored at -80 °C until needed. Total and polyA-enriched RNA purity and concentrations were assayed by spectrophotometry (Nanodrop, Thermo Scientific, Waltham, MA, USA). m⁶A quantification by LC-MS/MS: **RNA** hydrolysis To generate nucleosides for quantification against standard curves, 5 µg of total RNA were denatured for 10 min at 70 °C followed by 10 min on ice, and hydrolyzed with 100 U Nuclease S1 (50 U/µL, Promega, Madison, WI, USA) in Nuclease S1 buffer (Promega) in a final reaction volume of 25 µL for 2 h at 37 °C under gentle shaking. Samples were then incubated with alkaline phosphatase buffer (Promega) for 5 min at room temperature, before 10 U alkaline phosphatase (Promega) were added and incubated further for 2 h at 37 °C under gentle shaking. Ten extra units of alkaline phosphatase were added after 1 hour of incubation to complete the reaction. Finally, samples were centrifuged at 13,000 rpm for 10 min at 4 °C and the supernatant containing digested total RNA was collected and kept at -20 °C before quantification.

m⁶A quantification:

Page 65 of 151

The FEBS Journal

The apparatus was composed of a NexeraX² UHPLC system coupled with LCMS8030 Plus (Shimadzu, Kyoto, Japan) mass spectrometer using an electrospray interface in positive mode. The column (1.7 µm, 100x3 mm) was a HILIC Aquity® Amide (Waters, Millford, MA, USA) maintained at 35 °C. The injection volume and run-to-run time were 3 µL and 10 min, respectively. The flow rate was set to 1 mL/min. Mobile phase was initially composed of a mixture of ammonium formate solution (10 mM) containing 0.2 % (v/v) formic acid and 95 % acetonitrile (ACN) and it was maintained for 1 min. Then, a linear gradient was applied to reach 83 % ACN for 6 min. The composition returned to the initial conditions and the column was equilibrated for 3 min. The mass spectrometer was running in the Multiple Reaction Monitoring (MRM) acquisition mode. LabSolutions 5.86 SP1 software was used to process the data. The desolvatation temperature was 230 °C, source temperature was 400 °C and nitrogen flows were 2.5 L/min for the cone and 15 L/min for the desolvatation. The capillary voltage was +4.5 kV. For each compound, two transitions were monitored from the fragmentation of the [M+H]⁺ ion. The first transition (A in Table S1) was used for quantification and the second one (B in Table S1) for confirmation of the compound according to European Commission Decision 2002/657/EC (Table S1).

Blank plasma samples were analysed to check specificity. Calibrators were prepared using
diluted solutions of A (Toronto Research Chemical, Toronto, Canada) and m⁶A (Carbosynth,
Berkshire, UK) in water at 1, 2, 5, 10, 20 50, 100 ng/mL The calibration curves were drawn by
plotting the ratio of the peak area of A and m⁶A. For both nucleosides, a quadratic regression
with 1/C weighting resulted in standard curves with R²>0.998 and more than 75% of standards

with back-calculated concentrations within 15% of their nominal values as recommended for by the European medicines agency for bioanalytical methods [69]. The limits of quantifications for both compounds were considered as the lowest concentrations of the calibration curve. m⁶A/A ratios were calculated for each single sample using the determined concentrations. Final results are the average of three technical replicates. m⁶A quantification by immunoblotting: Immunological quantification of m⁶A was performed by dot-blot using total and polyA+ RNAs. Dogfish total RNA (Dr. A. Gautier, personal communication) and a synthetic unmethylated RNA oligo (Eurogentec, Liege, Belgium) were used as positive and negative controls, respectively. RNA samples were denatured for 15 min at 55 °C with gentle shaking in denaturing solution (2.2 M formaldehyde, 50 % formamide, 0.5X MOPS, DEPC water) followed by 2 min on ice. Blotting was performed on a vacuum manifold as follows: a nylon membrane (Amersham Hybond-N+, GE Healthcare life Sciences, Chicago, IL, USA) was pre-hydrated in DEPC water for 5 min, then each well was washed twice with 10X SSC (Sigma-Aldrich) before RNA was spotted onto the membrane and incubated for 15 min at room temperature. Then, vacuum aspiration was applied and each well was washed twice with 10X SSC. After heat crosslinking for 2 h at 70 °C, the membrane was rehydrated with DEPC water for 5 min, washed with PBS then PBST (PBS, 0.1 % Tween-20) for 5 min each and blocked with two 5 min incubations with blocking buffer (PBS, 0.1 % Tween-20, 10 % dry milk, 1 % BSA) at room

547 with the anti-m⁶A primary antibody (Total RNA: Millipore (Burlington, MA, USA) ABE572, 1 :

temperature. The blocked membrane was incubated overnight at 4 °C under gentle shaking

Page 67 of 151

The FEBS Journal

1,000 dilution in blocking buffer; polyA+ RNA: Diagenode (Liege, Belgium) C15200082, 1:500 dilution in blocking buffer) followed by four washes of PBST for 5 min. The secondary antibody (Total RNA: Dako (Santa Clara, CA, USA) P0447 goat anti-mouse HRP antibody, 1 : 10,000 dilution; polyA+ RNA: Invitrogen (Carlsbad, CA, USA) A21202 donkey anti-mouse Alexa 488, 1 : 250 dilution) was diluted in PBST supplemented with 5 % dry milk and added onto the membrane for 1 h 30 (total RNA) or 1 h (polyA+ RNA) at room temperature under gentle shaking. Membranes were extensively washed in PBST (at least 4 washes of 5 min for total RNA and 5 min then 1 h for polyA+ RNA) then total and polyA+ RNA immunoblots were visualized using chemiluminescence (ECL kit, Promega) or fluorescence scanning at 480-530 nm (Pro Xpress, Perkin-Elmer, Waltham, MA, USA), respectively. The amount of m⁶A was inferred from dot intensity measurements using ImageJ (v.1.49). Signal intensities were determined as 'integrated densities as a percentage of the total' which corresponds to the area under the curve of the signal of each dot after membrane background and negative control signal subtraction.

In silico analyses:

All protein and RNA sequences of the m⁶A machinery of Homo sapiens and Drosophila melanogaster (Data S1) were recovered by their published designation (i.e., 'METTL3' or 'YTHDF' etc.) and their identified protein sequence (ie. RefSeq accession number NP...) collected from NCBI and used as query sequences to search for putative homologue sequences in Crassostrea gigas databases. The presence of oyster orthologue RNA and protein sequences investigated reciprocal were by

BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi) on the Crassostrea gigas GigaTON [70] and NCBI databases and results were compared between the two oyster databases. Domain prediction performed with **CD-search** software was (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) with default settings on protein sequences of Homo sapiens, Drosophila melanogaster and Crassostrea gigas. The GRE-rich domain identified in vertebrate Prrc2a sequence [27] was performed with ProtParam (https://web.expasy.org/cgi-bin/protparam/protparam). Protein machinery mRNA expression analyses: The transcriptome data of the different development stages are available on the GigaTON database [70,71]. The correspondence between development stages in our study, and the GigaTON database were assessed using light microscopy based on the morphological description by Zhang et al., 2012 [71] (Table S2). Expression data was expressed in TPM (Transcripts Per Million) [72] to provide a normalized comparison of gene expression between all samples. The actual presence of some transcripts that display unclear or chimeric sequences within available oyster databases was assessed using RT-PCR (Data S1). Protein m⁶A RNA pull down: Protein extraction and RNA affinity chromatography Protein extraction and RNA affinity chromatography were performed as described previously [27] with some modifications as follows. Equal amounts (1 million individuals) of each

developmental stage (oocyte to D larvae) were pooled together then homogenized in 3.5

Page 69 of 151

The FEBS Journal

volumes of buffer A (10 mM KCl, 1.5 mM MgCl2, 10 mM HEPES, pH 7.9, DEPC water, 1X Protease inhibitor cocktail, DTT 0.5 mM) by extensive pipetting (ca. 30 times) and incubated 10 min at 4 °C. Embryos were ground with 10 slow 23G-needle syringe strokes and centrifuged at 2,000 rpm for 10 min at 4 °C. The supernatant was diluted in 0.11 volume of buffer B (1.4 M KCI, 0.03 M MgCl2, HEPES 0.3 M, pH 7.9, DEPC water), centrifuged at 10,000 g for 1 h at 4 °C and the supernatant containing cytosolic proteins was stored at -80 °C. The pellet of the first centrifugation, containing nuclei, was re-suspended in two volumes of buffer C (0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25 % glycerol, 20 mM HEPES, pH 7.9, 0.5 mM PMSF, 0.5 mM DTT, water DEPC). Nuclei were then lysed with a 23 G needle (10 vigorous syringe strokes) followed by centrifugation at 30,000 rpm for 30 min at 4 °C and the supernatant containing nuclear proteins was stored at -80 °C.

To identify putative proteins able to bind m⁶A-RNA, the cytosolic and nuclear fractions were submitted to affinity chromatography using 5'-biotin-labelled RNA oligonucleotides either bearing N^6 -methylated adenosines or not. The methylated adenosines were designed to lie within RRACH motifs, according to the conserved methylated consensus sequence in other organisms [2,3,7,33,73] (oligo-m⁶A: 5'Biotin-AGAAAAGACAACCAACGAGRR-m⁶A-CWCAUCAU-3', oligo-A: 5'Biotin-AGAAAAGACAACCAACGAGRRACWCAUCAU-3', R = A or G, W = A or U, Eurogentec).

For RNA pull down, streptavidin-conjugated magnetic beads (Dynabeads Myone Streptavidin,
 Invitrogen) were pre-blocked with 0.2 mg/mL tRNA (Sigma-Aldrich) and 0.2 mg/mL BSA for 1
 h at 4 °C under gentle rotation followed by three washes with 0.1 M NaCl. To avoid the
 identification of non-target proteins, cytosolic and nuclear protein extracts were cleared with

pre-blocked magnetic beads in binding buffer (50 mM Tris-HCl, 250 mM NaCl, 0.4 mM EDTA, 0.1 % NP-40, DEPC water, 1 mM DTT, 0.4 U/µL RNAsin) for 1 h at 4 °C under gentle rotation. After incubation on magnetic rack, the supernatants containing putative target proteins were collected and mixed with pre-blocked magnetic beads and oligo-m⁶A or oligo-A for 2 h at 4 °C under gentle rotation. The beads binding putative target proteins were washed three times with binding buffer and diluted in 50 mM ammonium bicarbonate. Identification of m⁶A-binding proteins by LC-MS/MS: • Protein samples were first reduced, alkylated and digested with trypsin then desalted and concentrated onto a µC18 Omix (Agilent, Santa Clara, CA, USA) before analysis. The chromatography step was performed on a NanoElute (Bruker Daltonics, Billerica, MA, USA) ultra-high pressure nano flow chromatography system. Peptides were concentrated onto a C18 pepmap 100 (5 mm x 300 µm i.d.) precolumn (Thermo Scientific) and separated at 50 °C onto a reversed phase Reprosil column (25 cm x 75 µm i.d.) packed with 1.6 µm C18 coated porous silica beads (Ionopticks, Parkville, Victoria, Australia). Mobile phases consisted of 0.1 % formic acid, 99.9 % water (v/v) (A) and 0.1 % formic acid in 99.9 % ACN (v/v) (B). The nanoflow rate was set at 400 nL/min, and the gradient profile was as follows: from 2 to 15 % B within 60 min, followed by an increase to 25 % B within 30 min and further to 37 % within 10 min, followed by a washing step at 95 % B and re-equilibration. MS experiments were carried out on an TIMS-TOF pro mass spectrometer (Bruker Daltonics) with a modified nano-electrospray ion source (CaptiveSpray, Bruker Daltonics). The system was calibrated each week and mass precision was better than 1 ppm. A 1600 spray voltage with a capillary temperature of 180 °C was typically employed for ionizing. MS spectra were

Page 71 of 151

 The FEBS Journal

acquired in the positive mode in the mass range from 100 to 1700 m/z. In the experiments described here, the mass spectrometer was operated in PASEF mode with exclusion of single charged peptides. A number of 10 PASEF MS/MS scans was performed during 1.16 seconds from charge range 2-5. The fragmentation pattern was used to determine the sequence of the peptide. Database searching was performed using the Mascot 2.6.1 program (Matrix Science) with a Crassostrea gigas Uniprot database (including 25,982 entries). The variable modifications allowed were as follows: C-Carbamidomethyl, K-acetylation, methionine oxidation, and Deamidation (NQ). The 'Trypsin' parameter was set to 'Semispecific'. Mass accuracy was set to 30 ppm and 0.05 Da for MS and MS/MS mode respectively. Mascot data were then transferred to Proline validation software (http://www.profiproteomics.fr/proline/) for data filtering according to a significance threshold of <0.05 and the elimination of protein redundancy on the basis of proteins being evidenced by the same set or a subset of peptides (Data S2). Gene ontology analysis: The mRNA sequences of the characterized m⁶A-binding proteins were identified using tBlastn [74-76] against the GigaTON database [70] with default settings. Gene ontology (GO) analyses were carried out with the GO annotations obtained from GigaTON database gene universe [70]. GO term-enrichment tests were performed using the goseg (V1.22.0) R package [77] with p-values calculated by the Wallenius method and filtered using REVIGO [78]. GO

terms with a p-value < 0.05 were considered significantly enriched (Data S3).

Statistical analyses and graph production:

658	Results are given as the mean \pm SD of three independent experiments unless otherwise stated.	
659	They were analysed using one-way ANOVA or Kruskall-wallis tests when required, depending	
660	on the normality of result distribution. The normality was tested using the Shapiro-Wilk's test	
661	and homoscedasticity of variances with Bartlett's tests. Statistics and graphics were computed	
662	with Prism v.6 (Graphpad), R (v.3.6.1) and RStudio (v.1.0.153) softwares. The R packages	
663	eulerr [79] and Complexheatmap [80] were used for production of specific figures.	
664		
665		
666	Author contribution	
667	Experiment design: GR, LLF.	
668	Benchwork and bioinformatics: LLF, GR, BB, BP, MS.	
669	Data analysis: LLF, GR, BB, MS.	
670	Manuscript writing and editing: LLF, GR, PF, BB, MS, BP.	
671		
672	Acknowledgements	
673	The authors would like to acknowledge PRISMM core facility collaborators R. Delepée and S.	
674	Lagadu for their expertise in m ⁶ A/A UHPLC-MS/MS quantification. We also thank J. Pontin for	
675	technical assistance and J. Le Grand for help with sampling.	
676		
677	Funding sources and disclosure of conflicts of interest	
1 2		
--	-----	--
2 3 4	678	This work was supported by the French National program CNRS EC2CO (Ecosphère
5 6 7	679	Continentale et Côtière 'HERITAGe' to G. Rivière) and the council of the Normandy Region
8 9	680	(RIN ECUME to P. Favrel). The authors declare they have no conflict of interest.
10 11 12 13 14 5 16 17 18 9 21 22 32 22 22 22 22 22 22 22 22 22 22 22	681	

2		
3 4	682	References:
5 6 7	683 684	1 Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S & Mason CE (2012) The birth of the Epitranscriptome: deciphering the function of RNA modifications. <i>Genome Biol.</i> 13 , 175.
8 9 10 11	685 686 687	2 Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE & Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. <i>Cell</i> 149 , 1635–1646.
12 13 14 15 16	688 689 690 691	3 Dominissini D, Moshitch-moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-hirsch J, Amariglio N, Kupiee M, Sorek R & Rechavi G (2012) Topology of the human and mouse m 6 A RNAmethylomes revealed bym6A-seq. <i>Nature</i> 485, 201–206.
17 18 19 20 21 22	692 693 694 695 696	4 Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, Vågbø CB, Kusśnierczyk A, Klungland A, Darnell JE, Darnell RB, Kuśnierczyk A, Klungland A, Darnell JE, Darnell RB, Kusśnierczyk A, Klungland A, Darnell JE & Darnell RB (2015) A majority of m 6 A residues are in the last exons, allowing the potential for 3' UTR regulation. <i>Genes Dev.</i> 29, 2037–2053.
23 24 25 26	697 698 699	5 Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova T V., Qian SB & Jaffrey SR (2015) 5' UTR m6A Promotes Cap-Independent Translation. <i>Cell</i> 163, 999–1010.
27 28 29 30	700 701 702	6 Pendleton KE, Chen B, Liu K, Hunter O V., Xie Y, Tu BP & Conrad NK (2017) The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. <i>Cell</i> 169, 824-835.e14.
31 32 33 34	703 704 705	7 Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M & Roignant JY (2016) M6A modulates neuronal functions and sex determination in Drosophila. <i>Nature</i> 540, 242–247.
35 36 37 38	706 707 708	8 Bokar JA, Shambaugh ME, Polayes D, Matera AG & Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)- methyltransferase. RNA 3, 1233–47.
39 40 41 42	709 710 711	9 Liu J, Yue Y, Han D, Wang X, Fu YY, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W & He C (2013) A METTL3–METTL14 complex mediates mammalian nuclear RNA N6- adenosine methylation. <i>Nat. Chem. Biol.</i> 10 , 93–95.
43 44 45 46	712 713 714	10 Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T & Yin P (2016) Structural basis of N6-adenosine methylation by the METTL3- METTL14 complex. <i>Nature</i> 534, 575–578.
47 48 49 50 51 52	715 716 717 718 719	11 Ping X-LL, Sun B-FF, Wang L, Xiao W, Yang X, Wang W-JJ, Adhikari S, Shi Y, Lv Y, Chen Y-SS, Zhao X, Li A, Yang YGYY-G, Dahal U, Lou X-MM, Liu X, Huang J, Yuan W- PP, Zhu X-FF, Cheng T, Zhao Y-LL, Wang X, Danielsen JMRR, Liu F & Yang YGYY-G (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. <i>Cell Res.</i> 24, 177–189.
53 54 55 56 57	720 721 722 723	12 Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, Wang F, Wang X, Shen B, Wang Y, Feng X, He C & Liu J (2018) VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation. <i>Cell Discov.</i> 4, 10.
58 59 60	724 725 726	13 Růžička K, Zhang M, Campilho A, Bodi Z, Kashif M, Saleh M, Eeckhout D, El-Showk S, Li H, Zhong S, Jaeger G De, Mongan NP, Hejátko J, Helariutta Y & Fray RG (2017) Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a

1 ว		
2 3 4	727	role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 215, 157–172.
5 6	728	14 Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villasoñor P, Hoss D, Andrado Navarro MA, Biggiogora M, Holm M, Sollor M, Bübler M
7	729	& Roignant J-YY (2018) Zc3h13/Flacc is required for adenosine methylation by bridging
8	731	the mRNA-binding factor Rbm15/Spenito to the m 6 A machinery component
9 10	732	Wtap/Fl(2)d. <i>Genes Dev.</i> 32 , 1–15.
11	733	15 Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M & Jaffrey SR (2016)
12 13	734 725	m6A RNA methylation promotes XIST-mediated transcriptional repression. <i>Nature</i> 537 ,
14	/35	309-373.
15 16	736	16 Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL,
17	/3/ 738	XI Bogdan F. Euru K. Eu Y. Jia G. Zhao X. Liu J. Krokan HF. Klungland A. Yang YG &
18	739	He C (2013) ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism
19 20	740	and Mouse Fertility. Mol. Cell 49, 18–29.
21	741	17 Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik A V, Patil DP, Linder B, Pickering BF,
22 23	742	Vasseur J-J, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M & Jaffrey SR (2017)
24	743 744	Reversible methylation of m6Am in the 5° cap controls mRNA stability. <i>Nature</i> 541 , 371–
25 26	/44	575.
26 27	745	18 Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang YGYY-GGYY-G, Yi C, Lindahl T, Pan T,
28	746 747	substrate of the obesity-associated FTO Nat Chem Biol 7 885–887
29 30		
31	748	19 Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B,
32	749	Ren B. Pan T & He C (2014) N6-methyladenosine-dependent regulation of messenger
33 34	751	RNA stability. <i>Nature</i> 505 , 117–120.
35	752	20 Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H & He C
36 27	753	(2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161,
38	754	1388–1399.
39	755	21 Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G,
40 41	756	Dai Q, Liu M, Guo X, Sha J, Shen B & He C (2017) Ythdc2 is an N6-methyladenosine
42	/5/	binding protein that regulates mammalian spermatogenesis. Cell Res. 21, 1115–1127.
43 44	758	22 Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C & He C (2017) YTHDF3 facilitates
45	759	translation and decay of N 6-methyladenosine-modified RNA. Cell Res. 21, 315-328.
46 47	760	23 Xiao W, Adhikari S, Dahal U, Chen Y-S, Hao Y-J, Sun B-F, Sun H-Y, Li A, Ping X-L, Lai
48	761 762	W-Y, Wang XX-J, Ma H-L, Huang C-M, Yang YY-G, Huang N, Jiang G-B, Wang H-L, Zhou O, Wang XX-L, Zhao X-L & Yang XX-G (2016) Nuclear m 6 A Reader XTHDC1
49 50	763	Regulates mRNA Splicing. <i>Mol. Cell</i> 61 , 507–519.
50 51	764	24 Roundtree IA Luo G-77 Zhang Z. Wang X. Zhou T. Cui X. Sha I. Huang X. Guerrero I
52	765	Xie P. He E. Shen B & He C (2017) YTHDC1 mediates nuclear export of N6-
53 54	766	methyladenosine methylated mRNAs. <i>Elife</i> 6, 1–28.
55	767	25 Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie SFSSF & Tavazoie SFSSF (2015)
56 57	768	HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell
58	769	162 , 1299–1308.
59	770	26 Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL,
00	771	Hu YC, Hüttelmaier S, Skibbe JR, Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S,

1		
2 3 4 5 6	772 773 774	Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, Guan JL, He C, Yang J & Chen J (2018) Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. <i>Nat. Cell Biol.</i> 20 , 285–295.
7 8 9 10 11	775 776 777 778	27 Wu R, Li A, Sun B, Sun J-GG, Zhang J, Zhang T, Chen Y, Xiao Y, Gao Y, Zhang Q, Ma J, Yang X, Liao Y, Lai W-YY, Qi X, Wang S, Shu Y, Wang H-LL, Wang F, Yang Y-GG & Yuan Z (2018) A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. <i>Cell Res.</i> 29 , 23–41.
12 13 14 15 16 17 18	779 780 781 782 783 784	28 Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, De Los Mozos IR, Sadee C, Lenaerts A-SS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L, Sadée C, Lenaerts A-SS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S & Vallier L (2018) The SMAD2/3 interactome reveals that TGFβ controls m 6 A mRNA methylation in pluripotency. <i>Nature</i> 555 , 256–259.
19 20 21	785 786	29 Kwon J, Jo YJ, Namgoong S & Kim NH (2019) Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development. <i>Sci. Rep.</i> 9 , 8640.
22 23 24 25 26 27 28	787 788 789 790 791 792	30 Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AAF, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, Ben-Haim MS, Eyal E, Yunger S, Pinto Y, Jaitin DA, Viukov S, Rais Y, Krupalnik V, Chomsky E, Zerbib M, Maza I, Rechavi Y, Massarwa R, Hanna S, Amit I, Levanon EY, Amariglio N, Stern-Ginossar N, Novershtern N, Rechavi G & Hanna JH (2015) m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. <i>Science (80).</i> 347 , 1002–1006.
29 30 31 32 33 34 35	793 794 795 796 797 798	31 Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY, Howard Y, Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC & Chang HY (2014) M ⁶ A RNA modification controls cell fate transition in mammalian embryonic stem cells. <i>Cell Stem Cell</i> 15 , 707–719.
36 37 38 39	799 800 801	32 Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R & Pillai RS (2017) Regulation of m6A Transcripts by the 3'→5' RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. <i>Mol. Cell</i> 68 , 374-387.e12.
40 41 42 43	802 803 804	33 Zhao BS, Wang X, Beadell A V., Lu Z, Shi H, Kuuspalu A, Ho RK & He C (2017) M6A- dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. <i>Nature</i> 542, 475–478.
44 45 46 47 48	805 806 807 808	34 Kan L, Grozhik A V., Vedanayagam J, Patil DP, Pang N, Lim K-S, Huang Y-C, Joseph B, Lin C-J, Despic V, Guo J, Yan D, Kondo S, Deng W-M, Dedon PC, Jaffrey SR & Lai EC (2017) The m6A pathway facilitates sex determination in Drosophila. <i>Nat. Commun.</i> 8, 15737.
49 50 51 52	809 810 811	35 Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM & Wang PJ (2018) Nuclear m 6 A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. <i>PLoS Genet.</i> 14, 1–28.
53 54 55 56 57 58 59 60	812 813 814 815 816 817	36 Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O'Carroll D, Giacomo M Di, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O'carroll D, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ & O'carroll D (2017) The RNA m 6 A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. <i>Mol. Cell</i> 67 , 1059-1067.e4.

2		
3 4 5	818 819	37 Lence T, Paolantoni C, Worpenberg L & Roignant JY (2019) Mechanistic insights into m 6 A RNA enzymes. Biochim. Biophys. Acta - Gene Regul. Mech. 1862, 222–229.
6 7	820 821	38 Balacco DL & Soller M (2018) The m ⁶ A writer: Rise of a machine for growing tasks. Biochemistry 58, acs.biochem.8b01166.
9 10 11	822 823	39 Lence T, Soller M & Roignant JY (2017) A fly view on the roles and mechanisms of the m6A mRNA modification and its players. RNA Biol. 14, 1232–1240.
12 13 14	824 825 826	40 Robbens S, Rouzé P, Cock JM, Spring J, Worden AZ & Van De Peer Y (2008) The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. <i>J. Mol. Evol.</i> 66 , 80–84.
16 17 18 19	827 828 829	41 Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, Li C, Liu B, Luo Y, Zhu Y, Zhang N, He S, He C, Wang H & Chen D (2015) N6- methyladenine DNA modification in Drosophila. <i>Cell</i> 161 , 893–906.
20 21 22	830 831	42 Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C & Shi Y (2015) DNA methylation on N6-adenine in C. elegans. <i>Cell</i> 161, 868–878.
23 24	832 833	43 Riviere G, He Y, Tecchio S, Crowell E, Sourdaine P, Guo X & Favrel P (2017) Dynamics of DNA methylomes underlie oyster development. <i>PLOS Genet.</i> 13, 1–16.
25 26 27 28	834 835 836	44 Sussarellu R, Lebreton M, Rouxel J, Akcha F, Riviere G & Rivière G (2018) Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. Aquat. Toxicol. 196, submitted.
29 30 31 32	837 838 839	45 Rondon R, Grunau C, Fallet M, Charlemagne N, Sussarellu R, Chaparro C, Montagnani C, Mitta G, Bachère E, Akcha F & Cosseau C (2017) Effects of a parental exposure to diuron on Pacific oyster spat methylome. <i>Environ. Epigenetics</i> 3, 1–13.
33 34 35	840 841	46 Riviere G, Wu G-CC, Fellous A, Goux D, Sourdaine P & Favrel P (2013) DNA Methylation Is Crucial for the Early Development in the Oyster C . gigas. <i>Mar. Biotechnol.</i> 15 , 1–15.
36 37 38 39	842 843 844	47 Saint-Carlier E & Riviere G (2015) Regulation of Hox orthologues in the oyster Crassostrea gigas evidences a functional role for promoter DNA methylation in an invertebrate. FEBS Lett. 589, 1459–1466.
40 41 42 43	845 846 847	48 Fellous A, Favrel P & Riviere G (2015) Temperature influences histone methylation and mRNA expression of the Jmj-C histone-demethylase orthologues during the early development of the oyster Crassostrea gigas. <i>Mar. Genomics</i> 19, 23–30.
44 45 46 47	848 849 850	49 Fellous A, Favrel P, Guo X & Riviere G (2014) The Jumonji gene family in Crassostrea gigas suggests evolutionary conservation of Jmj-C histone demethylases orthologues in the oyster gametogenesis and development. <i>Gene</i> 538 , 164–175.
48 49 50 51	851 852 853	50 Fellous A, Le Franc L, Jouaux A, Goux D, Favrel P & Rivière G (2019) Histone Methylation Participates in Gene Expression Control during the Early Development of the Pacific Oyster Crassostrea gigas. <i>Genes (Basel)</i> . 10 , 695.
52 53 54	854 855	51 Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR & Qian S-B (2015) Dynamic m6A mRNA methylation directs translational control of heat shock response. <i>Nature</i> 526 , 591–594.
55 56 57 58	856 857 858	52 Lu Z, Ma Y, Li Q, Liu E, Jin M, Zhang L & Wei C (2019) The role of N6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries). <i>Cell Stress Chaperones</i> 24 , 333–342.
59 60	859	53 Xiang Y, Laurent B, Hsu C, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J,

1		
2 3 4 5	860 861	Wang S, Ling D, Hsu P, Zou L, Jambhekar A & He C (2017) m6A RNA methylation regulates the UV-induced DNA damage response. <i>Nature</i> 543 , 573–576.
6 7 8 9	862 863 864	54 Cayir A, Barrow TM, Guo L & Byun HM (2019) Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes. <i>Environ. Res.</i> 175 , 228–234.
10 11 12 13	865 866 867	55 Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, Meng H, Xu X, Huang Z, Fan J & Yi C (2019) Landscape and Regulation of M ⁶ A and M ⁶ Am Methylome Across Human and Mouse Tissues. SSRN Electron. J., 1–56.
14 15 16	868 869	56 Ren W, Lu J, Huang M, Gao L, Li D, Greg Wang G & Song J (2019) Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. <i>Nat. Commun.</i> 10 , 5042.
17 18 19	870 871 872	57 Bokar JA, Shambaugh ME, Polayes D, Matera AG & Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. <i>RNA</i> 3 , 1233–1247.
20 21 22 23 24	873 874 875	58 Theler D, Dominguez C, Blatter M, Boudet J & Allain FHT (2014) Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. <i>Nucleic Acids Res.</i> 42 , 13911–13919.
24 25 26 27 28 29	876 877 878 879	59 Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T & Igarashi K (2017) S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. <i>Cell Rep.</i> 21, 3354–3363.
30 31 32	880 881 882	 60 Yurchenko O V., Skiteva OI, Voronezhskaya EE & Dyachuk VA (2018) Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). <i>Front. Zool.</i> 15, 1–21.
34 35 36	883 884	61 Ratnaparkhi A (2013) Signaling by folded gastrulation is modulated by mitochondrial fusion and fission. <i>J. Cell Sci.</i> 126 , 5369–5376.
37 38 39	885 886 887	62 Ren L, Zhang C, Tao L, Hao J, Tan K, Miao K, Yu Y, Sui L, Wu Z, Tian J & An L (2017) High-resolution profiles of gene expression and DNA methylation highlight mitochondrial modifications during early embryonic development. <i>J. Reprod. Dev.</i> 63, 247–261.
40 41 42 43 44 45	888 889 890 891	63 Prudent J, Popgeorgiev N, Bonneau B, Thibaut J, Gadet R, Lopez J, Gonzalo P, Rimokh R, Manon S, Houart C, Herbomel P, Aouacheria A & Gillet G (2013) Bcl-wav and the mitochondrial calcium uniporter drive gastrula morphogenesis in zebrafish. <i>Nat. Commun.</i> 4 .
46 47	892 893	64 Dumollard R, Duchen M & Carroll J (2007) The Role of Mitochondrial Function in the Oocyte and Embryo. <i>Curr. Top. Dev. Biol.</i> 77 , 21–49.
48 49 50 51 52 53 54 55	894 895 896 897 898 899	65 Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun MM, Chen Z, Deng X, Xiao G, Auer F, Klemm L, Wu H, Zuo Z, Qin X, Dong Y, Zhou Y, Qin H, Tao S, Du J, Liu J, Lu Z, Yin H, Mesquita A, Yuan CL, Hu Y-CC, Sun W, Su R, Dong L, Shen C, Li C, Qing Y, Jiang X, Wu X, Sun MM, Guan J-LL, Qu L, Wei M, Müschen M, Huang G, He C, Yang J & Chen J (2019) Histone H3 trimethylation at lysine 36 guides m6A RNA modification co- transcriptionally. <i>Nature</i> 567 , 414–419.
56 57 58 59 60	900 901 902 903	66 Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M, Duester G & Zhao JC (2018) N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. <i>Nat. Neurosci.</i> 21, 195–206.

2		
3 4 5	904 905	67 Petton B, Pernet F, Robert R & Boudry P (2013) Temperature influence on pathogen transmission and subsequent mortalities in juvenile pacific oysters Crassostrea gigas.
6	906	Aquac. Environ. Interact. 3, 257–273.
7 8	907 908	68 Riviere G, Fellous A, Franco A, Bernay B & Favrel P (2011) A crucial role in fertility for the oyster angiotensin-converting enzyme orthologue CgACE. <i>PLoS One</i> 6 .
9 10 11	909 910	69 EMA (2011) Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009.
12 13 14 15	911 912 913	70 Riviere G, Klopp C, Ibouniyamine N, Huvet A, Boudry P & Favrel P (2015) GigaTON: An extensive publicly searchable database providing a new reference transcriptome in the pacific oyster Crassostrea gigas. <i>BMC Bioinformatics</i> 16 , 1–12.
16 17 18 19 20	914 915 916	71 Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N & Huang Z (2012) The oyster genome reveals stress adaptation and complexity of shell formation. <i>Nature</i> 490 , 49–54.
20 21 22	917 918	72 Li B, Ruotti V, Stewart RM, Thomson JA & Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. <i>Bioinformatics</i> 26 , 493–500.
23 24 25 26 27 28	919 920 921 922	73 Qi ST, Ma JY, Wang ZB, Guo L, Hou Y & Sun QY (2016) N6 -methyladenosine sequencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in xenopus laevis. <i>J. Biol. Chem.</i> 291 , 23020–23026.
29 30 31	923 924 925	74 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. <i>Nucleic Acids Res.</i> 25 , 3389–3402.
32 33 34	926 927	75 Cock PJA, Chilton JM, Grüning B, Johnson JE & Soranzo N (2015) NCBI BLAST+ integrated into Galaxy. <i>Gigascience</i> 4 , 0–6.
35 36 37	928 929	76 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K & Madden TL (2009) BLAST+: Architecture and applications. BMC Bioinformatics 10, 1–9.
38 39 40	930 931	77 Young MD, Wakefield MJ, Smyth GK & Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. <i>Genome Biol.</i> 11 , R14.
41 42 43	932 933	78 Supek F, Bošnjak M, Škunca N & Šmuc T (2011) Revigo summarizes and visualizes long lists of gene ontology terms. <i>PLoS One</i> 6 .
44 45	934	79 Larsson J (2019) eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses.
46 47 48	935 936	80 Gu Z, Eils R & Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. <i>Bioinformatics</i> 32 , 2847–2849.
49	937	
50 51		
52 53 54 55 56 57	938	
58 59 60		

2	
5	
4	
5	
6	
7	
8	
å	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
10	
40 11	
41	
42	
43	
44	
45	
46	
47	
48	
10	
77	
50	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	
60	

939 Figure legends

940 Figure 1: m⁶A levels across oyster development.

A. m⁶A level quantified by LC-MS/MS in *Crassostrea gigas* embryo-larval stages pooled from 941 oocytes to D-larvae (n= 3) is compared to the m⁶A level in Homo sapiens and Drosophila 942 943 melanogaster; B. Dot blot quantification of m⁶A in total RNA throughout oyster development 944 (n=3); **C.** Dot blot quantification of m⁶A in polyA+ RNAs throughout oyster development (n=3) Kruskal-Wallis test, $\alpha < 0.05$. E: Egg, F E: fertilized egg, 2/8C: two to eight cell embryos, M: 945 946 Morula, B: Blastula, G: Gastrula, T: Trochophore, D: D larvae. Chemiluminescence (B) and fluorescence (C) are measured as a ratio between dot intensity of development stages and 947 their respective controls for each amount of RNA (120ng, 60ng and 30ng). 948 949 Figure 2: The putative conserved m⁶A machinery in Crassostrea gigas. 950

Domain architecture of actors of the m⁶A machinery identified by *in silico* analyses in the oyster
compared to the fruit fly and human, A. Writer proteins; B. Eraser protein; C. Reader proteins.
Putative domains involved in m⁶A processes are coloured (writers, green; eraser, red; readers,
blue). Other domains identified but not involved in m⁶A processes are indicated in grey. Only
one isoform is represented for each protein and each species for clarity (see supplementary
figure S2 for other isoforms).

Figure 3: Gene expression of the putative m⁶A machinery throughout oyster development

957

Page 81 of 151

1 2

The FEBS Journal

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
∠∪ ⊃1
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
75 16
-+0 47
4/
48
49
50
51
52
53
54
55
22
56
57
58
59
60

Expression levels of writers (A), eraser (B) and readers (C) identified by in silico analysis at 959 960 each development stage were inferred from the GigaTON database. Expression levels are 961 given in Transcripts Per kilobases per Million Reads (TPM) as the mean of the GigaTON values 962 according to the table S2. E: Egg, 2/8C: two to eight cell, M: Morula, B: Blastula, G: Gastrula, T: Trochophore, D: D larvae, S: Spat, J: Juvenile. 963 964 965 Figure 4: Characterization of m⁶A-RNA binding proteins in oyster development. A. Venn diagrams representation of proteins bound to the A- and/or m⁶A- oligos in nuclear and 966 cytosolic fractions of oyster embryo-larval stages. The number of proteins identified is 967 indicated. Some actors characterized in this study are highlighted: eIF3, YTHC1, hnRNPA2B1 968 969 and IGF2BP. B. Heatmap of gene expression levels of the proteins that bind specifically to the m⁶A-oligo throughout oyster development. The expression level is normalized regarding the 970 maximum value for each gene according to the GigaTON database. C. GO term distribution 971 972 among the three expression clusters in B. D. Examples of GO term enrichment within the expression clusters of the m⁶A-bound proteins. The -log10(p-value) associated to each term 973 is given. E: Egg, 2/8C: two to eight cells, M: Morula, B: Blastula, G: Gastrula, T: Trochophore, 974 975 D: D larvae, S: Spat, J: Juvenile. Supporting information: 976 Data S1: Complete list of in silico identified putative m6A machinery proteins and their 977 978 respective BLAST results 979 Data S2: Identified proteins by RNA pull down coupled with mass spectrometry with m⁶A or A-oligo, in nuclear or cytosolic protein extracts 980

2 3 4	981	Data S3: Complete list of GO terms of clustered genes of m ⁶ A interacting proteins								
5 6 7	982	value<0,05)								
8 9	983	Table S1: Transitions used for each compound. A: first transition, B: second transition								
10 11 12	984	Table S2: Table of correspondence between development stages in our study, and the								
13 14 15	985	GigaTON database.								
$\begin{array}{c} 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 90\\ 41\\ 42\\ 43\\ 44\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 90\end{array}$	986									

Figure 3: Gene expression of the putative m6A machinery throughout oyster development Expression levels of writers (A), eraser (B) and readers (C) identified by in silico analysis at each development stage were inferred from the GigaTON database. Expression levels are given in Transcripts Per kilobases per Million Reads (TPM) as the mean of the GigaTON values according to the table S2. E: Egg, 2/8C: two to eight cell, M: Morula, B: Blastula, G: Gastrula, T: Trochophore, D: D larvae, S: Spat, J: Juvenile.

65x46mm (300 x 300 DPI)

Data S1: Complete list of in silico identified putative m6A machinery proteins and their respective BLAST results Probable assembly artefact highlighted in grey

Specie	database	sequence accession number	length	conserved domain				
<u>METTL3</u>								
Homo sapiens	NCBI	gi 21361827 (NP_062826.2)	580	MT-A70				
Drosophila melanogaster (IME4)	NCBI	gi 21355141 (NP_651204.1)	608	MT-A70 MDN1				
Crassostroa digas	GIGATON	CHOYP_PHUM_PHUM423190.1.1	554	MT-A70				
Classosirea gigas	NCBI	gi 762092209 (XP_011428532.1)	555	MT-A70				
		METTI	<u>_14</u>					
Homo sapiens	NCBI	gi 24308265 (NP_066012.1)	456	MT-A70				
Drosophila melanogaster (CG7818)	NCBI	gi 19920926 (NP_609205.1)	397	MT-A70				
		CHOYP_MET14.1.1	495	MT-A70 MttA_Hfc106				
Crassostrea gigas	GIGATON	CHOYP_LOC100743733.1.1	723	MT-A70 7tmA_NPR-like_invertebrate				
	NCBI	gi 762082967 (XP_011424173.1)	470	MT-A70 MttA_Hfc106				
	WTAP							
		gi 395455090 (NP_001257460.1)	396	WTAP				
Homo sapiens	NCBI	gi 23199974 (NP_690596.1)	151	WTAP				
		gi 395455092 (NP_001257461.1)	170	WTAP				
	NODI	gi 24653459 (NP_523732.2)	536	WTAP				
Drosopnila melanogaster (FL(2)D)	NCBI	gi 24653461 (NP_725327.1)	412	WTAP				
		CHOYP_FL2D.1.1	406	WTAP IncA				
	GIGATON	CHOYP_SODM.1.2	252	WTAP IncA				
Crassostrea gigas		CHOYP_LOC100121674.1.1	290	WTAP IncA				
	NCBI	gi 762078268 (XP_011453082.1)	406	WTAP IncA				

VIRILIZER-LIKE

Home serions (Virilizer-like V/IPMA)	NCBI	gi 33946282 (NP_056311.2)	1812	VIR_N
		gi 33946280 (NP_892121.1)	1147	VIR_N
Drosophila melanogaster (Virilizer)	NCBI	gi 17864576 (NP_524900.1)	1854	VIR_N
	GIGATON	CHOYP_VIR.1.1	2021	VIR_N
	NCBI	gi 762120202 (XP_011443024.1)	2023	VIR_N
Crassostroa gigas		gi 762120200 (XP_011443023.1)	2023	VIR_N
Classosilea gigas		gi 1139822239 (XP_019927346.1)	2022	VIR_N
		gi 1139822241 (XP_019927347.1)	2021	VIR_N
		gi 1139822243 (XP_019927348.1)	1717	VIR_N PTZ00249 super family

HAKAI

Home conjana	NCDI	gi 209180481 (NP_079090.2)	491	RHF-Zn-BS RHHL
nomo sapiens	NCDI	gi 546230945 (NP_001271220.1)	490	RHF-Zn-BS RHHL
		gi 19921556 (NP_609993.1)	302	RHF-Zn-BS RHHL
Drosophila malanagastar	NCRI	gi 24585301 (NP_724217.1)	311	RHF-Zn-BS RHHL
Drosophila melanogaster	NCDI	gi 442628448 (NP_788075.2)	464	RHF-Zn-BS RHHL
		gi 442628450 (NP_001260593.1)	473	RHF-Zn-BS RHHL
	GIGATON	CHOYP_LOC100864501.1.1	504	RHF-Zn-BS RHHL PHA03247 super family
Crassostrea gigas		gi 762140345 (XP_011453340.1)	498	RHF-Zn-BS RHHL PHA03247 super family
		gi 762140347 (XP_011453341.1)	497	RHF-Zn-BS RHHL PHA03247 super family

<u>ZC3H13</u>

		gi 1060099240 (NP_001317493.1)	1669	Zf-CCCH Rho SF
Homo sapiens	NCBI	gi 1060099108 (NP_001317496.1)	1668	Zf-CCCH Rho SF

		gi 116008442 (NP_055885.3)	1564	Zf-CC
		gi 24643154 (NP_573339.1)	1150	
Drosophila melanogaster (CG7358)	NCBI	gi 665392303 (NP_001285418.1)	1139	
		gi 665392305 (NP_001285419.1)	842	
	GIGATON	CHOYP_BRAFLDRAFT_120702.1.1	1631	Zf-CC
	GIGATON	CHOYP_LOC100568158.1.1	1611	Zf-CC
Crassostrop digas		gi 762096734 (XP_011430912.1)	1400	Rho
Crassostrea gigas	NCRI	gi 762096736 (XP_011430913.1)	1400	Rho
	INCEI	gi 762096738 (XP_011430914.1)	1380	Rho
		gi 762096740 (XP_011430915.1)	1329	Rho

RBM15/15B

		gi 47933339 (NP_073605)	977	RRM1_RBM15 RRM2_RBM15 RRM3_RBM15 SF-CC1 SPOC
Homo sapiens	NCBI	gi 319996623 (NP_001188474)	969	RRM1_RBM15 RRM2_RBM15 RRM3_RBM15 SF-CC1 SPOC
		gi 54607124 (NP_037418)	890	RRM1_RBM15 RRM2_RBM15 RRM3_RBM15 U2AF_Ig SF SPOC
		gi 24586450 (NP_724633)	793	RRM1_Spen RRM2_Spen RRM SPOC
Drosophila melanogaster (SPENITO/NITO)	NCBI	gi 19921778 (NP_610339)	793	RRM1_Spen RRM2_Spen RRM3_Spen RRM SPOC
		gi 665399388 (NP_001286174)	793	RRM1_Spen RRM2_Spen RRM3_Spen RRM SPOC
Crassostrop digas	GIGATON	CHOYP_LOC663518.1.1	717	RRM1_Spen RRM2_Spen RRM3_Spen RRM SPOC PTZ00449 SF
Crassosirea yiyas	NCBI	gi 762129377 (XP_011447812)	717	RRM1_Spen RRM2_Spen RRM3_Spen RRM SPOC PTZ00449 SF

METTL16

Homo sapiens	NCBI	gi 122114654 (NP_076991.3)	562	AdoMet Mtases SF S-adenosylmethionine binding site
Drosophila melanogaster (CG7544)	NCBI	gi 19922302 (NP_611015.1)	305	AdoMet Mtases SF
	GIGATON	CHOYP_LOC100561572.1.1	527	AdoMet Mtases SF S-adenosylmethionine binding site

CCH Rho SF

СН	Rho SF	dnaA super family	PTZ00121	
СН	Rho SF	dnaA super family	PTZ00121	
SF	dnaA super	family PTZ00121		
SF	dnaA super	family PTZ00121		
SF	PHA03307	PTZ00121		
SF	PTZ00121			

Crassostrea gigas	NCRI	gi 762141911 (XP_011454156.1)	538	AdoMet Mtases SF	S-adenosylmethionine binding site	
	ПСЫ	gi 762141913 (XP_011454157.1)	527	AdoMet Mtases SF	S-adenosylmethionine binding site	

<u>ALKBH5</u>

Homo sapiens	NCBI	gi 148539642 (NP_060228.3)	394	20G-F
Drosophila melanogaster				
Crossostros gigos	GIGATON	CHOYP_BRAFLDRAFT_126925.1.1	403	20G-F
Crassostrea gigas	NCBI	gi 762097205 (XP_011431161.1)	374	20G-F

YTHDC1

		gi 72534750 (NP_001026902.1)	727	YTH
Homo sapiens	NCBI	gi 94536805 (NP_588611.2)	709	YTH
		gi 1061213987 (NP_001317627.1)	735	YTH
Drosophila malanagastar (VTE21)	NCRI	gi 24656811 (NP_647811.2)	721	YTH
Drosopnila melanogaster (¥1521)	NCBI	gi 24656816 (NP_728876.1)	710	YTH
	CICATON	CHOYP_YTDC1.2.2	636	YTH
Crassostrea gigas	GIGATON	CHOYP_LOC586835.1.1	545	YTH
	NCBI	gi 762070401 (XP_011447601.1)	636	YTH

YTHDC2

		gi 269847874 (NP_073739.3)	1430	YTH
Homo sapiens	NCBI	gi 1066536696 (NP_001332904.1)	1268	YTH
		gi 1066546270 (NP_001332905.1)	1130	YTH
Drosophila melanogaster				
Crossostros gigos	GIGATON	CHOYP_YTDC2.1.1	1572	YTH
Classosliea yiyas	NCBI	gi 762086858 (XP_011425711.1)	1572	YTH

Fell_Oxy	
Fell_Oxy	
Fell_Oxy	

CDC27	
CDC27	
CDC27	

HrpA	R3H_DEXH_helicase DEXHc_YTHDC2 OB_NTP_bind
HrpA	DEXHc_YTHDC2 OB_NTP_bind
HrpA	DEAD-like_helicase_N SF ANKYR OB_NTP_bind
HrpA	R3H super family Ank_2
HrpA	R3H super family Ank_2

<u>YTHDF</u>

		gi 29791407 (AAH50284.1)	559	YTH
Homo sapiens	NCBI	gi 12803469 (AAH02559.1)	579	YTH
		gi 31419299 (AAH52970.1)	585	YTH
		gi 21356147 (NP_651322.1)	700	YTH
Drosophila melanogaster (CG6422)		gi 24649883 (NP_733067.1)	699	YTH
		gi 161078590 (NP_001097905.1)	694	YTH
	CICATON	CHOYP_COX1.6.15	532	YTH
Crassostrea gigas	GIGATON	CHOYP_LOC100371022.1.1	531	YTH
	NCBI	gi 762146089 (XP_011456337.1)	522	YTH

hnRNPA2B1

Homo conjono		gi 4504447 (NP_002128.1)	341	RRM1_hA2B1 RRM2_hA2B1 Putative DNA binding site hnRNPA1
Homo sapiens	NCRI	gi 14043072 (NP_112533.1)	353	RRM1_hA2B1 RRM2_hA2B1 Putative DNA binding site hnRNPA1
		gi 24650831 (NP_733249.1)	364	RRM1_hA_like RRM_SF Putative DNA binding site
Drocophila malanagastar (brb09DE)	NCRI	gi 17738267 (NP_524543.1)	365	RRM1_hA_like RRM_SF Putative DNA binding site
Drosophila melanogaster (hrb98DE)	NCBI	gi 24650838 (NP_733252.1)	361	RRM1_hA_like RRM_SF Putative DNA binding site
		gi 24650833 (NP_733250.1)	360	RRM1_hA_like RRM_SF Putative DNA binding site
	GIGATON	CHOYP_LOC100748395.1.7	229	RRM1_hA_like RRM_SF Putative DNA binding site
		CHOYP_LOC100748395.2.7	394	RRM1_hA_like RRM_SF Putative DNA binding site
		CHOYP_LOC100748395.3.7	315	RRM1_hA_like RRM_SF Putative DNA binding site
		CHOYP_LOC100748395.4.7	372	RRM1_hA_like RRM_SF Putative DNA binding site
		CHOYP_LOC100748395.6.7	315	RRM1_hA_like RRM_SF Putative DNA binding site
Crassostrea gigas		CHOYP_AGAP_AGAP002374.1.1	236	RRM_SF

RPA_2b-aaRSs_OBF_like	PHA03247 super family	

		CHOYP_LOC100748395.5.7	205	RRM_SF
		gi 762104361 (XP_011434715.1)	370	RRM1_hA_like RRM_SF Putative DNA binding site
	NCBI	gi 762104364 (XP_011434716.1)	369	RRM1_hA_like RRM_SF Putative DNA binding site
		gi 762104366 (XP_011434717.1)	363	RRM1_hA_like RRM_SF Putative DNA binding site
		gi 762104368 (XP_011434718.1)	353	RRM1_hA_like RRM_SF Putative DNA binding site

Prrc2a

Homo sapiens	NCBI	gi 314122241 (NP_004629.3)	2157	GRE-rich domain BAT2_N
Drosophila melanogaster				
	GIGATON	CHOYP_LOC100559941.1.2	2578	GRE-rich domain BAT2_N PTZ00121 PTZ00449
Crassostrea gigas	GIGATON	CHOYP_LOC100559941.2.2	2554	GRE-rich domain BAT2_N PTZ00121 PTZ00449
		gi 1139830093 (XP_019928978.1)	2922	GRE-rich domain BAT2_N PTZ00121 PTZ00449

IGF2BP

		gi 56237027 (NP_006537.3)	577	KH-I KH-1 RRM1_IGF2BP1 RRM2_IGF2BP1
		gi 238624257 (NP_001153895.1)	438	KH-I KH-1 RRM1_IGF2BP1 RRM_SF super family
		gi 64085377 (NP_006539.3)	599	KH-I KH-1 PCBP_like_KH RRM1_IGF2BP2 RRM2_IGF2BP2
		gi 56118219 (NP_001007226.1)	556	KH-I KH-1 PCBP_like_KH RRM1_IGF2BP2 RRM2_IGF2BP2
Homo sopions	NCRI	gi 631226390 (NP_001278798.1)	605	KH-I KH-1 PCBP_like_KH RRM1_IGF2BP2 RRM_SF super family
riomo sapiens		gi 631226392 (NP_001278801.1)	542	KH-I KH-1 PCBP_like_KH RRM_SF super family
		gi 631226396 (NP_001278802.1)	536	KH-I KH-1 PCBP_like_KH RRM2_IGF2BP2
		gi 631226394 (NP_001278803.1)	493	KH-I KH-1 PCBP_like_KH RRM2_IGF2BP2
		gi 631226398 (NP_001278804.1)	463	KH-1 PCBP_like_KH RRM_SF super family
		gi 30795212 (NP_006538.2)	579	KH-I KH-1 PCBP_like_KH RRM1_IGF2BP3 RRM2_IGF2BP3
		gi 386764188 (NP_001036268.2)	631	KH-I KH-1 RRM2_VICKZ

_			
	gi 386764191 (NP_001245616.1)	638	KH-I
NCBI	gi 17530887 (NP_511111.1)	566	KH-I
	gi 24641097 (NP_727451.1)	573	KH-I
	gi 281360685 (NP_001162717.1)	580	KH-I
GIGATON	CHOYP_LOC100114171.1.1	607	KH-I
	gi 762079091 (XP_011412002.1)	611	KH-I
NCBI	gi 762079093 (XP_011412008.1)	607	KH-I
	gi 762079095 (XP_011412017.1)	590	KH-I
	NCBI GIGATON NCBI	gi 386764191 (NP_001245616.1) NCBI gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) GIGATON CHOYP_LOC100114171.1.1 gi 762079091 (XP_011412002.1) gi 762079093 (XP_011412008.1) gi 762079095 (XP_011412017.1) gi 762079095 (XP_011412017.1)	gi 386764191 (NP_001245616.1) 638 NCBI gi 17530887 (NP_511111.1) 566 gi 24641097 (NP_727451.1) 573 gi 281360685 (NP_001162717.1) 580 GIGATON CHOYP_LOC100114171.1.1 607 gi 762079091 (XP_011412002.1) 611 gi 762079093 (XP_011412008.1) 607 gi 762079095 (XP_011412017.1) 590

	<u>elF3a</u>	
1)		1

1 2 3 4					
5 6 7 8		[gi 386764191 (NP_001245616.1)	638	KH-I KH-1 RRM2_VICKZ
9 10 11	Drosophila melanogaster (IGF-II binding protein)	NCBI	gi 17530887 (NP_511111.1)	566	KH-I KH-1
12 13 14			gi 24641097 (NP_727451.1)	573	KH-I KH-1
15 16 17			gi 281360685 (NP_001162717.1)	580	KH-I KH-1
19 20 21		GIGATON	CHOYP_LOC100114171.1.1	607	KH-I KH-1 PCBP_like_KH RRM1_VICKZ RRM_SF super family
22 23 24	Crassostrea didas	NCBI	gi 762079091 (XP_011412002.1)	611	KH-I KH-1 PCBP_like_KH RRM1_VICKZ RRM_SF super family
25 26 27	Crassostrea gigas		gi 762079093 (XP_011412008.1)	607	KH-I KH-1 PCBP_like_KH RRM1_VICKZ RRM_SF super family
28 29 30			gi 762079095 (XP_011412017.1)	590	KH-I KH-1 PCBP_like_KH RRM1_VICKZ RRM_SF super family
31 32 33 34			elF3	<u>a</u>	
35 36 37	Homo sapiens	NCBI	gi 4503509(NP_003741.1)	1382	PINT Smc super family U2AF_Ig super family dnaA super family Rho SF
38 39 40	Drosonhila melanogaster (IGE-II binding protein)	NCBI	gi 665393171 (NP_730838.3)	1140	PINT DUF5401 Rho SF
41 42 43		NODI	gi 24643988 (NP_649470.2)	1140	PINT DUF5401 Rho SF
44 45 46			CHOYP_BRAFLDRAFT_75590.1.1	155	
47 48 49		GIGATON	CHOYP_UBP47.2.2	1253	PAM DUF5401
50 51 52 53	Crassostrea gigas		CHOYP_MROH1.1.1	1046	PAM DUF5401
54 55 56			gi 762160635 (XP_011418535.1)	759	PAM DUF5401
57 58 59			gi 762122193 (XP_011444042.1)	1252	PAM DUF5401

KH-1	RRM2_VICKZ		
KH-1			
KH-1			
KH-1			
KH-1	PCBP_like_KH	RRM1_VICKZ	RRM_SF super family
KH-1	PCBP_like_KH	RRM1_VICKZ	RRM_SF super family
KH-1	PCBP_like_KH	RRM1_VICKZ	RRM_SF super family
KH-1	PCBP_like_KH	RRM1_VICKZ	RRM_SF super family

Data S1: Complete list of in silic	co identified putative m6A machinery proteir Crassostrea gigas	ns and their respective BLAST results				Homo sap	iens					1	
METTL3	CHOYP_PHUM_PHUM423190.1.1	gi 21361827 (NP_062826.2) 52.3%										gi 21355141 (NP_651204.1) 73.26%	
	gi 762092209 (XP_011428532.1)	52.81% gi 24308265 (NP_066012.1) 62.03%										73.96% gi 19920926 (NP_609205.1)	
METTL14	CHOYP_LOC100743733.1.1 gi 762082967 (XP_011424173.1)	60.88% 61.58%										57.76% 58.05%	
	CHOYP_FL2D.1.1	gi 395455090 (NP_001257460.1) 52.68%	gi 23199974 (NP_690596.1) 47.55%	gi 395455092 (NP_001257461.1) 47.55%								gi 24653459 (NP_523732.2) 56.16%	gi 24653461 (NP_725327. 58.42%
WTAP	CHOYP_SODM.1.2 CHOYP_LOC100121674.1.1 gil762078268 (XP_011453082.1)	47.55% 52.68% 51.06%	47.92% 47.55% 47.55%	47.65% 47.55% 47.55%								60.40% 56.16% 53.49%	60.40% 58.42% 58.42%
	CHOYP VIR.1.1	gi 33946282 (NP_056311.2) 30.70%	gi 33946280 (NP_892121.1) 29.59%	47.55%								gi 17864576 (NP_524900.1) 25.49%	30.42 /0
VIRILIZER-like	gi 762120202 (XP_011443024.1) gi 762120200 (XP_011443023.1)	30.85% 30.85%	30.17% 30.17%									25.49% 25.49%	
	gi 1139822239 (XP_019927346.1) gi 1139822241 (XP_019927347.1) cil1139822242 (XP_019927347.1)	30.89% 30.95%	30.17% 30.24%									25.49% 25.49% 26.04%	
	CHOYP LOC100864501.1.1	gi 209180481 (NP_079090.2) 43.27%										gi 19921556 (NP_609993.1) 60.45%	gi 24585301 (NP_724217. 60.45%
ΗΑΚΑΙ	gi 762140345 (XP_011453340.1) gi 762140347 (XP_011453341.1)	29.43% 29.28%	29.68% 29.68%									56.29% 57.14%	60.45% 60.45%
	CHOYP_BRAFLDRAFT_120702.1.1	gi 1060099240 (NP_001317493.1) 37.11%	gi 1060099108 (NP_001317496.1) 37.11%	gi 116008442 (NP_055885.3) 37.11%								gi 24643154 (NP_573339.1) N/A	gi 665392303 (NP_00128541 N/A
ZC3H13	CHOYP_LOC100568158.1.1 gi 762096734 (XP_011430912.1) gi 762096736 (XP_011430913.1)	37.11% 31.48% 31.48%	37.11% 31.48% 31.48%	37.11% 40.00% 40.00%								N/A N/A N/A	N/A N/A N/A
	gi 762096738 (XP_011430914.1) gi 762096740 (XP_011430915.1)	31.48% 31.68%	31.48% 31.68%	40.00% 40.58%								N/A N/A	N/A N/A
RBM15/15B	CHOYP_LOC663518.1.1	gi 47933339 (NP_073605) 56.73%	gi 319996623 (NP_001188474) 56.73%	gi 54607124 (NP_037418) 61.59%								gi 24586450 (NP_724633) 59.22%	gi 19921778 (NP_610339) 59.22%
	gi /621293// (XP_01144/812)	41.64% gi 122114654 (NP_076991.3) 38.05%	41.64%	34.94%								42.75% gi 19922302 (NP_611015.1) 38.81%	42.75%
METTL16	gi 762141911 (XP_011454156.1) gi 762141913 (XP_011454157.1)	37.68% 37.68%										39.16% 39.16%	
ALKBH5	CHOYP_BRAFLDRAFT_126925.1.1	gi 148539642 (NP_060228.3) 72.43%											
	gi 762097205 (XP_011431161.1)	72.43% gi 72534750 (NP_001026902.1)	gi 94536805 (NP_588611.2)	gi 1061213987 (NP_001317627.1)								gi 24656811 (NP_647811.2)	gi 24656816 (NP_728876.7
YTHDC1	CHOYP_LOC586835.1.1 gi 762070401 (XP_011447601.1)	51.52% 43.92%	51.52% 44.52%	43.30 % 52.27% 42.86%								57.74% 46.53%	57.74% 46.53%
YTHDC2	CHOYP_YTDC2.1.1	gi 269847874 (NP_073739.3) 52.99%	gi 1066536696 (NP_001332904.1) 53.66%	gi 1066546270 (NP_001332905.1) 51.83%									
	gi /62086858 (XP_011425/11.1)	53.09% 	53.77% gi 12803469 (AAH02559.1) 53.77%	52.05% gi 31419299 (AAH52970.1) 52.05%								gi 21356147 (NP_651322.1)	gi 24649883 (NP_733067.1
YTHDF	CHOYP_LOC100371022.1.1 gi 762146089 (XP_011456337.1)	53.09% 43.49%	53.77% 71.21%	52.05% 71.72%								71.51% 71.20%	71.51% 71.20%
	CHOYP_LOC100748395.1.7	gi 4504447 (NP_002128.1) 55.37%	gi 14043072 (NP_112533.1) 54.71%									gi 24650831 (NP_733249.1) 58.14%	gi 17738267 (NP_524543.1 58.14%
	CHOYP_LOC100748395.2.7 CHOYP_LOC100748395.3.7 CHOYP_LOC100748395.4.7	55.37% 55.37% 55.37%	54.71% 54.71% 54.71%									58.14% 58.14% 58.14%	58.14% 57.71% 58.14%
hnRNPA2B1	CHOYP_LOC100748395.6.7 CHOYP_AGAP_AGAP002374.1.1	55.37%	54.71% 53.53%									58.14% 58.72%	57.71% 58.29%
	CHOYP_LOC100748395.5.7 gi 762104361 (XP_011434715.1)	55.37% 55.37%	54.71% 55.37%									58.14% 58.14%	58.14% 58.14%
	gi 762104364 (XP_011434716.1) gi 762104366 (XP_011434717.1) gi 762104368 (XP_011434718.1)	54.80% 55.37% 55.37%	54.80% 55.37% 55.37%									58.72% 58.14% 50.63%	58.72% 58.14% 50.63%
Brro?o	CHOYP_LOC100559941.1.2	gi 314122241 (NP_004629.3) 46.02%	00.0170										00.0070
	CHOYP_LOC100559941.2.2 gi 1139830093 (XP_019928978.1)	46.02% 34.66%											
IGF2BP	CHOYP_LOC100114171.1.1	gi 56237027 (NP_006537.3) 34.87% 34.80%	gi 238624257 (NP_001153895.1) 35.71% 36.39%	gi 64085377 (NP_006539.3) 35.86% 35.96%	gi 56118219 (NP_001007226.1) N/A 36 52%	gi 631226390 (NP_001278798.1) 35.50% 35.61%	gi 631226392 (NP_001278801.1) 34.93% 35.53%	gi 631226396 (NP_001278802.1) 35.34% 35.93%	gi 631226394 (NP_001278803.1) 35.85% 36.38%	gi 631226398 (NP_001278804.1) 38.61% 39.76%	gi 30795212 (NP_006538.2) 33.16% 33.78%	gi 386764188 (NP_001036268.2) 42.72% 42.83%	gi 386764191 (NP_00124561 42.26% 42.83%
	gi 762079093 (XP_011412008.1) gi 762079095 (XP_011412017.1)	35.04%	36.39%	36.20%	36.77% 36.52%	36.11%	35.83%	35.93% 36.24%	36.38% <u>3</u> 6.38%	39.76% 39.76%	34.01%	42.77%	42.45%
	CHOYP_BRAFLDRAFT_75590.1.1	gi 4503509(NP_003741.1) 40.86%						~~~				gi 665393171 (NP_730838.3) 45.97%	gi 24643988 (NP_649470.2 45.97%
elF3a	CHOYP_UBP47.2.2 CHOYP_MROH1.1.1 ail762160635 (XP_011/18535.1)	63.83% 63.71% 54.20%										50.89% 50.89% 44 99%	50.89% 50.89% 44.99%
	gi 762122193 (XP_011444042.1)	58.13%						· Vio				48.45%	48.45%

The FEBS

NO.

Homo sapie	ns

The FEBS Journal

1) 1) g 442626448 (NP 788075.2) g 442628450 (NP 001260593.1) 56.29% 60.45% 57.14% 60.45% 57.14% 60.45% 1) g 66539205 (NP_00126419.1) NA NA NA NA NA NA NA NA NA NA		Drosophila melanogaster		
1) 1) g (442628448 (NP_788075.2) g)(442628450 (NP_001260593.1) 60.45% 60.45% 67.19% 60.45% 67.19% 60.45% 67.19% 60.45% 67.19% 60.45% 10.45% 10.45% 11. g)(166539338 (NP_001265114) 12. 51% 71.51%				
1) 1) g (442628449 (NP_78075.2) g (442628450 (NP_001260593.1) 50.45% 57.14% 60.45% 57.14% 60.45% 18.1) g (665393205 (NP_001285419.1) NA NA NA NA NA NA NA NA NA NA				
1) 1) p 442628448 (NP_78075.2) p 442628450 (NP_001260593.1) 60.45% 60.45% 56.29% 60.45% 57.14% 001285419.1) NA NA NA NA NA NA NA NA NA NA				
1) 1) gi[442628448 (NP 788075.2) gi[442628450 (NP 001260593.1) 60.45% 60.45% 65.29% 60.45% 57.14% 60.45% 10 gi[66539238 (NP_01285419.1) NA NA NA NA NA NA NA NA NA NA				
1) g 442628448 (NP_788075.2) g 442628450 (NP_001280593.1) 60.45% 60.45% 57.14% 60.45% 10) g 665392305 (NP_001285419.1) NA NA NA S8.14% S8.14% S8.14% S8.14% S8.14% S8.14% S8.14% S8.1	1)			
1) g (42628448 (NP_788075.2) g (42628450 (NP_001260593.1) 60.45% 60.45% 57.74% 60.45% 57.74% 60.45% 10.1) g (65539305 (NP_001285419.1) NA NA NA NA NA NA NA NA NA NA				
1) gi 442628448 (NP_788075.2) gi 442628450 (NP_001280593.1) 60.45% 60.45% 60.45% 57.19% 60.45% 60.45% 91/665392305 (NP_001285419.1) NA NA S8 14% S9 27% S8 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% 58 14% <td< th=""><th></th><th></th><th></th><th></th></td<>				
1) g 442628448 (NP.788075.2) g 442628450 (NP.001260593.1) 60.45% 60.45% 56.29% 60.45% 57.14% 60.45% 10 g 665392305 (NP.001285419.1) NA NA NA S8.14% 51.15% 71.51% 71.51% g 2450833 (NP.73250.1) 1) g 2450334 (NP.733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.24% 58.14%				
1) g (442628448 (NP_78075.2) g (442628450 (NP_001280593.1) 60.45% 00.45% 56.29% 00.45% 56.29% 00.45% 10.1) g (665392305 (NP_001285419.1) N/A N/A N/A N/A N/A N/A N/A N/A				
1) gi[442628448 (NP_788075.2) gi[442628450 (NP_001260593.1) 60.45% 60.45% 57.14% 60.45% 90 gi[665392306 (NP_001285419.1) N/A N/A 1) gi[665393938 (NP_001286174) 59.22% 42.75% 11 gi[24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 5				
1) g l426226448 (NP_78075.2) g l42628460 (NP_001260593.1) 60.45% 60.45% 57.14% 60.45% 57.14% 60.45% 10.1001285419.1) N/A N/A N/A N/A N/A N/A N/A N/A				
1) g (4426344) (NP_1052) g (4426283) (NP_20120093.1) 60.45% 60.45% 56.29% 60.45% 57.14% 60.45% 18.1) g (665392305 (NP_00128619.1) N/A N/A N/A N/A N/A N/A N/A N/A	4)	-::! 4 40000 4 40 (N.D. 700075 0)	-:: 1440000450 (ND 004000500 4)	
56.29% 60.45% 57.14% 60.45% 18.1) gi[665392305 (NP_001285419.1) NA NA NA S2.2% 42.75% 42.75% 1) gi[161078590 (NP_001097906.1) 71.51% 71.20% 71.51% 71.20% 1) gi[24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58	1)	gij442628448 (NP_788075.2) 60.45%	glj442628450 (NP_001260593.1) 60.45%	
8.1) gi[665392305 (NP 001285419.1) NA NA NA Salastrian 10 gi[6653932305 (NP_001097905.1) 71.51% 71.51% 71.20% Salastrian 10 gi[24650833 (NP_733252.1) gi[24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% <td< td=""><td></td><td>56.29% 57.14%</td><td>60.45% 60.45%</td><td></td></td<>		56.29% 57.14%	60.45% 60.45%	
NA N/A N/A N/A N/A) gi[665399386 (NP_001286174) 59.22% 42.75% 42.75% 1) gi[161078590 (NP_001097905.1) 71.51% 71.51% 71.51% 71.20% 1) gi[24660838 (NP_733252.1) gi[24650833 (NP_733250.1) 58.14% 50.63% 50.63	18.1)	gi 665392305 (NP_001285419.1)	00.+070	
N/A N/A N/A Subscript (NP_0010286174) 59.22% 42.75% 42.75% 42.75% 1) 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14%		N/A N/A		
N/A N/A N/A)) gijl665399388 (NP_001286174) 59.22% 42.75% 10 1) gijl61078590 (NP_001097905.1) 71.51% 71.51% 71.51% 71.20% 1) gij24650838 (NP_733252.1) gij24650833 (NP_733250.1) 58.14% 58.2% 50.63% 5		N/A		
N/A)) gi[665399388 (NP_001286174) 59.22% 42.75% 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)		N/A N/A		
y))	N/A ail665300388 (NP 001286174)		
42.75% 1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.51% 71.20% 1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 50.63% 50.63% 16.1) gi 217530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 16.1) gi 77530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 16.1) gi 77530887 (NP_511111.1) </td <td>')</td> <td>59.22%</td> <td></td> <td></td>	')	59.22%		
1) 1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.20% 58.72% 58.14% 58.14% 58.20% 58.72% 58.14% 58.14% 58.20% 58.72% 54.72% 58.14% 58.14% 50.63% 45.07% 44.37% 45.07% 44.57% 44.57%		42.75%		
1) 1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.89% 45.07% 44.37%				
1) 1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.29% 56.3% 58.14% 58.14% 58.29% 56.3% 58.30% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 44.37%				
1) 1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.72% 58.14% 58.72% 58.72% 58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.89% 44.20% 45.07% 45.07% 44.37%				
1) 1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.29% 48.37% 44.20% 44.20% 44.20% 44.37% 44.37%				
1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.51% 71.20% 1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 44.20% 45.07% 44.37% 45.07% 44.37%	1)			
1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 71.20% 1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 50.63% 50.63% 50.63% 16.1) gi 27530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%				
1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 50.63% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37%				
1) gi 161078590 (NP_001097905.1) 71.51% 71.51% 71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 58.14% 58.29% 58.14% 58.14% 58.14% 58.14% 58.29% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.14% 58.72% 58.14% 58.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.89% 44.89% 44.37% 45.07% 45.07% 45.07% 45.07% 45.07% 45.07% 45.07% 45.07% 45.07% 45.07% 45.07% 44.37%				
71.51% 71.51% 71.20% gi 24650833 (NP_733250.1) 1) gi 24650838 (NP_733252.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 50.63% 50.63% 50.63% 16.1) gi 217530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.89% 44.20% 45.07% 45.07% 44.37%	1)	gi 161078590 (NP_001097905.1)		
71.20% 1) gi 24650838 (NP_733252.1) gi 24650833 (NP_733250.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%		71.51% 71.51%		
1) gi[2403038 (NP_75223.1) gi[2403038 (NP_75223.1) 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.63% 50.63% 16.1) gi[17530887 (NP_511111.1) gi[24641097 (NP_727451.1) gi[281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%	1)	71.20%	ail24650922 (ND 722250 1)	
58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 58.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%	1)	58.14%	58.14%	
16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.37% 45.07% 45.07% 44.37%		58.14% 58.14%	58.14% 58.14%	
58.14% 58.14% 58.29% 56.83% 58.14% 58.14% 58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 58.14% 58.72% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%		58.14%	58.14%	
16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37%		58.14% 58.29%	58.14% 56.83%	
58.14% 58.14% 58.72% 58.72% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%		58.14%	58.14%	
58.72% 58.72% 58.14% 58.14% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%		58.14%	58.14%	
36.14% 50.63% 50.63% 50.63% 16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37% 45.07% 45.07% 44.37%		58.72%	58.72%	
16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.52% 45.07% 45.07% 44.37%		50.63%	50.63%	
16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.52% 45.07% 45.07% 44.37%				
16.1) gi 17530887 (NP_511111.1) gi 24641097 (NP_727451.1) gi 281360685 (NP_001162717.1) 44.89% 44.89% 44.20% 45.07% 45.07% 44.37% 45.07% 45.07% 44.52% 45.07% 45.07% 44.37%				
44.89%44.89%44.20%45.07%45.07%44.37%45.07%45.07%44.52%45.07%45.07%44.37%	16.1)	gi 17530887 (NP_511111.1)	gi 24641097 (NP_727451.1)	gi 281360685 (NP_001162717.1)
45.07% 45.07% 44.37% 45.07% 45.07% 44.52% 45.07% 45.07% 44.37%		44.89%	44.89%	44.20%
45.07% 45.07% 44.37%		45.07%	45.07%	44.52%
2)	2)	45.07%	45.07%	44.37%

2 Data S2: Identified proteins by RNA pull down coupled with mass spectrometry with m6A or A-oligo, in nuclear or cytosolic protein extracts
 4 Proteins identified in nuclear extracts

5	Oligo	Accession	Description
6	m6A	K1PTY5_CRAGI	Protocadherin Fat 4
/ 8	m6A	K1QNA2_CRAGI	Vitellogenin-6
9	m6A	K1QBR5_CRAGI	Uncharacterized protein
10	m6A	K1PFG1_CRAGI	Uncharacterized protein
11	m6A	K1P9A4_CRAGI	Beta-1,3-glucan-binding protein
12	m6A	K1QHI5_CRAGI	Pyruvate carboxylase, mitochondrial
13	m6A	K1QQ94_CRAGI	Uncharacterized protein
14	m6A	K1R5B4 CRAGI	Proteasome activator complex subunit 4
16	m6A	K1R164_CRAGI	Galectin-4
17	m6A	K1PNI6_CRAGI	Heterogeneous nuclear ribonucleoprotein A/B
18	m6A	K1QMX5_CRAGI	Uncharacterized protein
19	m6A	K1PQP2_CRAGI	Nucleolin
20	m6A	K1QXR4_CRAGI	Pancreatic lipase-related protein 2
22	m6A	K1R7V7_CRAGI	Tubulin beta chain
23	m6A	K1RGT5_CRAGI	Metalloendopeptidase
24	m6A	K1QSX8_CRAGI	ATPase family AAA domain-containing protein 2B
25 26	m6A	K1R9B6_CRAGI	H/ACA ribonucleoprotein complex subunit 4
20	m6A	K1RWS2_CRAGI	Transcriptional activator protein Pur-alpha
28	m6A	K1RLF8_CRAGI	Splicing factor 3B subunit 3
29	m6A	K1R3U2_CRAGI	Uncharacterized protein
30	m6A	K1QQ68_CRAGI	Tubulin alpha chain
31 32	m6A	K1QVJ8_CRAGI	Piwi-like protein 1
33	m6A	K1PVA1_CRAGI	Transitional endoplasmic reticulum ATPase
34	m6A	K1QKB5_CRAGI	Uncharacterized protein
35	m6A	K1QHM2_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2
36	m6A	K1QII6_CRAGI	Tubulin alpha chain
37 38	m6A	K1QSQ9_CRAGI	Putative ATP-dependent RNA helicase an3
39	m6A	K1QQ27_CRAGI	Pancreatic lipase-related protein 2
40	m6A	K1QMA4_CRAGI	RRP5-like protein
41	m6A	K1PEP0_CRAGI	40S ribosomal protein S8
42	m6A	K1QXX7_CRAGI	Myosin heavy chain, non-muscle (Fragment)
43 44	m6A	K1QK56_CRAGI	Uncharacterized protein
45	m6A	K1PNR3_CRAGI	Clathrin heavy chain
46	m6A	K1PN21_CRAGI	Tubulin beta chain
47	m6A	K1RG73_CRAGI	Acetyl-CoA carboxylase
48	m6A	K1RD58_CRAGI	Uncharacterized protein
49 50	m6A	K1QU53_CRAGI	NAD(P) transhydrogenase, mitochondrial
50	m6A	K1R473_CRAGI	Tubulin alpha chain
52	m6A	K1PH76_CRAGI	Y-box factor-like protein (Fragment)
53	m6A	K1PE00_CRAGI	Tubulin alpha chain
54	m6A	K1PJC1_CRAGI	Adipophilin
55 56	m6A	K1R6Z7_CRAGI	ATP synthase subunit alpha
57	m6A	K1R545_CRAGI	Pre-mRNA-processing-splicing factor 8 (Fragment)
58	m6A	K1RI55_CRAGI	Insulin-like growth factor 2 mRNA-binding protein 3
59	m6A	K1QGS8_CRAGI	Elongation factor 1-alpha
60	m6A	K1QFM6_CRAGI	Vitellogenin
	m6A	K1R6Q7_CRAGI	DNA topoisomerase I
	m6A	K1Q988_CRAGI	Band 4.1-like protein 3
	m6A	K1QLS3_CRAGI	Cytochrome b-c1 complex subunit 2, mitochondrial
	m6A	K1RWW5_CRAGI	ATP synthase subunit beta
	m6A	K1S2N7_CRAGI	Innexin
	m6A	K1P421_CRAGI	Histone H2A
	m6A	K1RK12_CRAGI	40S ribosomal protein S23
	m6A	K1QKD6_CRAGI	Uncharacterized protein
	m6A	K1QWZ6_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1
	m6A	K1QFN2_CRAGI	Uncharacterized protein
	m6A	K1PHW2_CRAGI	Uncharacterized protein

The FEBS Journal

1			
2 3	m6A	K1PJ06_CRAGI	Importin subunit alpha-1
4	m6A	K1QA13_CRAGI	Calcium-transporting ATPase
5	m6A	K1R0L4_CRAGI	Sodium/potassium-transporting ATPase subunit alpha
6	m6A	K1R115_CRAGI	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial
/ 8	m6A	K1QB61_CRAGI	Protocadherin Fat 4
9	m6A	K1Q4H2_CRAGI	Nodal modulator 3
10	m6A	K1QWK2_CRAGI	MAM domain-containing glycosylphosphatidylinositol anchor protein 2
11	m6A	K1R466_CRAGI	T-complex protein 1 subunit gamma
12	m6A	K1QFW9_CRAGI	Uncharacterized protein
14	m6A	K1R5U4_CRAGI	Acetyl-CoA carboxylase 1
15	m6A	A5LGH1_CRAGI	Voltage-dependent anion channel
16	m6A	K1S4Q2_CRAGI	T-complex protein 1 subunit delta (Fragment)
1/ 10	m6A	K1REG6_CRAGI	DNA helicase
10	m6A	K1PUL2_CRAGI	Long-chain-fatty-acidCoA ligase 1
20	m6A	K1R294_CRAGI	T-complex protein 1 subunit beta
21	m6A	K1PMT6_CRAGI	Heterogeneous nuclear ribonucleoprotein U-like protein 1
22	m6A	K1RGB7_CRAGI	Epidermal retinal dehydrogenase 2
23 24	m6A	K1R435_CRAGI	Splicing factor, arginine/serine-rich 4
25	m6A	K1R252_CRAGI	Putative methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial
26	m6A	K1QAE5_CRAGI	Uncharacterized protein
27	m6A	K1QIR8_CRAGI	78 kDa glucose-regulated protein
28	m6A	K1QYB3_CRAGI	lg-like and fibronectin type-III domain-containing protein C25G4.10
29 30	m6A	K1QI14_CRAGI	40S ribosomal protein S3a
31	m6A	K1PNQ5_CRAGI	Heat shock protein HSP 90-alpha 1
32	m6A	K1S1S1_CRAGI	Insulin-like growth factor 2 mRNA-binding protein 1
33	m6A	K1QM19_CRAGI	Uncharacterized protein
34 25	m6A	K1R420_CRAGI	Non-specific serine/threonine protein kinase
35 36	m6A	K1R4R9_CRAGI	Mitotic apparatus protein p62
37	m6A	K1R0S3_CRAGI	I-complex protein 1 subunit theta
38	m6A	K1RAJ1_CRAGI	I-complex protein 1 subunit alpha
39	m6A	K1QH/4_CRAGI	Splicing factor, arginine/serine-rich 1
40 41	m6A	K1QRL6_CRAGI	Methenyltetrahydrofolate synthetase domain-containing protein
42	m6A	K1QUC6_CRAGI	Uncharacterized protein
43	m6A	K1RII6_CRAGI	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
44	m6A	KIRBF6_CRAGI	Uncharacterized protein yfex
45	m6A	K1PCS4_CRAGI	Eukaryotic translation initiation factor 2 subunit 3, Y-linked
40 47	mbA		Oncharacterized protein
48	m6A	KIQWXZ_CRAGI	605 acidic ribosomal protein PU
49	m6A	KIPD57_CRAGI	Constitutive coactivator of PPAR-gamma-like protein 1-like protein
50	m6A	KIQ4S5_CRAGI	Cadnerin-8/A
51 52	mbA		Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2
52 53	meA		Alled /and sulfatase RDS1
54	meA		Aikyi/aiyi-suilalase BDSI Belyadenylate binding protein 2
55	m6A		Metabotronic dutamate recentor 2
56	m6A	KINWA7_CNAGI	Band 4 1-like protein 3
57 58	m6A	KINFTI_CRAGI	Bronionyl-CoA carboyylase beta chain, mitochondrial
59	m6A	KINNUS_CRAGI	Splicing factor 3B subunit 1
60	m6A	KIQDRO_CRAGI	Estradiol 17-beta-debydrogenase 11
	m6A	K1R953 CRAGI	Acetyl-CoA carboxylase
	m6Δ		MICOS complex subunit MIC60
	m6A		Heterogeneous nuclear ribonucleoprotein 42-like protein 1
	m6Δ	KIRIHS CRAGI	Polvadenvlate-binding protein
	m6Δ		ADP ATP carrier protein
	m6A		40S ribosomal protein SA
	m6Δ		Uncharacterized protein
	m6A		60S ribosomal protein 123a
	m6Δ		Nucleolar protein 58
	m6A	K1OT04 CRAG	Uncharacterized protein
	m64		Histone H3

1			
2	m6A	K1OT21 CRAGI	Putative ATP-dependent RNA helicase DDX5
3 4	m6A	K1QBN0 CRAGI	Methylcrotonovl-CoA carboxylase beta chain, mitochondrial
5	m6A	K1PLY1 CRAGI	DNA polymerase
6	m6A	K1QBH0 CRAGI	Uncharacterized protein
7	m6A	K1Q923 CRAGI	Putative ATP-dependent RNA helicase DDX4
8 9	m6A	K1QG58_CRAGI	Actin
10	m6A	K1QQB6_CRAGI	40S ribosomal protein S14
11	m6A	K1QDX9_CRAGI	Ribosome biogenesis protein BMS1-like protein
12	m6A	K1QF01_CRAGI	40S ribosomal protein S4
13 14	m6A	K1RLC5_CRAGI	T-complex protein 1 subunit epsilon
15	m6A	K1QY12_CRAGI	Dynamin-1-like protein
16	m6A	K1R0W4_CRAGI	Signal recognition particle subunit SRP72
17	m6A	K1QX26_CRAGI	Endoplasmin
18 10	m6A	K1QHS8_CRAGI	Ribonucleoside-diphosphate reductase
20	m6A	K1QQ05_CRAGI	Insulin-like growth factor-binding protein complex acid labile chain
21	m6A	K1QFP5_CRAGI	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial
22	m6A	K1QP17_CRAGI	Caprin-1
23	m6A	K1R7A2_CRAGI	Uncharacterized protein
24 25	m6A	K1R4L8_CRAGI	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial
26	m6A	K1R591_CRAGI	Inter-alpha-trypsin inhibitor heavy chain H4
27	m6A	K1R7I9_CRAGI	Heterogeneous nuclear ribonucleoprotein Q
28	m6A	K1QBW8_CRAGI	Uncharacterized protein
29 30	m6A	K1RSZ6_CRAGI	40S ribosomal protein S7
31	m6A	K1QDZ5_CRAGI	Cytochrome c1, heme protein, mitochondrial
32	m6A	K1PGW7_CRAGI	Transmembrane protein 2
33	m6A	K1QMB9_CRAGI	Eukaryotic translation initiation factor 3 subunit A
34 25	m6A	K1RNZ6_CRAGI	Eukaryotic translation initiation factor 3 subunit D
35 36	m6A	K1Q9W5_CRAGI	I-complex protein 1 subunit eta
37	m6A	K1Q404_CRAGI	DNA topoisomerase 2
38	m6A	KIR/J6_CRAGI	Putative sodium/potassium-transporting ATPase subunit beta-2
39 40	m6A		605 ribosomai protein L4
40 41	m6A	KIRSAD_CRAGI	Adapaculhamacustainasa
42	m6A	KINVOJ_CRAGI	
43	m6A	K1P327_CRAGI	Sarcalumenin
44 45	m6A	K105H6 CRAGI	FACT complex subunit SSRP1
45 46	m6A	K1PH66_CRAGI	Fibrinolytic enzyme isozyme C
47	m6A	K1PF10 CRAGI	PAN2-PAN3 deadenvlation complex catalytic subunit PAN2
48	m6A	K10358 CRAG	60S acidic ribosomal protein P2
49	m6A	K1PXH5 CRAGI	Putative saccharopine dehydrogenase
50 51	m6A	K1Q8S0 CRAGI	Nucleolar complex protein 3 homolog
52	m6A	K1QYB6 CRAGI	Delta-1-pyrroline-5-carboxylate synthetase
53	m6A	K1PV79 CRAGI	Importin subunit alpha
54	m6A	K1PV49_CRAGI	RuvB-like helicase
55 56	m6A	K1PRL4_CRAGI	60S ribosomal protein L38 (Fragment)
57	m6A	K1QL67_CRAGI	60S ribosomal protein L7a
58	m6A	K1PAY7_CRAGI	Propionyl-CoA carboxylase alpha chain, mitochondrial
59	m6A	K1R6L5_CRAGI	NADH-cytochrome b5 reductase
60	m6A	K1R1B1_CRAGI	35 kDa SR repressor protein
	m6A	K1QHQ6_CRAGI	Acyl-CoA dehydrogenase family member 9, mitochondrial
	m6A	K1QZU8_CRAGI	Calcium-transporting ATPase
	m6A	K1RN77_CRAGI	Nuclear autoantigenic sperm protein
	m6A	K1PZ23_CRAGI	DnaJ-like protein subfamily C member 3
	m6A	K1R005_CRAGI	Filamin-C (Fragment)
	m6A	K1RA35_CRAGI	Splicing factor, arginine/serine-rich 7
	m6A	K1R2V1_CRAGI	Importin subunit beta-1
	m6A	K1QAH9_CRAGI	H/ACA ribonucleoprotein complex subunit
	m6A	K1QET2_CRAGI	Coatomer subunit alpha
	m6A	K1RAB9_CRAGI	Epoxide hydrolase 4
	m6A	K1QGK2_CRAGI	Coatomer subunit beta

1			
2	m6A	K1PXN5 CRAGI	T-complex protein 1 subunit zeta
4	m6A	K1QHX2 CRAGI	La-related protein 7
5	m6A	K1PZ08 CRAGI	Ras-related protein Rab-7a
6	m6A	K1RK68_CRAGI	Uncharacterized protein
7	m6A	K1Q0R4_CRAGI	ATP-binding cassette sub-family F member 2
8 9	m6A	K1QW72_CRAGI	Catalase
10	m6A	K1PPP8_CRAGI	Vigilin
11	m6A	K1QVW3_CRAGI	Alkylglycerone-phosphate synthase
12	m6A	K1PBZ4_CRAGI	Regulator of nonsense transcripts 1
13 14	m6A	K1Q6W5_CRAGI	FACT complex subunit spt16
15	m6A	K1R5F2_CRAGI	14-3-3 protein epsilon
16	m6A	K1RLT4_CRAGI	Signal recognition particle subunit SRP68
17	m6A	K1RSS3_CRAGI	Myosin heavy chain, striated muscle
18 10	m6A	K1RNN9_CRAGI	Cytoskeleton-associated protein 5
20	m6A	K1QN11_CRAGI	Pre-mRNA-processing-splicing factor 8
21	m6A	K1PA54_CRAGI	Replication factor C subunit 3
22	m6A	K1QC78_CRAGI	Ras-related protein Rab-14
23	m6A	K1QW36_CRAGI	60S ribosomal protein L6
24 25	m6A	K1Q9P5_CRAGI	Mitochondrial-processing peptidase subunit beta
26	m6A	K1Q253_CRAGI	Neutral and basic amino acid transport protein rBAT
27	m6A	K1QHK9_CRAGI	Dynein heavy chain, cytoplasmic
28	m6A	K1QFN1_CRAGI	60S ribosomal protein L23
29	m6A	K1P112_CRAGI	ATP synthase subunit gamma, mitochondrial
30 31	m6A	K1QE71_CRAGI	DNA helicase
32	m6A	K1PK85_CRAGI	Cullin-associated NEDD8-dissociated protein 1
33	m6A	K1QTD9_CRAGI	Nucleolar protein 56
34	m6A	K1P9N7_CRAGI	14-3-3 protein zeta
35	m6A	K1RG19_CRAGI	Protein FAM98A
37	m6A	K1PMP3_CRAGI	Protoporphyrinogen oxidase
38	m6A	K1QVN9_CRAGI	T-complex protein 1 subunit eta
39	m6A	K1QG65_CRAGI	rRNA 2'-O-methyltransferase fibrillarin
40 41	m6A	K1PM76_CRAGI	NADH denydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial
42	mcA		405 ribosorial protein 516
43	m6A	KIQEF9_CRAGI	For upstream element-binding protein 2
44	m6A	K1PV89 CRAGI	Extracellular superovide dismutase [Cu-7n]
45 46	m6A	K1RIZ3 CRAGI	Bone morphogenetic protein 7
47	m6A	KIRA95 CRAGI	Filamin-A
48	m6A	K1PWZ3 CRAGI	Guanine nucleotide-binding protein subunit beta
49	m6A	K10812 CRAGI	NADH dehvdrogenase [ubiquinone] iron-sulfur protein 2. mitochondrial
50 51	m6A	K1PFS5 CRAGI	Elongation factor 1-gamma
52	m6A	K1PX23 CRAGI	Eukaryotic peptide chain release factor subunit 1
53	m6A	K1QSV1 CRAGI	Uncharacterized protein
54	m6A	K1Q6X5 CRAGI	Protein disulfide-isomerase
55 56	m6A	K1RAU3_CRAGI	DNA ligase
57	m6A	K1PXG6 CRAGI	Serine/threonine-protein phosphatase
58	m6A	K1RIG6_CRAGI	LSM14-like protein A
59	m6A	K1QWK6_CRAGI	Metalloendopeptidase
60	m6A	K1RCW3_CRAGI	Elongation factor 1-beta
	m6A	K1QK18_CRAGI	Cytochrome b5
	m6A	K1Q056_CRAGI	Calpain-A
	m6A	K1Q9M7_CRAGI	Histone H1-delta
	m6A	K1P7L5_CRAGI	Transmembrane 9 superfamily member
	m6A	K1QSU3_CRAGI	Protein I(2)37Cc
	m6A	K1PLF9_CRAGI	Arginine kinase
	m6A	K1Q1F4_CRAGI	60S ribosomal protein L3 (Fragment)
	C •	K1R1T8 CRAGI	Nucleolar protein 56
	m6A		
	m6A m6A	K1QGB4_CRAGI	40S ribosomal protein S17
	m6A m6A m6A	K1QGB4_CRAGI K1QJ08_CRAGI	40S ribosomal protein S17 60S ribosomal protein L26

1			
2	m6A	K1PKF5 CRAGI	Protein-glutamine gamma-glutamyltransferase 4
4	m6A	K1QYT5 CRAGI	Phosphate carrier protein, mitochondrial
5	m6A	K1RHB2 CRAGI	Nucleolar RNA helicase 2
6	m6A	K1RJJ7_CRAGI	Histone H5
7 o	m6A	K1PS84_CRAGI	Alpha-crystallin B chain
o 9	m6A	K1R2N0_CRAGI	Histone H4
10	m6A	K1PZP6_CRAGI	Coatomer subunit gamma
11	m6A	K1RGJ7_CRAGI	Neogenin
12	m6A	K1R9P5_CRAGI	Mitochondrial import receptor subunit TOM70
13 14	m6A	K1RUM2_CRAGI	Uncharacterized protein
15	m6A	K1RJ97_CRAGI	Multifunctional protein ADE2
16	m6A	K1RJS5_CRAGI	Uncharacterized protein
17	m6A	K1QW41_CRAGI	Leucine-zipper-like transcriptional regulator 1
18 10	m6A	K1R834_CRAGI	60S ribosomal protein L9
20	m6A	K1QLK8_CRAGI	GTP-binding protein SAR1b
21	m6A	K1QDH9_CRAGI	Myosin-11
22	m6A	K1QEF2_CRAGI	ADP-ribosylation factor-like protein 15
23	m6A	K1PUX5_CRAGI	Casein kinase II subunit alpha
24 25	m6A	K1QLU6_CRAGI	Poly [ADP-ribose] polymerase
25 26	m6A	K1QUK3_CRAGI	Putative ATP-dependent RNA helicase DDX41
27	m6A	K1S2S8_CRAGI	Signal recognition particle 54 kDa protein
28	m6A	K1PY73_CRAGI	Basic leucine zipper and W2 domain-containing protein 1
29	m6A	K1S6V7_CRAGI	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
30	m6A	K1QPC6_CRAGI	Nucleolar complex protein 2-like protein
31 32	m6A	K1QPP2_CRAGI	Elongation factor Tu, mitochondrial
33	m6A	K1QDN1_CRAGI	Heat shock protein 75 kDa, mitochondrial (Fragment)
34	m6A	K1R996_CRAGI	Long-chain-fatty-acidCoA ligase 4
35	m6A	K1RDW8_CRAGI	Golgi apparatus protein 1
36 27	m6A	K1S3G2_CRAGI	HMGB1
37 38	m6A	K1QR48_CRAGI	Calcium-binding mitochondrial carrier protein SCaMC-2
39	m6A	K1P5V7_CRAGI	Eukaryotic translation initiation factor 3 subunit C
40	m6A	K1PV86_CRAGI	Phosphoglycerate mutase family member 5
41	m6A	K1QWC3_CRAGI	40S ribosomal protein S3
42	m6A	K1PZ70_CRAGI	NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial
45 44	m6A	K1PTL4_CRAGI	Odr-4-like protein
45	m6A	K1QRM1_CRAGI	Nuclear pore protein
46	m6A	K1PVD7_CRAGI	Cytochrome c oxidase subunit 5A, mitochondrial
47	m6A	K1QFR2_CRAGI	Calnexin
48 40	m6A	K1Q273_CRAGI	60S ribosomal protein L14
49 50	m6A	K1R0M2_CRAGI	Uncharacterized protein
51	m6A	K1R5W3_CRAGI	Uncharacterized protein
52	m6A	K1QXQ8_CRAGI	DNA helicase
53	m6A	K1QPY8_CRAGI	Extracellular superoxide dismutase [Cu-Zn]
54 55	m6A	K1Q6V6_CRAGI	Replication factor C subunit 4
56	m6A	K1QMS2_CRAGI	Cadherin EGF LAG seven-pass G-type receptor 3
57	m6A	K1Q7T5_CRAGI	Protein disulfide-isomerase
58	m6A	K1QRZ3_CRAGI	40S ribosomal protein S13
59	m6A	K1R4Z3_CRAGI	Malate dehydrogenase, mitochondrial
60	m6A	K1PJ85_CRAGI	26S protease regulatory subunit 6A
	m6A	K1PB87_CRAGI	Uncharacterized protein
	m6A	K1PXU6_CRAGI	60S ribosomal protein L24
	m6A	K1R6S5_CRAGI	40S ribosomal protein S9
	m6A	K1PVH5_CRAGI	Centromere/kinetochore protein zw10-like protein
	m6A	K1R512_CRAGI	Uncharacterized protein
	m6A	K1QK68_CRAGI	Myosin-2 essential light chain
	m6A	K1PUV4_CRAGI	40S ribosomal protein S24
	m6A	K1R5U8_CRAGI	UBX domain-containing protein 4
	m6A	K1PW39_CRAGI	Glycerol-3-phosphate dehydrogenase, mitochondrial
	m6A	K1R790_CRAGI	Retinol dehydrogenase 13
	m6A	K1QT61_CRAGI	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial (Fragment)

1			
2	m6A	K1RG28 CRAGI	Kinase C and casein kinase substrate in neurons protein 2
5 4	m6A	K10KV1 CRAGI	Cvtochrome b-c1 complex subunit 6
5	m6A	K1P9S7_CRAGI	Brix domain-containing protein 2
6	m6A	K10N79 CRAGI	40S ribosomal protein S11
7	m6A		Bas GTPase-activating protein-binding protein 2
8	m6A	K1S1X3 CRAGI	SWI/SNE-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5
9 10	m6A	K1R9T2 CRAGI	Fukaryotic translation initiation factor 3 subunit B
10	m6A	K1OFD7_CRAGI	Replication protein A subunit
12	m6A		Metabotronic glutamate recentor 2
13	m6A	K1RN97 CRAGI	Hemagglutinin/amehocyte aggregation factor
14	m6A	K1PIS7 CRAGI	Poly [ADP-ribose] polymerase
15 16	m6A	K1R6E5 CRAGI	Putative ATP-dependent RNA helicase DDX23
17	m6A		Fructose-bisphosphate aldolase
18	m6A	KINONO_CRAGI	Transport protein Sec31A
19	m6A		Serine/threonine-protein kinase PLK
20	m6A	K1Q131_CRAG	Uncharacterized protein
21	m6A		Uncharacterized protein
23	m6A		Uncharacterized protein
24	m6A	K10IM1 CRAGI	60S ribosomal protein 130
25	m6A	K1PXD4 CRAGI	Putative ATP-dependent RNA helicase DDX6
26 27	m6A		Protein arginine N-methyltransferase 1
27 28	m6A	KIPAM6 CRAGI	Uncharacterized protein
29	m6A	K1RFU6 CRAG	Proteasome activator complex subunit 3
30	m6A		Heterogeneous nuclear ribonucleonrotein K
31	m6A		
32	m6A	KISCH7 CRACI	Vacuolar protein sorting-associated protein 13C
33 34	m6A		Alpha-galactosidase
35	m6A		CCAAT/enhancer-hinding protein zeta
36	m6A	K107G8 CRAG	Fatty acid synthese
37	m6A	K10XH3 CRAG	Translational activator GCN1
38	m6A	K1P8G1 CRAGI	Heterogeneous nuclear ribonucleonrotein H
39 40	m6A		THO complex subunit 4-A
41	m6A		Transmembrane protein 2
42	m6A		Uncharacterized protein
43	m6A		Fukaryotic initiation factor 4A-II (Fragment)
44 45	m6A	K10IV3 CRAGI	Uncharacterized protein
45 46	m6A	K1QIV9_CRAGI	Superoxide dismutase [Cu-Zn]
47	m6A	K10XA9 CRAGI	Sortilin-related recentor
48	m6A		Uncharacterized protein
49	m6A		NADH dehvdrogenase [ubiquinone] iron-sulfur protein 3 mitochondrial
50 51	m6A	K1R3T3 CRAGI	Transcription factor BTE3
52	m6A	K10MH5 CRAGI	Small nuclear ribonucleoprotein Sm D1
53	m6A	K1R1R9 CRAGI	Pre-mRNA-processing factor 6
54	m6A	K1PM66_CRAGI	60S ribosomal protein L12
55	m6A	K103W9 CRAGI	EAS-associated factor 2-B
56 57	m6A	K1P9D0 CRAGI	Stress-70 protein mitochondrial
58	m6A	K1R4F7 CRAGI	Ras-related protein Rab-6B
59	m6A	K10GP7_CRAG	Uncharacterized protein
60	m6A	K1REY2 CRAGI	Dysferlin
	m6A	K1OSB2_CRAGI	26S protease regulatory subunit 6B
	m6A	K1RAU8 CRAGI	Eukarvotic translation initiation factor 3 subunit E
	m6A	K10AB1 CRAGI	AP-2 complex subunit alpha
	m6A	K1RFU8 CRAG	High mobility group protein DSP1
	m6A	K10AA8 CRAGI	CAAX prenvl protease 1-like protein
	m6A	K1PXS8 CRAGI	Calreticulin
	m6A	K1RV41 CRAGI	Guanine nucleotide-binding protein subunit beta-2-like 1
	m6A	K1Q5Z6 CRAGI	Eukaryotic translation initiation factor 2 subunit 2
	m6A	K1QYQ9 CRAGI	Uncharacterized protein
	m6A	K1RCL2 CRAGI	Mitochondrial import inner membrane translocase subunit Tim13-B
	m6A	K1PI50 CRAGI	40S ribosomal protein S26

1			
2 3	m6A	K1QGP1 CRAGI	Replication factor C subunit 2
4	m6A	K1P541 CRAGI	Alpha-soluble NSF attachment protein
5	m6A	K1Q667 CRAGI	tRNA-splicing ligase RtcB homolog
6	m6A	K1QBM3_CRAGI	Ras-related protein Rab-2
7 0	m6A	K1R7L4_CRAGI	Neural cell adhesion molecule 1
9	m6A	K1PH13_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B
10	m6A	K1QAI2_CRAGI	Ufm1-specific protease 2
11	m6A	K1RJW8_CRAGI	Protein DEK
12 12	m6A	K1QKG8_CRAGI	Upstream activation factor subunit spp27
14	m6A	K1R150_CRAGI	Ras-related protein Rab-1A
15	m6A	K1PI40_CRAGI	Uncharacterized protein
16	m6A	K1PZT2_CRAGI	Cytochrome c oxidase subunit 5B, mitochondrial
17 19	m6A	K1PJB0_CRAGI	Heat shock protein 70 B2
19	m6A	K1PR25_CRAGI	Regulator of differentiation 1
20	m6A	K1QMV5_CRAGI	Annexin
21	m6A	K1Q0N6_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A
22	m6A	K1QY58_CRAGI	Eukaryotic translation initiation factor 3 subunit I (Fragment)
23 24	m6A	K1RIJ1_CRAGI	Synaptobrevin (Fragment)
25	m6A	K1PNC7_CRAGI	AFG3-like protein 2
26	m6A	K1QQR1_CRAGI	Major vault protein
27	m6A	KIR5V4_CRAGI	GTP-binding nuclear protein
28 29	m6A		Splicing factor 2B subunit 4
30	meA	KIPIVI_CRAGI	Splicing factor 3B suburit 4
31	m6A	KIPSQ5_CRAGI	SEC12 like protoin
32	m6A	KIRZU9_CRAU	Spliceosome PNA belicase PAT1
33 34	m6A	KIPF90_CRAGI	ATP-dependent DNA belicase 2 subunit 1
35	m6A	KINITO_CRAGI	Uncharacterized protein
36	m6A	K1Q321_CRAGI	Transportin-1
37	m6A	K1PDF8_CRAGI	Splicing factor, arginine/serine-rich 6
38	m6A	K1PMY9 CRAGI	Calmodulin
40	m6A	K1PPW8 CRAGI	Coatomer subunit beta
41	m6A	K1QZQ8 CRAGI	Low-density lipoprotein receptor-related protein 8
42	m6A	K1QE43 CRAGI	Uncharacterized protein
43 44	m6A	K1RDS1_CRAGI	Splicing factor, arginine/serine-rich 2
44	m6A	K1RAI3_CRAGI	Annexin
46	m6A	K1PCR5_CRAGI	KH domain-containing, RNA-binding, signal transduction-associated protein 2
47	m6A	K1QWP1_CRAGI	Nucleoporin seh1
48 40	m6A	K1QAL1_CRAGI	Transmembrane emp24 domain-containing protein 7 🧹
49 50	m6A	K1Q2H5_CRAGI	Uncharacterized protein
51	m6A	K1REP0_CRAGI	Uncharacterized protein
52	m6A	K1PKI9_CRAGI	Uncharacterized protein
53	m6A	K1RG79_CRAGI	Neuronal acetylcholine receptor subunit alpha-6
54 55	m6A	K1Q1L4_CRAGI	Uncharacterized protein
56	m6A	K1QTP6_CRAGI	Cation-transporting ATPase
57	m6A	K1Q615_CRAGI	Peroxiredoxin-1
58	m6A	K1QIZ7_CRAGI	Programmed cell death protein 6
59 60	m6A	K1R0D7_CRAGI	Eukaryotic translation initiation factor 3 subunit M (Fragment)
00	m6A	K1QTW3_CRAGI	Murinoglobulin-2
	m6A	K1PDL3_CRAGI	Ribosomal protein L19
	m6A	KIQW21_CRAG	395 riposomai protein L40, mitochondrial
	m6A	KIQ31/_CRAGI	Serine/Inreonine-protein Kinase SKPK1
	mcA		Cysteme desumurase, mitochondrial
	m6A		Frostagianum 0/ Translocon-associated protein subunit gamma
	m6A		Hansiocon-associated protein subunit gamma
	m6A		Fukaryotic translation initiation factor 3 subunit F
	m64	KIPNYS CRACI	Snlicing factor proline-and glutamine-rich
	m6A	K1R100 CRAGI	Metaxin-2
	m6A	K1R8L1 CRAG	Exportin-2

1			
2	m6A	K1OZ64 CRAGI	Nuclear pore complex protein Nup98-Nup96
5 4	m6A	K1QWZ8 CRAGI	Catenin beta
5	m6A	K1QAT9 CRAGI	ATP-dependent RNA helicase DDX1
6	m6A	K1P8Y9 CRAGI	Cytochrome b-c1 complex subunit 7
7	m6A	K1PIC5 CRAGI	Transmembrane protein 85
8 Q	m6A	K1QMV7 CRAGI	V-type proton ATPase subunit D
10	m6A	K1RC37_CRAGI	Uncharacterized protein
11	m6A	K1PEY4_CRAGI	26S proteasome non-ATPase regulatory subunit 2
12	m6A	K1RG04_CRAGI	ALK tyrosine kinase receptor
13 14	m6A	K1QG72_CRAGI	Hemagglutinin/amebocyte aggregation factor
14	m6A	K1RK83_CRAGI	Tyrosine-protein kinase BAZ1B
16	m6A	K1QMT1_CRAGI	DnaJ-like protein subfamily B member 4
17	m6A	K1P8I1_CRAGI	Pleckstrin-like protein domain-containing family F member 2 (Fragment)
18	m6A	K1R3I6_CRAGI	Nucleolar complex protein 2-like protein (Fragment)
19 20	m6A	K1QDB9_CRAGI	Transport protein Sec61 subunit alpha isoform 2 (Fragment)
20	m6A	K1QMJ8_CRAGI	Transcription initiation factor IIA subunit 1
22	m6A	K1R5G4_CRAGI	60S ribosomal protein L31
23	m6A	K1R1W9_CRAGI	Nicalin-1
24	m6A	K1QDA7_CRAGI	Uracil phosphoribosyltransferase
25 26	m6A	K1QI02_CRAGI	Vesicle-trafficking protein SEC22b
20	m6A	K1QFZ8_CRAGI	Ceramide kinase-like protein
28	m6A	K1Q151_CRAGI	60S ribosomal protein L32
29	m6A	K1QNS4_CRAGI	DnaJ-like protein subfamily C member 9
30	m6A	K1REQ4_CRAGI	Cytochrome c oxidase subunit 6B
31 32	m6A	K1R4B8_CRAGI	Plexin domain-containing protein 2
33	m6A	K1QC10_CRAGI	GTP-binding protein 1
34	m6A	K1PJY2_CRAGI	Inositol polyphosphate 1-phosphatase
35	m6A	K1R983_CRAGI	Protein transport protein SEC23
36 27	m6A	K1Q5Y3_CRAGI	Annexin
37 38	m6A	K1Q1N1_CRAGI	Alpha-mannosidase
39	m6A	K1QNU0_CRAGI	Non-specific serine/threonine protein kinase
40	m6A	K1R1Q8_CRAGI	Ras-related protein Rab-5C
41	m6A	K1RH95_CRAGI	Myosin-IIIB
42 43	m6A	K1QWE5_CRAGI	Ras-related protein Rab-18-B
45 44	m6A	K1QCB0_CRAGI	40S ribosomal protein S5
45	m6A	K1Q0I8_CRAGI	Putative splicing factor, arginine/serine-rich 7
46	m6A	K1QXF5_CRAGI	Calcyphosin-like protein
47	m6A	K1R8C6_CRAGI	40S ribosomal protein S12
48 40	m6A	K1QFA9_CRAGI	Low-density lipoprotein receptor-related protein 2
49 50	m6A	K1QYF5_CRAGI	Apoptosis-inducing factor 1, mitochondrial
51	m6A	K1QA50_CRAGI	V-type proton ATPase subunit H
52	m6A	K1PY39_CRAGI	Protocadherin Fat 4
53	m6A	K1Q330_CRAGI	Dihydrolipoyl dehydrogenase
54 55	m6A	K1Q350_CRAGI	Glyceraldehyde-3-phosphate dehydrogenase
56	m6A	K1Q6U7_CRAGI	78 kDa glucose-regulated protein
57	m6A	K1RBI9_CRAGI	Small nuclear ribonucleoprotein Sm D2
58	m6A	K1P0H0_CRAGI	Aspartyl/asparaginyl beta-hydroxylase
59 60	m6A	K1QSR2_CRAGI	Apoptosis inhibitor 5
00	m6A	K1RDV7_CRAGI	Cell division control protein 2-like protein (Fragment)
	m6A	K1PD30_CRAGI	Putative histone-binding protein Caf1
	m6A	K1P7K8_CRAGI	Vesicle-fusing ATPase 1
	m6A	K1PVZ3_CRAGI	Cold shock domain-containing protein E1
	m6A	K1RKZ5_CRAGI	DNA damage-binding protein 1
	m6A	K1R0Z4_CRAGI	Uncharacterized protein
	m6A	K1Q947_CRAGI	Dynein light chain
	m6A	K1PU46_CRAGI	Lethal(2) giant larvae-like protein 1
	m6A	K1Q8K9_CRAGI	KRR1 small subunit processome component-like protein
	m6A	K1PQZ3_CRAGI	Armadillo repeat-containing protein 4
	m6A	K1QL00_CRAGI	Microsomal glutathione S-transferase 1
	m6A	K1RDM2_CRAGI	6US ribosomal protein L18a

1			
2	m6A	K1Q3V9 CRAGI	Mitochondrial carnitine/acylcarnitine carrier protein
3 4	m6A	K1QN55 CRAGI	60S acidic ribosomal protein P1
5	m6A	K1R3G0 CRAGI	Transformer-2-like protein beta
6	m6A		MICOS complex subunit MIC13
7	m6A	K1QKL8_CRAGI	V-type proton ATPase subunit a
o 9	m6A	K1S6T6_CRAGI	UPF0480 protein C15orf24-like protein
10	m6A	K1R0W0_CRAGI	Ferritin
11	m6A	K1PGK7_CRAGI	Uncharacterized protein
12	m6A	K1QY71_CRAGI	Histone H2B
13 14	m6A	K1QNT7_CRAGI	Aldehyde dehydrogenase, mitochondrial
15	m6A	K1RJ96_CRAGI	Sphere organelles protein SPH-1
16	m6A	K1RZE2_CRAGI	Isocitrate dehydrogenase [NADP]
17	m6A	K1PPV1_CRAGI	Atlastin-2
18	m6A	K1P9F1_CRAGI	Insulin-like growth factor-binding protein complex acid labile chain
20	m6A	K1QVU0_CRAGI	Synaptojanin-2-binding protein
21	m6A	K1QX44_CRAGI	Ras-related protein Rab-11B
22	m6A	K1QKU6_CRAGI	mRNA export factor
23	m6A	K1QDV6_CRAGI	Protein argonaute-2
24 25	m6A	K1R5B9_CRAGI	DNA-directed RNA polymerase, mitochondrial
26	m6A	K1RCT2_CRAGI	Translocon-associated protein subunit delta
27	m6A	K1PKD4_CRAGI	40S ribosomal protein S30
28	m6A	K1PP50_CRAGI	Golgi integral membrane protein 4
29	m6A	K1PG60_CRAGI	60S ribosomal protein L17
30 31	m6A	K1QWJ4_CRAGI	Splicing factor 3B subunit 5
32	m6A	K1RB91_CRAGI	Neutral alpha-glucosidase AB
33	m6A	K1RD12_CRAGI	Uncharacterized protein
34	m6A	K1PQE3_CRAGI	RNA-binding protein Raly
35	m6A	K1Q2Y1_CRAGI	40S ribosomal protein S15
37	m6A	K1PQF1_CRAGI	Neural cell adhesion molecule L1
38	m6A	K1QKJ0_CRAGI	Aldehyde dehydrogenase family 3 member B1
39	m6A	K1PUQ5_CRAGI	Histone H2B
40	m6A	K1Q2W7_CRAGI	Uncharacterized protein
41 42	m6A	K1Q412_CRAGI	Uncharacterized protein
43	m6A	K1RNH1_CRAGI	60S ribosomal protein L18 (Fragment)
44	m6A	K1QNT4_CRAGI	Anoctamin
45	m6A	K1P8B7_CRAGI	Ubiquitin-conjugating enzyme E2-17 kDa (Fragment)
46 47	m6A	K1Q1D7_CRAGI	Putative rRNA-processing protein EBP2
48	m6A	K1PY30_CRAGI	Septin-2
49	m6A	KIQIRI_CRAGI	Exostosin-3
50	m6A	KIRHP3_CRAGI	Promeration-associated protein 2G4
51 52	mcA	KIPZI3_CRAGI	SWI/SNF complex suburil SWARCC2
52	m6A	KIQI97_CRAGI	Replication factor C subunit 5
54	m6A		Actin like protein 64
55	m6A	KIPNIO CRAGI	Microtubule-associated protein futsch
56	m6A	KINIO_CRAGI	V-type proton ATPase subunit B
57 58	m6A	K1Q120_CRAGI	Uncharacterized protein
59	m6A	K1PI65_CRAGI	Dual specificity mitogen-activated protein kinase kinase 7
60	m6A	K10MD8 CRAGI	Proteasome subunit alpha type
	m6A	K102L4 CRAGI	Transmembrane emp24 domain-containing protein 9
	m6A	K108C1 CRAGI	Putative RNA-binding protein Luc7-like 2
	m6A	K1PS71 CRAGI	Uncharacterized protein
	m6A	K1Q900 CRAGI	Galectin
	m6A	K1RKR8 CRAGI	Pumilio-like protein 2
	m6A	K1RKE5_CRAGI	IQ and AAA domain-containing protein 1
	m6A		Importin-5
	m6A	K1PGN0_CRAGI	Fatty-acid amide hydrolase 2
	m6A	K1RD83_CRAGI	Serine hydroxymethyltransferase
	m6A	K1RFA3_CRAGI	Lamin Dm0
	m6A	K1QAG7_CRAGI	Phosphatidylinositide phosphatase SAC1

1			
2	m6A	K1PJP7 CRAGI	Surfeit locus protein 4
3 4	m6A	K1PG07 CRAGI	Lupus La-like protein
5	m6A	K1OVS0 CRAGI	Ras-like GTP-binding protein Rho1
6	m6A	K1PWC3 CRAGI	Tetratricopeptide repeat protein 35
7	m6A	K107K9 CRAGI	Uncharacterized protein
8	m6A	K10AG9 CRAGI	Ferritin
9 10	m6A	K10HW8 CRAGI	Ferritin
11	m6A	K1P7F2 CRAGI	Exportin-7
12	m6A	K1RCF4_CRAGI	Translocon-associated protein subunit alpha
13	m6A	K10VI0 CRAGI	Isocitrate dehydrogenase [NAD] subunit mitochondrial
14	m6A	K1PX47 CRAGI	Ubiquitin carboxyl-terminal hydrolase
15 16	m6A	K1P8G6_CRAGI	Vesicular integral-membrane protein VIP36
17	m6A	K1PN78 CRAGI	Ribosomal protein 137
18	m6A	K10373 CRAGI	Splicing factor arginine/serine-rich 7
19	m6A		Uncharacterized protein
20	m6A	K10AV0_CRAGI	Guanine nucleotide-hinding protein $G(\Omega)$ subunit alpha
21 22	m6A		Obg-like ATPase 1
23	m6A	KINDIY_CRAGI	Transmembrane protein Tmp21
24	m6A	K10758 CRAGI	Splicing factor 112AF 26 kDa subunit
25	m6A	K1RAF9 CRAGI	ADP-ribosylation factor-like protein 84
26	m6A	KIRCW5 CRAG	Eukaryotic translation initiation factor 4 gamma 3
27	m6A		Mannosyl-oligosaccharide glucosidase
29	m6A	K1PBG6 CRAGI	Uncharacterized protein
30	m6A		Poly [ADP-ribose] polymerase
31	m6A	KIRICS CRAGI	Signal recognition particle recentor subunit beta
32	m6A		Long-chain fatty acid transport protain A
33 34	m64	K1OXA1 CRAGI	Retinol dehydrogenase 12
35	m6A		Enimerase family protein SDR3011
36	m64	KIN481_CNAG	Developmentally-regulated GTP-binding protein 1
37	m6A		Uncharacterized protein
38	m6A	K1PNO1_CRAGI	Ankyrin repeat domain-containing protein 5
39 40	m6A	KINQI_CRAGI	Putative ATP-dependent PNA belicase DDY47
41	m6A	K10805_CRAGI	TAR DNA-binding protein 43
42	m6A	K1R36_CRAG	ANS ribosomal protein \$19
43	m64	K1RED2 CRAGI	Adenvlate kinase
44	m6A		ATE synthese subunit delta mitochondrial
45 46	m6A	KI QJJ_CRAGI	AP-3 complex subunit delta-1
47	m6A		Prohibitin
48	m6A		112 snRNP auxiliary factor large subunit
49	m6A	K1PD36 CRAGI	
50 E 1	m6A	K1PBL2 CRAG	Eukarvotic initiation factor 4A-III
52	m6A	K1R3V8 CRAGI	COP9 signalosome complex subunit 4
53	m6A	K1PII4 CRAGI	YTH domain-containing protein 1
54	m6A	K1PZLO CRAGI	B-box type zinc finger protein ncl-1
55	m6A	K1RFW8 CRAGI	Ribosomal protein 115
56 57	m6A	K1R9V5 CRAGI	Tetraspanin
58	m6A	K1OPX1 CRAGI	ATPase family AAA domain-containing protein 3
59	m6A	K1OHI2 CRAGI	Heterogeneous nuclear ribonucleoprotein L
60	m6A	K10Z95 CRAGI	Nuclear pore complex protein
	m6A	K1R401 CRAGI	Spectrin alpha chain
	m6A	K1PSA1 CRAGI	Transmembrane 9 superfamily member
	m6A	K1Q486 CRAGI	Uncharacterized protein
	m6A	K1PYA0 CRAGI	Cytoplasmic dynein 2 heavy chain 1
	m6A	K1QLC6 CRAGI	JmjC domain-containing protein 8
	m6A	K1RDG4 CRAGI	DNA helicase
	m6A	K1PQY0 CRAGI	Protein guiver
	m6A	K1QTD5 CRAGI	Low-density lipoprotein receptor-related protein 12
	m6A	K1PSP7 CRAGI	Uncharacterized protein
	m6A	K1QAL3 CRAGI	RNA-binding protein 28
	m6A	K1QND2 CRAGI	Septin-2
			-

1			
2	m6A	K1RMM6 CRAGI	Centromere protein J
4	m6A	K1R1K6 CRAGI	Heat shock protein beta-1
5	m6A		5'-3' exoribonuclease 1
6	m6A	K1RB56_CRAGI	Ferritin
/ 8	m6A	K1RIZ9_CRAGI	Band 4.1-like protein 5
9	m6A	K1RFB1_CRAGI	Stomatin-like protein 2 (Fragment)
10	m6A	K1RNI9_CRAGI	Leucine-rich repeat-containing protein 59
11	m6A	K1Q7U7_CRAGI	Basigin
12	m6A	K1RNX0_CRAGI	Small nuclear ribonucleoprotein E
15 14	m6A	K1P5F7_CRAGI	Metastasis-associated protein MTA1
15	m6A	K1PVG9_CRAGI	Malectin
16	m6A	K1R247_CRAGI	Condensin complex subunit 1
17	m6A	K1PSN0_CRAGI	Pre-mRNA-processing factor 40-like protein A
18 19	m6A	K1PZV3_CRAGI	Guanine nucleotide-binding protein-like 3-like protein (Fragment)
20	m6A	K1RWP3_CRAGI	Peptidyl-tRNA hydrolase 2, mitochondrial
21	m6A	K1Q7E4_CRAGI	Ubiquitin-conjugating enzyme E2 N
22	m6A	K1RK33_CRAGI	Exportin-1
23	m6A	K1RPP1_CRAGI	Synaptophysin
24 25	m6A	K1Q5P0_CRAGI	60S ribosomal protein L17
26	m6A	K1PND7_CRAGI	Fatty acid synthase
27	m6A	K1R0R7_CRAGI	Putative ATP-dependent RNA helicase DHX36
28	m6A	K1QJL6_CRAGI	Microtubule-associated protein RP/EB family member 3
29 30	m6A	K1QKZ6_CRAGI	Inosine-5'-monophosphate dehydrogenase
31	m6A	Q70MT4_CRAGI	40S ribosomal protein S10
32	m6A	K1RP91_CRAGI	Putative RNA exonuclease NEF-sp
33	m6A	K1PKK7_CRAGI	AP-2 complex subunit mu-1
34 35	m6A	KIPLR8_CRAGI	Chromosome transmission fidelity protein 18-like protein (Fragment)
36	m6A	K1PH10_CRAGI	Polyadenylate-binding protein-interacting protein 1
37	m6A	KIPZGU_CRAGI	Strawberry notch-like protein 1
38	m6A	KIPNUZ_CRAGI	Histone-arginine methyltransierase CARMI
39 40	m6A		Cadharin 22
40 41	m6A	KIPABO_CRAGI	CLIP-associating protein 1
42	m6A		Gamma-tubulin complex component
43	m6A	K1O105 CRAGI	Ferrochelatase
44 45	m6A	K1OF52 CRAGI	Uncharacterized protein
46	m6A	K1Q2Z5 CRAGI	Putative ATP-dependent RNA helicase DDX46
47	m6A	K1PXI0_CRAGI	Angiopoietin-4
48	m6A		60S ribosomal protein L5
49 50	m6A	K1QV25_CRAGI	Transcription elongation factor B polypeptide 2
51	m6A	K1PUJ1_CRAGI	Radixin
52	m6A	K1QHT0_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial
53	m6A	K1QMK5_CRAGI	Kinesin-associated protein 3
54 55	m6A	K1QQ16_CRAGI	AP complex subunit beta
56	m6A	K1QZ49_CRAGI	Adipocyte plasma membrane-associated protein
57	m6A	K1QIB2_CRAGI	Mitogen-activated protein kinase
58	m6A	K1QXH7_CRAGI	DNA replication licensing factor mcm4-B
59 60	m6A	K1QQV0_CRAGI	Histone H1.2
00	m6A	K1QG61_CRAGI	Acetolactate synthase-like protein
	m6A	K1R5R4_CRAGI	Dynein heavy chain 10, axonemal
	m6A	K1R4J0_CRAGI	MAGUK p55 subfamily member 2
	m6A	K1RR98_CRAGI	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2
	m6A	K1Q5E0_CRAGI	Dual specificity protein kinase CLK2
	m6A	K1R275_CRAGI	Putative ATP-dependent RNA helicase DDX52
	m6A	K1RFV5_CRAGI	ATP-dependent KNA helicase DDX1
	m6A	K1QNZ/_CRAG	Upiquilin-1
	тьА	KIQZ50_CRAGI	KINA-dependent KINA polymerase
	тьА	KIQHX4_CRAGI	Uncharacterized protein
	m6A		Neumon tenna curtanlarmia
	ΠΟΑ	VIQUID_CKAGI	Leucyi-irina synthetase, cytopiasinic

1			
2	m6A	K1R7M3 CRAGI	Cartilage acidic protein 1
3 ⊿	m6A	K1R065 CRAGI	Golgi membrane protein 1
5	m6A	K1RD19 CRAGI	RNA-binding protein 4
6	m6A	K1R969 CRAGI	Uncharacterized protein
7	m6A	K1RE19 CRAGI	V-type proton ATPase subunit S1
8	m6A	K10GW5 CRAGI	WD repeat and SOE domain-containing protein 1
9 10	m6A	K10KI1 CRAGI	Tudor domain-containing protein 1
11	m6A	K1PSH2 CRAGI	28S ribosomal protein S12, mitochondrial
12	m6A	K10MT2 CRAGI	Signal pentidase complex catalytic subunit SEC11
13	m6A	K10DI0 CRAGI	Transmembrane protein 49
14 15	m6A	K108T3 CRAGI	Importin subunit alpha
15	m6A	K10525 CRAGI	Mechanosensory protein 2 (Fragment)
17	m6A	K105G6_CRAGI	60 kDa heat shock protein, mitochondrial
18	m6A	K1OHF0 CRAGI	40S ribosomal protein S27
19	m6A	K107X3 CRAGI	Pre-mRNA-splicing factor SYE1
20	m6A	K1RRH1 CRAGI	Chromodomain-helicase-DNA-binding protein Mi-2-like protein
21	m6A	K10435 CRAGI	Fukaryotic translation initiation factor 2 subunit 1
23	m6A	K1RNS1 CRAGI	NADH dehvdrogenase [ubiquinone] 1 alpha subcomplex subunit 8
24	m6A	K10GF9_CRAGI	Rootletin
25	m6A		Muscle, skeletal recentor tyrosine protein kinase
26	m6A	K1RNU5 CRAGI	Pre-mRNA-splicing factor RRM22
27	m6A		Structural maintenance of chromosomes protein
20	m6A		Uncharacterized protein
30	m6A	K10R54 CRAGI	Zinc finger RNA-hinding protein
31	m6A		Signal pentidase complex subunit 3
32	m6A	K1RTR1 CRAGI	ATP-citrate synthese
33 34	m6A		Centrin-3
35	m6A		Uncharacterized protein C16orf61-like protein
36	m6A	K1PSV2 CRAGI	Eragile X mental retardation syndrome-related protein 1
37	m6A	K1B7G0 CRAGI	Chromobox-like protein 5
38	m6A	K10FG2 CRAGI	Telomere-associated protein BIE1
39 40	m6A		Cytoplasmic polyadepylation element-binding protein 1-B
40	m6A	K1R112 CRAGI	Cation-independent mannose-6-phosphate recentor
42	m6A	KIR255 CRAGI	
43	m6A	K1RE07 CRAGI	60S ribosomal protein 127a
44	m6A	K1RVE2 CRAGI	Enovi-CoA bydratase domain-containing protein 3 mitochondrial
45 46	m6A	KIRITZ_CRAGI	Tetratricopentide repeat protein 12
47	m6A		Glycoprotein 3-alpha-L-fucosyltransferase A
48	m6A		Transketolase-like protein 2
49	m6A		Putative methylcrotonovl-CoA carboxylase beta chain mitochondrial
50	m6A		Antigen KI-67
51 52	m6A		60 kDa neurofilament protein
53	m6A		Splicing factor 3B subunit 2
54	m6A		Enidermal retinal dehydrogenase 2
55	m6A		14-3-3 protein gamma
56 57	m6A		Putative tyrosinase-like protein tyr-3
57 58	m6A		Snectrin heta chain, brain 4
59	m6A		Coatomer subunit zeta-1
60	m6A		Protein polyhromo-1
	m6A	K1P7W5 CRAG	Histone H1-delta
	m6A		Tudor domain-containing protein 1
	m6A		FR membrane protein complex subunit 3
	m6A	K10119 CRAGI	Interferon-induced protein 44-like protein
	m6A		Neurexin-4
	m6A	K1PIN7 CRAGI	PC3-like endoprotease variant A
	m6A	K1RAH1 CRAG	Uncharacterized protein
	m6A	K1R472 CRAG	Synaptobrevin-like protein YKT6
	m6A m6A	K1R472_CRAGI K1QMY9_CRAGI	Synaptobrevin-like protein YKT6 Uncharacterized protein
	m6A m6A m6A	K1R472_CRAGI K1QMY9_CRAGI K1QBT8_CRAGI	Synaptobrevin-like protein YKT6 Uncharacterized protein Uncharacterized protein

1			
2	m6A	K1R8V1 CRAGI	Puratrophin-1
3 4	m6A	K1PUF0 CRAGI	G-protein coupled receptor moody
5	m6A	K1O4R2 CRAGI	Zinc finger protein 26
6	m6A	K1QXP9 CRAGI	Uncharacterized protein
7	m6A	K1P6M6 CRAGI	Cerebellin-1
8 9	А		Vitellogenin-6
10	А	K1PTY5_CRAGI	Protocadherin Fat 4
11	А	K1QBR5_CRAGI	Uncharacterized protein
12	А	K1PFG1_CRAGI	Uncharacterized protein
13 14	А	K1P9A4_CRAGI	Beta-1,3-glucan-binding protein
15	А	K1QHI5_CRAGI	Pyruvate carboxylase, mitochondrial
16	А	K1R5B4_CRAGI	Proteasome activator complex subunit 4
17	А	K1QQ94_CRAGI	Uncharacterized protein
10 19	A	K1QXR4_CRAGI	Pancreatic lipase-related protein 2
20	A	K1RWS2_CRAGI	Transcriptional activator protein Pur-alpha
21	A	K1PNI6_CRAGI	Heterogeneous nuclear ribonucleoprotein A/B
22	A	K1R3U2_CRAGI	Uncharacterized protein
23 24	A	K1R7V7_CRAGI	Tubulin beta chain
25	A	K1QMX5_CRAGI	Uncharacterized protein
26	A	K1R9B6_CRAGI	H/ACA ribonucleoprotein complex subunit 4
27	A	K1QQ68_CRAGI	lubulin alpha chain
28	A	K1PQP2_CRAGI	Nucleolin
30	A	KIRLF8_CRAGI	Splicing factor 3B subunit 3
31	A	K1R164_CRAGI	Galectin-4
32	A	KIQVJ8_CRAGI	PIWI-like protein 1
33 24	A		V hav factor like protain (Fragment)
35	A A		Tubulin alpha chain
36	Δ	KIQIO_CRAGI	ATPase family AAA domain-containing protein 2B
37	Δ	K10K56 CRAGI	Uncharacterized protein
38	Δ	KIQKB5 CRAGI	Uncharacterized protein
39 40	A	K1PE00 CRAGI	Tubulin alpha chain
41	A	K10027 CRAGI	Pancreatic lipase-related protein 2
42	A	K1PVA1 CRAGI	Transitional endoplasmic reticulum ATPase
43	А	K1PEP0 CRAGI	40S ribosomal protein S8
44 45	А	K1QXX7 CRAGI	Myosin heavy chain, non-muscle (Fragment)
46	А	K1RK12_CRAGI	40S ribosomal protein S23
47	А	K1QSQ9_CRAGI	Putative ATP-dependent RNA helicase an3
48	А	K1PNR3_CRAGI	Clathrin heavy chain
49 50	А	K1QMA4_CRAGI	RRP5-like protein
51	А	K1QHM2_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2
52	А	K1QU53_CRAGI	NAD(P) transhydrogenase, mitochondrial
53	А	K1PJC1_CRAGI	Adipophilin
54 55	А	K1RG73_CRAGI	Acetyl-CoA carboxylase
56	А	K1QFM6_CRAGI	Vitellogenin
57	A	K1R6Q7_CRAGI	DNA topoisomerase I
58	A	K1R6Z7_CRAGI	ATP synthase subunit alpha
59 60	A	K1QGS8_CRAGI	Elongation factor 1-alpha
00	A	K1QWZ6_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1
	A	K1RD58_CRAGI	Uncharacterized protein
	A	K1QLS3_CRAGI	Cytochrome b-c1 complex subunit 2, mitochondrial
	A	K1S1S1_CRAGI	Insulin-like growth factor 2 mRNA-binding protein 1
	A	K1R0L4_CRAGI	Sodium/potassium-transporting ATPase subunit alpha
	A	KIRWW5_CRAG	A I P synthase subunit beta
	A	KIQAI3_CRAGI	Calcium-transporting ATPase
	A	KIQENZ_CRAGI	Uncharacterized protein
	A	KIK545_CKAGI	Pre-minina-processing-splicing factor & (Fragment)
	A ^	KIDNITE CDACI	Futative methylinalonate-semialuenyue denyurogenase [acylating], mitochondrial Heterogeneous nuclear ribonucleoprotein Lilike protein 1
	А Л	KIRCRT CDACI	Enidermal retinal debydrogenase 2
	~	KTUOD/_CUAGI	Lpiaermai retinar aenyarogenase z

А	K1R466_CRAGI	T-complex protein 1 subunit gamma	
А	K1R294_CRAGI	T-complex protein 1 subunit beta	
А	K1RIT6_CRAGI	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial	
А	K1QIR8_CRAGI	78 kDa glucose-regulated protein	
А	K1RI55_CRAGI	Insulin-like growth factor 2 mRNA-binding protein 3	
А	K1QH74_CRAGI	Splicing factor, arginine/serine-rich 1	
А	K1S2N7_CRAGI	Innexin	
А	K1R435 CRAGI	Splicing factor, arginine/serine-rich 4	
А	K1R5U4 CRAGI	Acetyl-CoA carboxylase 1	
А	K1QBK6 CRAGI	Splicing factor 3B subunit 1	
А	K1Q988 CRAGI	Band 4.1-like protein 3	
А	K1R420 CRAGI	Non-specific serine/threonine protein kinase	
A	A5LGH1_CRAGI	Voltage-dependent anion channel	
A	K1PHW2 CRAGI	Uncharacterized protein	
A	K1REG6 CRAGI	DNA helicase	
A	K10AE5_CRAGI	Uncharacterized protein	
A	K1OWT8 CRAGI	Uncharacterized protein	
Δ		Methenyltetrahydrofolate synthetase domain-containing protein	
Δ	K10YB3 CRAGI	Ig-like and fibronectin type-III domain-containing protein C25G4 10	
Δ		Incharacterized protein	
Δ	K1R115 CRAGI	Succinate dehydrogenase [ubiquinone] flavonrotein subunit_mitochondrial	
Λ	K1SAO2 CRAGI	T-complex protein 1 subunit delta (Fragment)	
л Л		MAM domain-containing glycosylphosphatidylinositol anchor protein 2	
Λ		T-complex protein 1 subunit theta	
л л		Uncharacterized protein	
A 		Estradiol 17-beta-debydrogenace 11	
A 	KIQUZS_CRAGI	Heat shock protoin HSD 00 alpha 1	
A 		Lincharactorized protein vfoX	
A 	KINDFU_CRAGI	405 ribosomal protein SA	
A 	KIN4D4_CRAGI	405 ribosomal protein SA	
A		Long chain fatty acid. CoA ligato 1	
A 	KIPULZ_CRAGI	Pand 4.1 like protein 2	
A	KIRFII_CRAGI	Ballu 4.1-like protein 5	
A 	KIPJUO_CRAGI	Dutative ATD dependent BNA belicase DDVE	
A	KIQIZI_CRAGI	Uncharacterized protein	
A		Heterogeneous nuclear ribenuclean retein A2 like protein 1	
A		DNA replication licensing factor MCM7	
A		Constitutive coostivator of PDAD gamma like protain 1 like protain	
A	KIPDS7_CRAGI	A satul CoA sarbowlass	
A	KIR955_CRAGI	Acetyl-CoA cal boxylase	
A	KIRJESZE CRACI	405 ribosomal protein 57	
A	KIRSZO_CRAGI	405 hb0sonial protein 57	
A		Uncharacterized protein	
A		COS asidia ribasamal protoin PO	
A		Bus actuic ribusoinal protein Pu	
A	KIRINDS_CRAGI	Fropionyi-CoA carboxylase beta chain, intochondria	
A	KIPC34_CRAGI	Eukaryotic translation initiation factor 2 subunit 3, Y-iniked	
A	K1Q925_CRAGI	Alled (and cultations DDS1	
A	KIQPX8_CRAGI	Aikyl/aryl-sullalase BDS1 Mitatia apparatus protoin p62	
A	KIR4R9_CRAGI	T seven lev protein 1 subusit slabs	
A	KIRAJI_CRAGI	COS ribosomol protein 1 220	
A	KIQULI_CRAGI	Busharastariand protein L23a	
A ^		Actin	
A •		Autin	
A	KIQ4HZ_CRAGI	Nuclealer metain 52	
A		Nucleolar protein 58	
A	KIQFUI_CRAGI	405 ribosomai protein 54	
A	KIPUMZ_CRAGI		
A	KIQNN9_CRAGI	IVIICUS complex subunit IVIIC60	
A	KIKUAU_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	
A	KIQZWU_CRAGI	Polyadenylate-binding protein 2	
1			
----------	--------	---------------	---
2	А	K1QBN0 CRAGI	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial
4	А	K1Q8S0 CRAGI	Nucleolar complex protein 3 homolog
5	А	K1RH18 CRAGI	Sarcalumenin
6	A	K1QQ05 CRAGI	Insulin-like growth factor-binding protein complex acid labile chain
7	А	K1QT04 CRAGI	Uncharacterized protein
8	А	K1RLC5 CRAGI	T-complex protein 1 subunit epsilon
9 10	А	K1Q9K6 CRAGI	Histone H3
11	А	K1QBW8 CRAGI	Uncharacterized protein
12	А	K1Q9W5 CRAGI	T-complex protein 1 subunit eta
13	А	K1R0Y9 CRAGI	ADP,ATP carrier protein
14 15	А	K1QP17 CRAGI	Caprin-1
16	А	K1QYB6 CRAGI	Delta-1-pyrroline-5-carboxylate synthetase
17	А	K1R7I9 CRAGI	Heterogeneous nuclear ribonucleoprotein Q
18	А	K1QMB9 CRAGI	Eukaryotic translation initiation factor 3 subunit A
19 20	А	K1PM50 CRAGI	40S ribosomal protein S16
20 21	А	K1P8W6 CRAGI	60S ribosomal protein L4
22	А	K1PXH5 CRAGI	Putative saccharopine dehydrogenase
23	А	K1PBZ4 CRAGI	Regulator of nonsense transcripts 1
24	А		Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial
25	А	K1QFP5 CRAGI	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial
20 27	А	K1RIG6_CRAGI	LSM14-like protein A
28	А	K1R591_CRAGI	Inter-alpha-trypsin inhibitor heavy chain H4
29	А	K1RSA6_CRAGI	Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial
30	А	K1R1B1_CRAGI	35 kDa SR repressor protein
31	А	K1QZU8_CRAGI	Calcium-transporting ATPase
33	А	K1QX26_CRAGI	Endoplasmin
34	А	K1Q358_CRAGI	60S acidic ribosomal protein P2
35	А	K1P112_CRAGI	ATP synthase subunit gamma, mitochondrial
36	А	K1QHS8_CRAGI	Ribonucleoside-diphosphate reductase
37 38	А	K1PXN5_CRAGI	T-complex protein 1 subunit zeta
39	А	K1R7J6_CRAGI	Putative sodium/potassium-transporting ATPase subunit beta-2
40	А	K1Q5H6_CRAGI	FACT complex subunit SSRP1
41	А	K1QTD9_CRAGI	Nucleolar protein 56
42 43	А	K1QC78_CRAGI	Ras-related protein Rab-14
44	А	K1Q9M7_CRAGI	Histone H1-delta
45	А	K1RNZ6_CRAGI	Eukaryotic translation initiation factor 3 subunit D
46	А	K1QAH9_CRAGI	H/ACA ribonucleoprotein complex subunit
47	А	K1RLT4_CRAGI	Signal recognition particle subunit SRP68
40 49	A	K1RWX7_CRAGI	Metabotropic glutamate receptor 3
50	A	K1RA35_CRAGI	Splicing factor, arginine/serine-rich 7
51	A	K1QE71_CRAGI	DNA helicase
52	A	K1PS27_CRAGI	DNA helicase
53 54	A	K1Q4Y8_CRAGI	Histone H100
55	A	K1PGW7_CRAGI	Transmembrane protein 2
56	A	K1RAB9_CRAGI	Epoxide hydrolase 4
57	A	K1Q9P5_CRAGI	Mitochondrial-processing peptidase subunit beta
58 59	A	KIQL6/_CRAGI	bus ribosomai protein L/a
60	A	KIPLYI_CRAGI	DNA polymerase
	A	KIR996_CRAGI	Long-chain-fatty-acidCoA ligase 4
	A ^		Lincharacterized protein
	A 		Signal recognition particle subunit SPD72
	A 	KIRUVV4_CKAGI	Signal recognition particle subunit SKF72
	A A	KINN//_CRAGI	Replication factor C subunit 2
	A A	KICASE CDACE	Cadharin-87A
	л л	KIQ435_CRAGI	ADP-ribosvlation factor-like protein 15
	Δ	KIOVTS CRACI	Phosphate carrier protein mitochondrial
	Δ		Ribosome biogenesis protein RMS1-like protein
	Δ		Protocadherin Fat 4
	Δ	K1ROD7 CRAGI	Eukarvotic translation initiation factor 3 subunit M (Fragment)

2	•		NADU debuder en en futiencie en 14 eletre entre en la contra de contra de la deixid
3	A	KIPWI/6_CRAGI	NADH denydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial
4	A	K1PRL4_CRAGI	60S ribosomal protein L38 (Fragment)
5	А	K1RW85_CRAGI	Adenosylhomocysteinase
6 7	А	K1PAY7_CRAGI	Propionyl-CoA carboxylase alpha chain, mitochondrial
/ 0	Α	K1PZ08_CRAGI	Ras-related protein Rab-7a
0	А	K1QY12 CRAGI	Dynamin-1-like protein
9 10	Δ	K10FN1_CRAGI	60S ribosomal protein L23
10	^		Colgi apparatus protein 1
12	~		Aussin harm shain stricted success
13	A	KIRSS3_CRAGI	Nyosin neavy chain, striated muscle
14	A	K1QGK2_CRAGI	Coatomer subunit beta
15	А	K1PV79_CRAGI	Importin subunit alpha
16	Α	K1QN79_CRAGI	40S ribosomal protein S11
17	А	K1PV49_CRAGI	RuvB-like helicase
18	А	K1QG65 CRAGI	rRNA 2'-O-methyltransferase fibrillarin
19	Δ	K1PK85 CRAGI	Cullin-associated NEDD8-dissociated protein 1
20	^		T complex protein 1 subunit eta
21	A		1-complex protein 1 subdific eta
22	A	KIQGB4_CRAGI	40S ribosomai protein S17
25 24	A	K1QK18_CRAGI	Cytochrome b5
2 4 25	А	K1QVW3_CRAGI	Alkylglycerone-phosphate synthase
26	А	K1QN11_CRAGI	Pre-mRNA-processing-splicing factor 8
27	А	K1RJS5_CRAGI	Uncharacterized protein
28	А	K1Q6W5 CRAGI	FACT complex subunit spt16
29	А	K100B6 CRAGI	40S ribosomal protein S14
30	Δ	K1PKE5 CRAGI	Protein-glutamine gamma-glutamyltransferase 4
31	^		
32	~		Extracellular experience discustors [Cu. 7n]
33	A	KIPTO9_CRAGI	
34 25	A	KIQUK3_CRAGI	Putative ATP-dependent RNA nelicase DDX41
35 36	A	K1R2V1_CRAGI	Importin subunit beta-1
30	А	K1PV86_CRAGI	Phosphoglycerate mutase family member 5
38	А	K1QJ08_CRAGI	60S ribosomal protein L26
39	А	K1QLU6_CRAGI	Poly [ADP-ribose] polymerase
40	А	K1QDN1_CRAGI	Heat shock protein 75 kDa, mitochondrial (Fragment)
41	А	K1QPP2 CRAGI	Elongation factor Tu, mitochondrial
42	А	K1R834 CRAGI	60S ribosomal protein L9
43	Δ	K1R005 CRAGI	Filamin-C (Fragment)
44	^	KINETZ CRACI	Costomer subunit alpha
45 46	~		Ear unstream element hinding protein 2
40 47	A	KIRKCI_CRAGI	
48	A	KIRG19_CRAGI	Protein FAMI98A
49	A	K1Q056_CRAGI	Calpain-A
50	А	K1QKJ0_CRAGI	Aldehyde dehydrogenase family 3 member B1
51	А	K1QDZ5_CRAGI	Cytochrome c1, heme protein, mitochondrial
52	А	K1PPP8_CRAGI	Vigilin
53	А	K1RHB2_CRAGI	Nucleolar RNA helicase 2
54	А	K1PH31 CRAGI	Protein arginine N-methyltransferase 1
55	А	K1Q6V6 CRAGI	Replication factor C subunit 4
50 57	Δ	K1PI50 CRAGI	40S ribosomal protein \$26
58	^		Fukarvatic pentide chain release factor subunit 1
59	^		Coramida kinasa lika protoin
60	A		Ceral needs with a setting of the protein
	A	KISZS8_CRAGI	Signal recognition particle 54 kDa protein
	A	K1R118_CRAGI	Nucleolar protein 56
	А	K1QRZ3_CRAGI	40S ribosomal protein S13
	А	K1PMP3_CRAGI	Protoporphyrinogen oxidase
	А	K1P9N7_CRAGI	14-3-3 protein zeta
	А	K1Q0R4_CRAGI	ATP-binding cassette sub-family F member 2
	А	K1QWC3 CRAGI	40S ribosomal protein S3
	А	K1Q812 CRAGI	NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial
	А	K1P5V7 CRAG	Eukarvotic translation initiation factor 3 subunit C
	Δ		Histone H4
	^		GTP-hinding protein SAR1h
	^		
	А	KIQHXZ_CKAGI	La-related protein 7

2			
3	А	K1S6V7_CRAGI	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
4	А	K1Q3W9_CRAGI	FAS-associated factor 2-B
5	А	K1QG72_CRAGI	Hemagglutinin/amebocyte aggregation factor
6 7	А	K1QHQ6_CRAGI	Acyl-CoA dehydrogenase family member 9, mitochondrial
, 8	А	K1QFR2_CRAGI	Calnexin
9	А	K1S1X3_CRAGI	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5
10	А	K1PWZ3_CRAGI	Guanine nucleotide-binding protein subunit beta
11	А	K1QW41_CRAGI	Leucine-zipper-like transcriptional regulator 1
12	А	K1RK68_CRAGI	Uncharacterized protein
13 14	А	K1RA95_CRAGI	Filamin-A
15	А	K1QMV5_CRAGI	Annexin
16	А	K1QW72_CRAGI	Catalase
17	А	K1QXQ8_CRAGI	DNA helicase
18	А	K1P7L5_CRAGI	Transmembrane 9 superfamily member
19	А	K1P8G1 CRAGI	Heterogeneous nuclear ribonucleoprotein H
20 21	А	K1PZ23 CRAGI	DnaJ-like protein subfamily C member 3
22	А	K1RIZ3 CRAGI	Bone morphogenetic protein 7
23	А	K1RNN9 CRAGI	Cytoskeleton-associated protein 5
24	А	K1R6L5 CRAGI	, NADH-cytochrome b5 reductase
25	А	K1R5F2 CRAGI	, 14-3-3 protein epsilon
26 27	Α	K1P9D0_CRAGI	Stress-70 protein, mitochondrial
27	A	K1RGI7 CRAGI	Neogenin
29	A	K1P7P6_CRAGI	Coatomer subunit gamma
30	Δ	K1RI97 CRAGI	Multifunctional protein ADE2
31	Δ	K1R6F5 CRAGI	Putative ATP-dependent RNA belicase DDX23
32	Δ	K1PS84 CRAGI	Alpha-crystallin B chain
33 34	Δ		Brix domain-containing protein 2
35	^		Uncharacterized protein
36	~		
37	~		Uncharacterized protein
38	A 		605 ribosomal protoin 120
39	A		
40 41	A	KIS3GZ_CRAGI	HIVIGBI
42	A	KIPAD4_CRAGI	
43	A	KIRJJ/_CRAGI	NADU debudregenese [ubiquinene] iron sulfur protein 2 mitechendrial
44	A		NADH denydrogenase [ubiquinone] iron-sunur protein 3, mitochondrial
45	A	KIRJW8_CRAGI	Protein DEK
40 47	A	KIRN97_CRAGI	
48	A	KIQW36_CRAGI	60S ribosomai protein L6
49	A	KIRA63_CRAGI	ransmembrane protein 2
50	A	K1R9T2_CRAGI	Eukaryotic translation initiation factor 3 subunit B
51	A	K1PM66_CRAGI	60S ribosomal protein L12
52 53	A	K1Q273_CRAGI	60S ribosomal protein L14
55 54	A	K1PXG6_CRAGI	Serine/threonine-protein phosphatase
55	A	K1QPC6_CRAGI	Nucleolar complex protein 2-like protein
56	A	K1RCW3_CRAGI	Elongation factor 1-beta
57	A	K1Q324_CRAGI	Heterogeneous nuclear ribonucleoprotein K
58	A	K1PLA7_CRAGI	Eukaryotic initiation factor 4A-II (Fragment)
59 60	A	K1RBI9_CRAGI	Small nuclear ribonucleoprotein Sm D2
00	A	K1RCL2_CRAGI	Mitochondrial import inner membrane translocase subunit Tim13-B
	A	K1QKV1_CRAGI	Cytochrome b-c1 complex subunit 6
	A	K1QVU0_CRAGI	Synaptojanin-2-binding protein
	A	K1QRG9_CRAGI	Uncharacterized protein
	A	K1PZ70_CRAGI	NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial
	A	K1Q350_CRAGI	Glyceraldehyde-3-phosphate dehydrogenase
	А	K1PXU6_CRAGI	60S ribosomal protein L24
	А	K1QZQ8_CRAGI	Low-density lipoprotein receptor-related protein 8
	А	K1RUM2_CRAGI	Uncharacterized protein
	А	K1REY2_CRAGI	Dysferlin
	А	K1Q6X5_CRAGI	Protein disulfide-isomerase
	А	K1QWK6_CRAGI	Metalloendopeptidase

1			
2	А	K1QDH9 CRAGI	Mvosin-11
4	А	K1QQR1 CRAGI	Major vault protein
5	Α	K1RAH2 CRAGI	Superoxide dismutase [Cu-Zn]
6	A	K1PH13 CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3B
7	A	K1PY73 CRAGI	Basic leucine zipper and W2 domain-containing protein 1
8	A	K107T5 CRAGI	Protein disulfide-isomerase
9 10	A	K1PFS5_CRAGI	Elongation factor 1-gamma
11	A	K1PW39 CRAGI	Glycerol-3-phosphate dehydrogenase, mitochondrial
12	Α	K1R1C5_CRAGI	Signal recognition particle receptor subunit beta
13	A	K101F4 CRAGI	60S ribosomal protein L3 (Fragment)
14	Α	K10NS4_CRAGI	Dnal-like protein subfamily C member 9
16	A	K10Y85 CRAGI	Transport protein Sec31A
17	A	K1OWP1_CRAGI	Nucleoporin seh1
18	A	K1RAU3 CRAGI	DNA ligase
19	A	K1R5W3 CRAGI	Uncharacterized protein
20	A	K1OF31 CRAGI	Serine/threonine-protein kinase PLK
21	A	K10667 CRAG	tRNA-splicing ligase RtcB homolog
23	A	K1ORM1 CRAGI	Nuclear pore protein
24	A	K1R790 CRAGI	Retinol dehydrogenase 13
25	A	K1R0M2 CRAGI	Uncharacterized protein
26 27	A	K1ONT7 CRAGI	Aldehvde dehvdrogenase, mitochondrial
27	A	K10IV3 CRAGI	Uncharacterized protein
29	A	K1OR48 CRAGI	Calcium-binding mitochondrial carrier protein SCaMC-2
30	Α	K1R4F7_CRAGI	Ras-related protein Rab-6B
31	A	K1PIC5_CRAGI	Transmembrane protein 85
32	A	K1RKZ5 CRAGI	DNA damage-binding protein 1
34	A	K1QW21 CRAGI	39S ribosomal protein L40. mitochondrial
35	А	K1PB87 CRAGI	Uncharacterized protein
36	A	K1R150 CRAGI	Ras-related protein Rab-1A
37	Α	K1PVZ3 CRAGI	Cold shock domain-containing protein E1
38 30	A	K1QSD9 CRAGI	Uncharacterized protein
40	А	K1PPW8 CRAGI	Coatomer subunit beta
41	А	K1QKG9 CRAGI	Cysteine desulfurase, mitochondrial
42	А	K1RK83 CRAGI	Tyrosine-protein kinase BAZ1B
43	А	K1QE94 CRAGI	Alpha-galactosidase
44	А		Synaptobrevin (Fragment)
46	А	K1PJB0_CRAGI	Heat shock protein 70 B2
47	А	K1R6S5_CRAGI	40S ribosomal protein S9
48	А	K1PAM6_CRAGI	Uncharacterized protein
49 50	А	K1QY71_CRAGI	Histone H2B
50	А	K1P6Y1_CRAGI	Uncharacterized protein
52	Α	K1PNY5 CRAGI	Splicing factor, proline-and glutamine-rich
53	А	K1PDL3_CRAGI	Ribosomal protein L19
54	А	K1RDG4_CRAGI	DNA helicase
55 56	А	K1RV41_CRAGI	Guanine nucleotide-binding protein subunit beta-2-like 1
57	А	K1QMH5_CRAGI	Small nuclear ribonucleoprotein Sm D1
58	А	K1R4Z3_CRAGI	Malate dehydrogenase, mitochondrial
59	А	K1R3T3_CRAGI	Transcription factor BTF3
60	Α	K1QAB1_CRAGI	AP-2 complex subunit alpha
	Α	K1QSU3_CRAGI	Protein I(2)37Cc
	А	K1PEY4_CRAGI	26S proteasome non-ATPase regulatory subunit 2
	А	K1PU46_CRAGI	Lethal(2) giant larvae-like protein 1
	А	K1Q0N6_CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit STT3A
	А	K1QGP1_CRAGI	Replication factor C subunit 2
	А	K1QDV6_CRAGI	Protein argonaute-2
	А	K1S6H7_CRAGI	Vacuolar protein sorting-associated protein 13C
	А	K1PF10_CRAGI	PAN2-PAN3 deadenylation complex catalytic subunit PAN2
	А	K1Q1L4_CRAGI	Uncharacterized protein
	А	K1PWC3_CRAGI	Tetratricopeptide repeat protein 35
	А	K1QKL8_CRAGI	V-type proton ATPase subunit a

The FEBS Journal

1			
2	Δ	K1OT61 CRAGI	NADH dehydrogenase [ubiquinone] flavoprotein 2 mitochondrial (Fragment)
3 4	A	K107G8 CRAGI	Fatty acid synthase
5	A	K10X44 CRAGI	Ras-related protein Rab-11B
6	A	K1P7K8 CRAGI	Vesicle-fusing ATPase 1
7	А	K1QHK9 CRAGI	Dynein heavy chain, cytoplasmic
8 9	А	K1Q7Q2 CRAGI	CCAAT/enhancer-binding protein zeta
10	А		Transportin-1
11	А	K1Q253_CRAGI	Neutral and basic amino acid transport protein rBAT
12	А	K1QGA7_CRAGI	Kynurenine formamidase
13	А	K1QAL3_CRAGI	RNA-binding protein 28
14	А	K1PXS8_CRAGI	Calreticulin
16	А	K1QTP6_CRAGI	Cation-transporting ATPase
17	А	K1PR25_CRAGI	Regulator of differentiation 1
18	А	K1PA61_CRAGI	Actin-like protein 6A
20	А	K1QAA8_CRAGI	CAAX prenyl protease 1-like protein
21	А	K1PY30_CRAGI	Septin-2
22	А	K1R100_CRAGI	Metaxin-2
23	А	K1PTL4_CRAGI	Odr-4-like protein
24 25	А	K1QA50_CRAGI	V-type proton ATPase subunit H
25 26	А	K1PVH5_CRAGI	Centromere/kinetochore protein zw10-like protein
27	А	K1PUQ5_CRAGI	Histone H2B
28	А	K1RFB1_CRAGI	Stomatin-like protein 2 (Fragment)
29	А	K1QAA2_CRAGI	Uncharacterized protein
30 31	А	K1PNC7_CRAGI	AFG3-like protein 2
32	А	K1PJS7_CRAGI	Poly [ADP-ribose] polymerase
33	А	K1PLF9_CRAGI	Arginine kinase
34	А	K1RC37_CRAGI	Uncharacterized protein
35	А	K1PKD4_CRAGI	40S ribosomal protein S30
30 37	А	K1RDS1_CRAGI	Splicing factor, arginine/serine-rich 2
38	А	K1Q5Z1_CRAGI	Uncharacterized protein
39	А	K1PF96_CRAGI	Spliceosome RNA helicase BAT1
40	А	K1QTW6_CRAGI	Eukaryotic translation initiation factor 3 subunit F
41 42	А	K1RAU8_CRAGI	Eukaryotic translation initiation factor 3 subunit E
43	А	K1RAI3_CRAGI	Annexin
44	A	K1PUX5_CRAGI	Casein kinase II subunit alpha
45	A	K1PDF8_CRAGI	Splicing factor, arginine/serine-rich 6
46 47	A	K1QXH3_CRAGI	Iranslational activator GCN1
47	A	K1PQE3_CRAGI	RNA-binding protein Raly
49	A	K1QWE5_CRAGI	Ras-related protein Rab-18-B
50	A	K1R5G4_CRAGI	60S ribosomal protein L31
51	A	K1RCT2_CRAGI	I ranslocon-associated protein subunit delta
52 53	A	KIRFU6_CRAGI	Proteasome activator complex subunit 3
55 54	A	KIRUWU_CRAGI	Ferritin
55	A	KIQ526_CRAGI	Eukaryotic translation initiation factor 2 subunit 2
56	A	KIRKES_CRAGI	IQ and AAA domain-containing protein 1
57 50	A	KIPOGO_CRAGI	Programmed cell death 6 interacting protein
50 59	A	KIPSQ5_CRAGI	Programmed cell death o-interacting protein
60	A	KIQOIS_CRAGI	ALK tyrosing kingsg recentor
	A A		Metabotronic dutamate receptor 2
	Δ	K1R3G0 CRAGI	Transformer-2-like protein beta
	Δ		40\$ ribosomal protein \$5
	л Л	KIQCDO_CRAGI	Cutochrome c oxidase subunit 6B
	Δ		Heterogeneous nuclear ribonucleoprotein l
	Δ	K1PSH2 CRAGI	28S ribosomal protein S12 mitochondrial
	Δ	K1R9P5 CRAGI	Mitochondrial import recentor subunit TOM70
	Δ	K1PGK7 CRAGI	Uncharacterized protein
	A	K10PF0_CRAG	Uncharacterized protein
	A	K1QT00 CRAGI	ATP synthase subunit alpha. mitochondrial
	A	K1RG28 CRAGI	Kinase C and casein kinase substrate in neurons protein 2

)			
3	А	K1PMY9_CRAGI	Calmodulin
4	А	K1R1Q8_CRAGI	Ras-related protein Rab-5C
5	А	K1RPP1_CRAGI	Synaptophysin
6	А	K1RFU8_CRAGI	High mobility group protein DSP1
7	А	K1PJ85_CRAGI	26S protease regulatory subunit 6A
0 9	А	K1R2G9_CRAGI	SEC13-like protein
10	А	K1QJW6 CRAGI	Translocon-associated protein subunit gamma
11	А	K1R5B9 CRAGI	DNA-directed RNA polymerase, mitochondrial
12	А	K1R8C6 CRAGI	40S ribosomal protein S12
13	A	K1OSR2 CRAGI	Apoptosis inhibitor 5
14	A	K105E0 CRAGI	Dual specificity protein kinase CLK2
15	A	K1OBM3 CRAGI	Bas-related protein Rab-2
17	Δ		KBR1 small subunit processome component-like protein
18	Δ		Non-specific serine/threenine protein kinase
19	Λ Λ		60S ribosomal protein 118a
20	^	KIRDNIZ_CRAGI	
21	^	KINDIZ_CRAGI	
22	A ^		Eukanyotic initiation factor 44 III
24	A ^	KIPBLZ_CRAGI	ATE dependent RNA holicase DDV1
25	A ^	KIQAI9_CRAGI	Splicing factor 2B subunit E
26	A		Splicing factor SB subulit S
27	A	KIQ412_CRAGI	
28	A	KIR8R6_CRAGI	Fructose-bisphosphate aldolase
30	A	KIRWP3_CRAGI	Peptidyl-tRNA hydrolase 2, mitochondrial
31	A	K1PGN0_CRAGI	Fatty-acid amide hydrolase 2
32	A	K1PUV4_CRAGI	40S ribosomal protein S24
33	A	K1PJY2_CRAGI	Inositol polyphosphate 1-phosphatase
34 25	A	K1QWZ8_CRAGI	Catenin beta
35 36	A	K1R1F0_CRAGI	ATP-dependent DNA helicase 2 subunit 1
30 37	А	K1PN47_CRAGI	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial
38	A	K1QYQ9_CRAGI	Uncharacterized protein
39	А	K1PNZ8_CRAGI	Ribosomal protein L37
40	А	K1PVD7_CRAGI	Cytochrome c oxidase subunit 5A, mitochondrial
41	А	K1QEJ0_CRAGI	Ras GTPase-activating protein-binding protein 2
42 43	А	K1PYL5_CRAGI	Uncharacterized protein
44	А	K1QQQ5_CRAGI	Replication factor C subunit 5
45	А	K1RFA3_CRAGI	Lamin Dm0
46	А	K1RRH1_CRAGI	Chromodomain-helicase-DNA-binding protein Mi-2-like protein
47	А	K1Q2Y1_CRAGI	40S ribosomal protein S15
48	А	K1RIZ9_CRAGI	Band 4.1-like protein 5
49 50	А	K1QVI0_CRAGI	Isocitrate dehydrogenase [NAD] subunit, mitochondrial
51	А	K1PS77_CRAGI	Prostaglandin G/H synthase 1
52	А	K1QZK9_CRAGI	Uncharacterized protein
53	А	K1R9V5_CRAGI	Tetraspanin
54	А	K1PPV1_CRAGI	Atlastin-2
55 56	А	K1R0Z4_CRAGI	Uncharacterized protein
50 57	А	K1R1R9_CRAGI	Pre-mRNA-processing factor 6
58	А	K1QKU6_CRAGI	mRNA export factor
59	А	K1PCR5 CRAGI	KH domain-containing, RNA-binding, signal transduction-associated protein 2
60	А	K1R7L4 CRAGI	Neural cell adhesion molecule 1
	А	K1QAL1 CRAGI	Transmembrane emp24 domain-containing protein 7
	А	K1QB65 CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1
	А	K1QVP6 CRAGI	Developmentally-regulated GTP-binding protein 1
	А	K1QNT4 CRAGI	Anoctamin
	A	K10MT1 CRAGI	DnaJ-like protein subfamily B member 4
	A	K1RCF4 CRAGI	Translocon-associated protein subunit alpha
	A		Microtubule-associated protein RP/FB family member 3
	Δ	K1OPY8 CRAGI	Extracellular superoxide dismutase [Cu-7n]
	Δ		GTP-binding nuclear protein
	Δ		Pre-mRNA-splicing factor RRM22
	Δ		Myosin-2 essential light chain
	1 1		

1			
2	А	K1QED7 CRAGI	Replication protein A subunit
3 4	A	K1QPS1 CRAGI	Poly [ADP-ribose] polymerase
5	A	K1PD36 CRAGI	Ubiquitin
6	A	K1R4B8 CRAGI	Plexin domain-containing protein 2
7	A	K1RHP3_CRAGI	Proliferation-associated protein 2G4
8	A	K1OF43 CRAGI	Uncharacterized protein
9 10	A	K1R3I6_CRAGI	Nucleolar complex protein 2-like protein (Fragment)
11	A	K10MJ8 CRAGI	Transcription initiation factor IIA subunit 1
12	A	K10XF5 CRAGI	Calcyphosin-like protein
13	A	K1R512 CRAGI	Uncharacterized protein
14	A	K10M06 CRAGI	Prohibitin
15	A	K1R275 CRAGI	Putative ATP-dependent RNA helicase DDX52
17	A	K1OSB2_CRAGI	26S protease regulatory subunit 6B
18	A	K10BW6 CRAGI	Tudor domain-containing protein 1
19	A	K1P7T2 CRAGI	Cytochrome c oxidase subunit 5B. mitochondrial
20	Δ	K10I77 CRAGI	Programmed cell death protein 6
21 22	Δ		
23	A	K1R401 CRAGI	Spectrin alpha chain
24	A	K1P541 CRAGI	Alpha-soluble NSE attachment protein
25	A	K1PND7_CRAGI	Fatty acid synthese
26 27	A	K1R8L1 CRAGI	Exportin-2
27 28	Δ	K10FF9 CRAGI	Protein-glutamine gamma-glutamyltransferase K
29	Δ	K102W7 CRAGI	Uncharacterized protein
30	Δ	K1Q2W7_CRAG	I AG1 longevity assurance-like protein 6
31	Δ		Uncharacterized protein
32	Δ	K10105_CRAGI	Ferrochelatase
33 34	Δ	K1PD30 CRAGI	Putative histone-hinding protein Caf1
35	Δ		Transport protein Sec61 subunit alpha isoform 2 (Fragment)
36	Δ	K1OTW3 CRAGI	Murinoglobulin-2
37	Δ		Malertin
38	Δ	K103V9 CRAGI	Mitochondrial carnitine/acylcarnitine carrier protein
39 40	Δ		Ras-like GTP-binding protein Bho1
41	Δ		Tyrosine-protein phosphatase non-recentor type 6
42	Δ	K1RPE7_CRAGI	60S ribosomal protein 15
43	Δ	K10764 CRAGI	Nuclear nore complex protein Nun98-Nun96
44 45	Δ	K1OSV1_CRAGI	Uncharacterized protein
45 46	Δ	K10214 CRAGI	Transmembrane emp24 domain-containing protein 9
47	Δ	K1RMM6 CRAGI	Centromere protein I
48	Δ	K10KK2 CRAGI	NADH dehvdrogenase [ubiquinone] 1 beta subcomplex subunit 11 mitochondrial
49	Δ	K1PNV6 CRAGI	Dolichyl-dinhosphooligosaccharideprotein glycosyltransferase subunit DAD1
50 51	Δ	K1PNO1_CRAGI	Ankyrin reneat domain-containing protein 5
52	A	K1OKO8 CRAGI	THO complex subunit 4-A
53	A	K10AG9 CRAGI	Ferritin
54	A	K10HW8 CRAGI	Ferritin
55	A	K1RFV5 CRAGI	ATP-dependent RNA helicase DDX1
50 57	А	K1RNH1 CRAGI	60S ribosomal protein L18 (Fragment)
58	A	K1PPO1 CRAGI	14-3-3 protein gamma
59	А	K1QQV0 CRAGI	Histone H1.2
60	A	K1Q1R1 CRAGI	Exostosin-3
	А	K10YF5 CRAGI	Apoptosis-inducing factor 1. mitochondrial
	А	K1RZE2 CRAGI	Isocitrate dehydrogenase [NADP]
	А	K1QL00 CRAGI	Microsomal glutathione S-transferase 1
	A	K1QTV1 CRAGI	Uncharacterized protein
	А	K1RZM3 CRAGI	Cartilage acidic protein 1
	А	K1Q0I8 CRAGI	Putative splicing factor, arginine/serine-rich 7
	А	K1RP91 CRAGI	Putative RNA exonuclease NEF-sp
	А	K1PG60 CRAGI	60S ribosomal protein L17
	А	K1QTP4 CRAGI	5'-3' exoribonuclease
	А	K1RG79 CRAGI	Neuronal acetylcholine receptor subunit alpha-6
	А	K1Q947 CRAGI	Dynein light chain
		_	· · · · · ·

А	K1RJ91_CRAGI	Ubiquitin-associated protein 2
A	K1Q2Z5_CRAGI	Putative ATP-dependent RNA helicase DDX46
А	K1PYA0_CRAGI	Cytoplasmic dynein 2 heavy chain 1
А	K1QAV0_CRAGI	Guanine nucleotide-binding protein G(Q) subunit alpha
А	K1RKR8_CRAGI	Pumilio-like protein 2
А	K1QZI3_CRAGI	Myosin-le
А	K1R5R4_CRAGI	Dynein heavy chain 10, axonemal
А	K1QKG8_CRAGI	Upstream activation factor subunit spp27
А	K1P8I1 CRAGI	Pleckstrin-like protein domain-containing family F member 2 (Fragment)
A	K1Q1N1 CRAGI	Alpha-mannosidase
A	K1PXB6 CRAGI	Cadherin-23
A	K1QXA9 CRAGI	Sortilin-related receptor
A	K1PVG0 CRAGI	Long-chain fatty acid transport protein 4
A	K1PBG6 CRAGI	Uncharacterized protein
A	K1PP50 CRAGI	Golgi integral membrane protein 4
A	K1QCQ5 CRAGI	SuccinateCoA ligase [ADP-forming] subunit beta, mitochondrial
А	K1PK87 CRAGI	Putative E3 ubiguitin-protein ligase TRIP12
А	K1Q373 CRAGI	Splicing factor, arginine/serine-rich 7
А	K10151 CRAGI	60S ribosomal protein L32
А	K10Z95 CRAGI	Nuclear pore complex protein
A	K1PPH0_CRAGI	Gamma-tubulin complex component
A	K1R0R7 CRAGI	Putative ATP-dependent RNA helicase DHX36
A	K1R247 CRAGI	Condensin complex subunit 1
A	K10IB2_CRAGI	Mitogen-activated protein kinase
Α		Acetolactate synthase-like protein
A	K1RBC9 CRAGI	Transketolase-like protein 2
A	K1RCW5 CRAGI	Eukarvotic translation initiation factor 4 gamma 3
A	K1POZ3 CRAGI	Armadillo repeat-containing protein 4
A	K1PYJ8 CRAGI	Uncharacterized protein
А	K1QQP1 CRAGI	Programmed cell death protein 4
A	K1PQY0 CRAGI	Protein guiver
A	K1PLC6 CRAGI	Nucleolar protein 14
A	K1QV25 CRAGI	Transcription elongation factor B polypeptide 2
A	K1QZ50 CRAGI	RNA-dependent RNA polymerase
А		DNA replication licensing factor mcm4-B
А	K1PDE4_CRAGI	Protein arginine N-methyltransferase
А	K1QT36_CRAGI	Golgi resident protein GCP60
А	K1PZ89_CRAGI	Mannosyl-oligosaccharide glucosidase
А	K1Q7A7_CRAGI	Putative tyrosinase-like protein tyr-3
A	K1R481_CRAGI	Epimerase family protein SDR39U1
A	K1RJ35_CRAGI	All-trans-retinol 13,14-reductase
A	Q70MT4_CRAGI	40S ribosomal protein S10
A	K1REV3_CRAGI	DNA polymerase delta subunit 2
А	K1P9F1_CRAGI	Insulin-like growth factor-binding protein complex acid labile chain
A	K1PJ65_CRAGI	Dual specificity mitogen-activated protein kinase kinase 7
A	K1Q2T0_CRAGI	ADP-dependent glucokinase
А	K1PZI3_CRAGI	SWI/SNF complex subunit SMARCC2
А	K1Q8C5_CRAGI	Putative ATP-dependent RNA helicase DDX47
А	K1QZ58_CRAGI	Splicing factor U2AF 26 kDa subunit
А	K1RR98_CRAGI	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2
A	K1QMT2_CRAGI	Signal peptidase complex catalytic subunit SEC11
А	K1PWM3_CRAGI	MICOS complex subunit MIC13
A	K1QMM4_CRAGI	Leucine zipper transcription factor-like protein 1
А	K1QMV7_CRAGI	V-type proton ATPase subunit D
A	K1QKI1_CRAGI	Tudor domain-containing protein 1
А	K1P0H0_CRAGI	Aspartyl/asparaginyl beta-hydroxylase
A	K1PVQ8_CRAGI	Eukaryotic translation initiation factor 3 subunit K
А	K1Q5P0_CRAGI	60S ribosomal protein L17
A	K1QJ36_CRAGI	Muscle, skeletal receptor tyrosine protein kinase
А	K1PHS4_CRAGI	Ribosome-binding protein 1

1			
2	Δ	K100B4 CRAGI	Long-chain-fatty-acidCoA ligase 1
3 4	A	K10YM4 CRAGI	D-beta-hydroxybutyrate dehydrogenase, mitochondrial
5	A	K1P2G0_CRAGI	Strawberry notch-like protein 1
6	A	K1OCTO CRAGI	Sideroflexin
7	A	K10FG2_CRAG	Telomere-associated protein RIF1
8	A	K10517 CRAGI	Uncharacterized protein
9 10	A	K10KA9 CRAGI	Piwi-like protein 2
11	A	K1P706 CRAGI	40S ribosomal protein S19
12	A	K10YV5 CRAGI	Cytoplasmic polyadenylation element-binding protein 1-B
13	A	K10G84 CRAGI	THO complex subunit 2
14 15	A	K1R7G0 CRAGI	Chromobox-like protein 5
15	A	K10HX4 CRAGI	Uncharacterized protein
17	A	K1OBY6 CRAGI	Transmembrane protein Tmp21
18	A	K1PKK7 CRAGI	AP-2 complex subunit mu-1
19	Δ	K1P9V5_CRAGI	General transcription factor IIE subunit 1
20	Δ	K109V2 CRAGI	Antigen KI-67
21 22	Δ	K1PNU2_CRAG	Histone-arginine methyltransferase CARM1
23	Δ	K10109 CRAGI	Neurovin-A
24	Δ		Signal pentidase complex subunit 3
25	~		Signal recognition particle 9 kDa protein
26	A 	KIQCNO_CRACI	Ubiquitin-conjugating enzyme E2 N
2/	A 		60 kDa hoat chock protoin mitochondrial
20 29	A 		E2 SLIMO-protein ligge PanPD2
30	A 		Noutral alpha ducocidace AP
31	A 	KINDGEL CRACI	Splicing factor 2P subupit 2
32	A 	KIQGFI_CRAGI	Machanasansary protain 2 (Fragmant)
33	A 	KIQJZJ_CRAGI	E-box/WD repeat-containing protein 14
35	A 		V type proton ATPase subunit P
36	A 		MAGUK nEE subfamily member 2
37	A 	KIR4JU_CRAGI	Afadin and alpha actinin hinding protoin
38	A 		Tall like recentor 2
39	A 		Structural maintenance of chromosomes protein
40 41	A	KIPZCU_CRAGI	Uncharacterized protein
42	A 	KIPTO9_CRAGI	Mathulated DNA, protein systeine mathultransferase
43	A 	KINEUT_CRAGI	Cyclic AMP dependent transcription factor ATE 2
44	A		Uncharacterized protein
45 46	A	KIQDIO_CRAGI	Uncharacterized protein
40 47	A	KIRFFI_CRAGI	Uncharacterized protein
48	A	KIRS4U_CRAGI	Durcharacterized protein
49	A	KIROVI_CRAGI	Puratrophin-1
50			
51 52			
52 53			
54			
55			
56			
57			
58 59			
60			

The FEBS Journal

2 Data S2: Identified proteins by RNA pull down coupled with mass spectrometry with m6A or A-oligo, in nuclear or cytosolic protein extracts
4 Proteins identified in cytosolic extracts

5	Oligo	Accession	Description
6	m6A	K10NA2 CRAGI	Vitellogenin-6
7	m6A	K1OVJ8 CRAGI	Piwi-like protein 1
8	m6A	K1QQ94 CRAGI	Uncharacterized protein
9 10	m6A	K1QHK9 CRAGI	Dynein heavy chain, cytoplasmic
11	m6A	K1QQ68 CRAGI	Tubulin alpha chain
12	m6A	K1RLF8 CRAGI	Splicing factor 3B subunit 3
13	m6A	K1R473 CRAGI	Tubulin alpha chain
14	m6A	K10II6 CRAGI	Tubulin alpha chain
16	m6A	K1PNR3 CRAGI	Clathrin heavy chain
17	m6A	K1R7V7 CRAGI	, Tubulin beta chain
18	m6A	K1PNI6 CRAGI	Heterogeneous nuclear ribonucleoprotein A/B
19	m6A	K1QMX5 CRAGI	Uncharacterized protein
20 21	m6A	K1QHI5 CRAGI	Pyruvate carboxylase, mitochondrial
22	m6A	K1PE00 CRAGI	Tubulin alpha chain
23	m6A	K1R294 CRAGI	T-complex protein 1 subunit beta
24	m6A	K1S4Q2 CRAGI	T-complex protein 1 subunit delta (Fragment)
25	m6A	K1PQP2 CRAGI	Nucleolin
20 27	m6A	K1R466 CRAGI	T-complex protein 1 subunit gamma
28	m6A	K1PN21 CRAGI	Tubulin beta chain
29	m6A	K1R164 CRAGI	Galectin-4
30	m6A	K1S2N7 CRAGI	Innexin
31 22	m6A	K1R6Z7 CRAGI	ATP synthase subunit alpha
33	m6A		Proteasome activator complex subunit 4
34	m6A	K1PVA1 CRAGI	Transitional endoplasmic reticulum ATPase
35	m6A		Uncharacterized protein
36	m6A	K1R0S3_CRAGI	T-complex protein 1 subunit theta
37 38	m6A	K1QMA4_CRAGI	RRP5-like protein
39	m6A	K1R3U2_CRAGI	Uncharacterized protein
40	m6A	K1Q9W5_CRAGI	T-complex protein 1 subunit eta
41	m6A	K1QBK6_CRAGI	Splicing factor 3B subunit 1
42	m6A	K1R545_CRAGI	Pre-mRNA-processing-splicing factor 8 (Fragment)
45 44	m6A	K1RAJ1_CRAGI	T-complex protein 1 subunit alpha
45	m6A	K1RWS2_CRAGI	Transcriptional activator protein Pur-alpha
46	m6A	K1Q350_CRAGI	Glyceraldehyde-3-phosphate dehydrogenase
47	m6A	K1RGT5_CRAGI	Metalloendopeptidase
48 40	m6A	K1PJ85_CRAGI	26S protease regulatory subunit 6A
49 50	m6A	K1S6V7_CRAGI	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
51	m6A	K1S1S1_CRAGI	Insulin-like growth factor 2 mRNA-binding protein 1
52	m6A	K1RZE2_CRAGI	Isocitrate dehydrogenase [NADP]
53	m6A	K1PNQ5_CRAGI	Heat shock protein HSP 90-alpha 1
54 55	m6A	K1R866_CRAGI	Puromycin-sensitive aminopeptidase
56	m6A	K1P9D0_CRAGI	Stress-70 protein, mitochondrial
57	m6A	K1QXX7_CRAGI	Myosin heavy chain, non-muscle (Fragment)
58	m6A	K1RG73_CRAGI	Acetyl-CoA carboxylase
59 60	m6A	K1R420_CRAGI	Non-specific serine/threonine protein kinase
00	m6A	K1PXN5_CRAGI	T-complex protein 1 subunit zeta
	m6A	K1QGS8_CRAGI	Elongation factor 1-alpha
	m6A	K1RLC5_CRAGI	T-complex protein 1 subunit epsilon
	m6A	K1R6Q7_CRAGI	DNA topoisomerase I
	m6A	K1RW85_CRAGI	Adenosylhomocysteinase
	m6A	K1QSX8_CRAGI	ATPase family AAA domain-containing protein 2B
	m6A	K1R4Z3_CRAGI	Malate dehydrogenase, mitochondrial
	m6A	K1PEY4_CRAGI	26S proteasome non-ATPase regulatory subunit 2
	m6A	K1RI55_CRAGI	Insulin-like growth factor 2 mRNA-binding protein 3
	m6A	K1PK85_CRAGI	Cullin-associated NEDD8-dissociated protein 1
	m6A	K1R9B6_CRAGI	H/ACA ribonucleoprotein complex subunit 4
	m6A	K1R252_CRAGI	Putative methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial

The FEBS Journal

1			
2	m6A	K1RK12 CRAGI	40S ribosomal protein S23
3 4	m6A	K10VN9 CRAGI	T-complex protein 1 subunit eta
5	m6A	K1PLF9 CRAGI	Arginine kinase
6	m6A	O8TA69 CRAGI	Actin 2
7	m6A	K10G58 CRAGI	Actin
8 0	m6A	K1QSB2 CRAGI	26S protease regulatory subunit 6B
10	m6A	K1R401 CRAGI	Spectrin alpha chain
11	m6A		26S protease regulatory subunit 7
12	m6A	K1Q4I9_CRAGI	D-3-phosphoglycerate dehydrogenase (Fragment)
13 14	m6A	K1RJH5_CRAGI	Polyadenylate-binding protein
15	m6A	K1RWD4_CRAGI	Actin, cytoplasmic
16	m6A	K1QI14_CRAGI	40S ribosomal protein S3a
17	m6A	K1RWW5_CRAGI	ATP synthase subunit beta
18	m6A	K1QET2_CRAGI	Coatomer subunit alpha
20	m6A	K1QVS3_CRAGI	Thimet oligopeptidase
21	m6A	K1QSQ9_CRAGI	Putative ATP-dependent RNA helicase an3
22	m6A	K1Q923_CRAGI	Putative ATP-dependent RNA helicase DDX4
23	m6A	K1QXR4_CRAGI	Pancreatic lipase-related protein 2
24 25	m6A	K1R512_CRAGI	Uncharacterized protein
26	m6A	K1R8L1_CRAGI	Exportin-2
27	m6A	K1PAG1_CRAGI	Dynein beta chain, ciliary
28	m6A	K1Q988_CRAGI	Band 4.1-like protein 3
29 30	m6A	K1PJ06_CRAGI	Importin subunit alpha-1
31	m6A	K1QWX2_CRAGI	60S acidic ribosomal protein P0
32	m6A	K1PH76_CRAGI	Y-box factor-like protein (Fragment)
33	m6A	K1PW06_CRAGI	Filamin-C
34 35	m6A	K1RNB5_CRAGI	Propionyi-CoA carboxylase beta chain, mitochondrial
36	m6A	KIQWI8_CRAGI	Difunctional aminoacul tRNA sunthataca
37	mbA m6A	KIQNW9_CRAGI	Bhunctional ammoacyl-tRNA synthetase
38	mea	KIQCCI_CRAGI	Methylcrotopoyl-CoA carboxylase beta chain mitochondrial
39 40	m6A	KIQDINU_CRAGI	Outosolic carboxypentidase 1
41	m6A	K1Q337_CRAGI	Heterogeneous nuclear ribonucleoprotein Ll-like protein 1
42	m6A	K10976 CRAGI	26S proteasome non-ATPase regulatory subunit 7
43	m6A	K10920_CRAGI	Fibrinolytic enzyme, isozyme C
44 45	m6A	K1R1M7 CRAGI	Ubiguitin-like modifier-activating enzyme 1
46	m6A	K1Q7G8 CRAGI	Fatty acid synthase
47	m6A	K1QEA6 CRAGI	Phosphoenolpyruvate carboxykinase [GTP]
48	m6A		Importin-5
49 50	m6A		Band 4.1-like protein 3
51	m6A	K1QR72_CRAGI	Dipeptidyl peptidase 3
52	m6A	K1R5R4_CRAGI	Dynein heavy chain 10, axonemal
53	m6A	K1QLK6_CRAGI	E3 ubiquitin-protein ligase HUWE1
54	m6A	K1R5U4_CRAGI	Acetyl-CoA carboxylase 1
56	m6A	K1QXS6_CRAGI	Heterogeneous nuclear ribonucleoprotein A2-like protein 1
57	m6A	K1R953_CRAGI	Acetyl-CoA carboxylase
58	m6A	K1PCS4_CRAGI	Eukaryotic translation initiation factor 2 subunit 3, Y-linked
59	m6A	K1QIR8_CRAGI	78 kDa glucose-regulated protein
60	m6A	K1RSA6_CRAGI	Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial
	m6A	K1R2V1_CRAGI	Importin subunit beta-1
	m6A	K1QZW0_CRAGI	Polyadenylate-binding protein 2
	m6A	K1R4R9_CRAGI	Mitotic apparatus protein p62
	m6A	K1QWK2_CRAGI	MAM domain-containing glycosylphosphatidylinositol anchor protein 2
	m6A	K1R2D6_CRAGI	Plastin-3
	m6A	K1QB04_CRAGI	26S proteasome non-ATPase regulatory subunit 3
	m6A	K1RH70_CRAGI	6-phosphogluconate dehydrogenase, decarboxylating
	m6A	K1QGK2_CRAGI	Coatomer subunit beta
	m6A	K1QUE6_CRAGI	265 proteasome non-ATPase regulatory subunit 6
	mbA	KIK/I9_CRAGI	Heterogeneous nuclear ribonucleoprotein Q
	тьА	K1PND/_CRAGI	Fatty acid synthase

1			
2	m6A	K10128 CRAGI	V-type proton ATPase subunit B
3 ⊿	m6A		Uncharacterized protein
5	m6A	K1QLT5_CRAGI	26S protease regulatory subunit 4
6	m6A	K1R4I2 CRAGI	26S proteasome non-ATPase regulatory subunit 3
7	m6A	K100R1 CRAGI	Major vault protein
8	m6A	K1RAU3 CRAGI	DNA ligase
9 10	m6A	K1PFG1 CRAGI	Uncharacterized protein
11	m6A	K1RBC9 CRAGI	Transketolase-like protein 2
12	m6A	K1QT21 CRAGI	Putative ATP-dependent RNA helicase DDX5
13	m6A	K1PKK7 CRAGI	AP-2 complex subunit mu-1
14	m6A	K1Q358 CRAGI	60S acidic ribosomal protein P2
16	m6A	K1PS71_CRAGI	Uncharacterized protein
17	m6A	K1QHA2_CRAGI	Spectrin beta chain, brain 4
18	m6A	K1REG6_CRAGI	DNA helicase
19 20	m6A	A7M7T7_CRAGI	Non-selenium glutathione peroxidase
20	m6A	K1QHX2_CRAGI	La-related protein 7
22	m6A	K1RJ97_CRAGI	Multifunctional protein ADE2
23	m6A	K1RNZ6_CRAGI	Eukaryotic translation initiation factor 3 subunit D
24	m6A	K1PAY7_CRAGI	Propionyl-CoA carboxylase alpha chain, mitochondrial
25 26	m6A	K1QQ27_CRAGI	Pancreatic lipase-related protein 2
27	m6A	K1Q9K6_CRAGI	Histone H3
28	m6A	K1R083_CRAGI	Aspartate aminotransferase, mitochondrial
29	m6A	K1PEP0_CRAGI	40S ribosomal protein S8
30 31	m6A	K1PU26_CRAGI	Malate dehydrogenase (Fragment)
32	m6A	K1QF01_CRAGI	40S ribosomal protein S4
33	m6A	K1QDN1_CRAGI	Heat shock protein 75 kDa, mitochondrial (Fragment)
34	m6A	K1QBH0_CRAGI	Uncharacterized protein
35	m6A	K1Q9V3_CRAGI	V-type proton ATPase catalytic subunit A
30 37	m6A	K1PJC1_CRAGI	Adipophilin
38	m6A	K1Q330_CRAGI	Dihydrolipoyl dehydrogenase
39	m6A	K1S3Y1_CRAGI	2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial (Fragment)
40	m6A	K1R2Q9_CRAGI	Aspartate aminotransferase
41	m6A	K1QEF2_CRAGI	ADP-ribosylation factor-like protein 15
43	m6A	K1PVH5_CRAGI	Centromere/kinetochore protein zw10-like protein
44	m6A	K1PG07_CRAGI	Lupus La-like protein
45	m6A	K1QMX8_CRAGI	DNA replication licensing factor MCM7
46 47	m6A	K1P/K8_CRAGI	Vesicle-tusing Al Pase 1
48	m6A	K1QQL6_CRAGI	LeucyI-tRNA synthetase, cytoplasmic
49	m6A	KIPY89_CRAGI	Extracellular superoxide dismutase [Cu-2n]
50	mbA		Privi-like protein 2
51	m6A		Dynein neavy chain 5, axonemal
52	mea	KIQDF7_CRAGI	ATD citrate synthese
54	mea	KINIKI_CRAGI	Exportin 7
55	mea	KIPZPZ_CRAGI	Laportin-7
56	m6A	KIPPPO_CRAGI	Nuclear autoantigenic sperm protein
57	m6A	KIRN//_CRAGI	
59	m6A		
60	m6A		Strawberry notch-like protein 1
	m6A	K10R02 CRAGI	Glutamate dehydrogenase 1 mitochondrial
	m6A	K10HS8 CRAGI	Ribonucleoside-diphosphate reductase
	m6A	K10X26 CRAGI	Endoplasmin
	m6A	K10GB4 CRAGI	40S ribosomal protein S17
	m6A	K1RJJ7 CRAGI	Histone H5
	m6A	K1QY85 CRAGI	Transport protein Sec31A
	m6A	K1Q6W3 CRAGI	Talin-1
	m6A	K1R3V8 CRAGI	COP9 signalosome complex subunit 4
	m6A	K10Y12 CRAGI	Dynamin-1-like protein
	IIIUA		
	m6A	K1PYA0_CRAGI	Cytoplasmic dynein 2 heavy chain 1

Page 121 of 151

1			
2	m6A	K1PNP4 CRAGI	26S proteasome non-ATPase regulatory subunit 11
3 ⊿	m6A		Eukaryotic translation initiation factor 3 subunit A
5	m6A		GTP-binding protein 1
6	m6A		Uncharacterized protein
7	m6A	K10109 CRAGI	26S proteasome non-ATPase regulatory subunit 1
8	m6A		Long-chain-fatty-acidCoA ligase 1
9 10	m6A		CCAAT/enhancer-hinding protein zeta
11	m6A		26S protessome non-ATPase regulatory subunit 12
12	m6A	KIQQINI_CIVIOI	Transcription factor BTF3
13	m6A	KINSTS_CRAGI	GDP-1-fucose synthetase
14	m6A	KIPE96 CRAGI	Spliceosome RNA helicase BAT1
15	m6A	KIPT 30_CRAOT	40S ribosomal protein S16
17	m6A	KINIJO_CRAGI	Horiguitin carboxyl-terminal hydrolase
18	m6A		V-type proton ATPase subunit D
19	m6A		Aspartate aminetransferase, extendasmic
20	m6A	KINALO_CRAGI	11-3-3 protein zeta
21	m6A	KIPSN7_CRAGI	Lincharacterized protein
22	m6A		S-adenosylmethionine synthese
24	m6A	KIPVWU_CRAGI	Basic leucine zinner and W/2 domain-containing protein 1
25	m6A	KIPT75_CRAGI	Tuder domain containing protein 1
26	mea	KIQBLO_CRAGI	
27	mea	KIQ9WI7_CRAGI	Rah CDD discosiation inhibitor
20 29	mea	KISISI_CRAGI	
30	mea	KIRIVIOU_CRAGI	Citate synthase
31	mea	KIRIIS_CRAGI	Succinate denyalogenase [ubiquinone] havoprotein subunit, mitochonana
32	mea	KIRSDS_CRAGI	Apontosis inhibitor E
33 24	mcA		Apoptosis initiation 5
34	mcA	KIPSD4_CRAGI	Cysteme synthase
36	mcA	KIPES7_CRAGI	Severini Blockstrin like protein domain containing family E member 2 (Fragment)
37	mcA	KIPSII_CRAGI	SUMO activiting annuma subunit 2
38	m6A	KIQ5G9_CRAGI	Solid shock domain containing protain [1]
39	mcA	KIPVZ3_CRAGI	405 ribesemel protein 54
40 41	IIIOA ma C A	KIR4D4_CRAGI	Translational activator CCN1
42	m6A	KIQXH3_CRAGI	
43	IIIOA ma C A	KIPIUZ_CRAGI	Idill-1
44	mea	KIPSUS_CRAGI	Programmed cen death o-interacting protein
45	mcA	KIPKF5_CRAGI	Coramida kinasa lika protain
40 47	m6A	KIQFZ8_CRAGI	
48	mcA	KIPJF4_CRAGI	Isoleucyi-triva synthetase, cytoplasinic
49	mcA	KIPV/9_CRAGI	Chicaral 2 phosphate debudragenese [NAD(1)]
50	IIIOA ma C A	KIQMD3_CRAGI	Giverol-3-phosphale deliverogenase [NAD(+)]
51 52	mea	KIRDV7_CRAGI	605 ribosomal protoin 14
53	mea	KIPOWO_CRAGI	ATP synthase subunit gamma, mitashandrial
54	mea	KIPIIZ_CRAGI	14.2.2 protoin opsilon
55	mea	KINJFZ_CRAGI	Lincharacterized protein
56	mea	KIQDVVO_CRAGI	Costomor subunit gamma
5/	mcA	KIPZPO_CRAGI	
50 59	mcA	KIPAR4_CRAGI	405 ribesemel protein 512
60	mea	KIQKZS_CKAGI	405 ribosonial protein S15
	mea	KIQQB6_CRAGI	AUS Industrial protein 314
	mcA	KIQE/I_CRAGI	DNA helicase
	m6A		SAUA-associated lactor II nonolog
	mea		Exportant-1 Costomor subunit boto
	mea	KIPPWO_CKAGI	Customer Suburilt Deta
	mcA		Succinyi-COA ligase (GDP-forming) subunit beta, mitochondrial
	m6A		
	mcA	KIFLII_CKAGI	265 protoscomo pop_ATDaco regulatory cubusit 1
	m6A	KITTK4_CKAGI	203 proteasonie non-Al Pase regulatory subunit 1 Nucleolar complex protein 2 like protein
	mcA		Nucleolar complex protein 2-like protein
	mea	KIQPI/_CKAGI	Capilli-1
	IIIUA	KIKZINU UKAGI	

1			
2	m6A	K1O5G6 CRAGI	60 kDa heat shock protein, mitochondrial
5 4	m6A	K1RIG6 CRAGI	LSM14-like protein A
5	m6A	K10Y71 CRAGI	Histone H2B
6	m6A	K1OAB1_CRAGI	AP-2 complex subunit alpha
7	m6A	K10AF3 CRAGI	Alanine aminotransferase 2
8	m6A	K10I97 CRAGI	Adenvlyl cyclase-associated protein
9 10	m6A	K1PD57 CRAGI	Constitutive coactivator of PPAR-gamma-like protein 1-like protein
11	m6A	K100L1 CRAGI	60S ribosomal protein 123a
12	m6A	K1RGB7_CRAGI	Epidermal retinal dehydrogenase 2
13	m6A	K1R0Y9 CRAGI	ADP.ATP carrier protein
14	m6A	K10XF5_CRAGI	Calcyphosin-like protein
15	m6A	K1PA54 CRAGI	Replication factor C subunit 3
17	m6A	K1PS27_CRAGI	DNA helicase
18	m6A	K1R8C6 CRAGI	40S ribosomal protein S12
19	m6A	K10880 CRAGI	Transportin-1
20	m6A	K1PXD4_CRAGI	Putative ATP-dependent RNA helicase DDX6
21	m6A	K1P421 CRAGI	Histone H2A
23	m6A	K1RL00 CRAGI	Proteasome-associated protein ECM29-like protein
24	m6A	K1PI50 CRAGI	40S ribosomal protein S26
25	m6A	K1RCW5 CRAGI	Eukarvotic translation initiation factor 4 gamma 3
26	m6A	K1ROW4 CRAGI	Signal recognition particle subunit SRP72
27	m6A	K10N11 CRAGI	Pre-mRNA-processing-splicing factor 8
29	m6A	K1R8R6 CRAGI	Fructose-bisphosphate aldolase
30	m6A	K10VF8_CRAGI	Phosphoacetylglucosamine mutase
31	m6A	K1R5R9 CRAGI	DNA-directed RNA polymerase mitochondrial
32	m6A	K10A50 CRAGI	V-type proton ATPase subunit H
33 34	m6A	K10915 CRAGI	Importin-4
35	m6A	K1R3V0 CRAGI	CAD protein
36	m6A	K1PFK8 CRAGI	Uncharacterized protein
37	m6A	K1PSN0_CRAGI	Pre-mRNA-processing factor 40-like protein A
38	m6A		60S ribosomal protein L7a
39 40	m6A	K1QE07_CRAGI	Very long-chain specific acyl-CoA dehydrogenase mitochondrial
41	m6A	K10016 CRAGI	AP complex subunit beta
42	m6A	K1QQ10_CRAGI	40S ribosomal protein S11
43	m6A	K1P8B7 CRAGI	Ubiguitin-conjugating enzyme E2-17 kDa (Fragment)
44	m6A	K1RHB2_CRAGI	Nucleolar RNA helicase 2
46	m6A	K1OWC3 CRAGI	40S ribosomal protein S3
47	m6A	K104E1 CRAGI	N-acetyl-D-glucosamine kinase
48	m6A	K106F7_CRAGI	V-type proton ATPase subunit C
49	m6A	K1R3I6 CRAGI	Nucleolar complex protein 2-like protein (Fragment)
50 51	m6A	K1PES5_CRAGI	Elongation factor 1-gamma
52	m6A	K1PBZ4 CRAGI	Regulator of nonsense transcripts 1
53	m6A	K1RV41_CRAGI	Guanine nucleotide-binding protein subunit beta-2-like 1
54	m6A	K10KV1 CRAGI	Cvtochrome b-c1 complex subunit 6
55	m6A	K1S2Y0 CRAGI	Uncharacterized protein
50 57	m6A	K10KK5 CRAGI	Vacuolar protein sorting-associated protein 4B
58	m6A	K108S0 CRAGI	Nucleolar complex protein 3 homolog
59	m6A	K1OWK6 CRAGI	Metalloendopeptidase
60	m6A	K1PH31 CRAGI	Protein arginine N-methyltransferase 1
	m6A	K1R834 CRAGI	60S ribosomal protein L9
	m6A	K1RDG4_CRAGI	DNA helicase
	m6A	K1R591 CRAGI	Inter-alpha-trypsin inhibitor heavy chain H4
	m6A	K109P5 CRAGI	Mitochondrial-processing peptidase subunit beta
	m6A	K1QLS3 CRAGI	Cytochrome b-c1 complex subunit 2. mitochondrial
	m6A	K1ONT7 CRAGI	Aldehvde dehvdrogenase, mitochondrial
	m6A	K1QDX9 CRAGI	Ribosome biogenesis protein BMS1-like protein
	m6A	K1S6G3 CRAGI	Ubiguitin-like modifier-activating enzyme 1
	m6A	K1R8S7 CRAGI	Phospholipase A-2-activating protein
	m6A	K1QFN1 CRAGI	60S ribosomal protein L23
	m6A	K1Q5Z6 CRAGI	Eukaryotic translation initiation factor 2 subunit 2
			• • • • • • •

1			
2	m6A	K1R6C2 CRAGI	Peroxisomal 3.2-trans-enovl-CoA isomerase
3 4	m6A	K100R4 CRAGI	ATP-binding cassette sub-family F member 2
5	m6A	K1P5V7 CRAGI	Eukarvotic translation initiation factor 3 subunit C
6	m6A	K1PGW7 CRAGI	Transmembrane protein 2
7	m6A	K1RKC1 CRAGI	Far upstream element-binding protein 3
8 9	m6A	K1QHY1 CRAGI	Eosinophil peroxidase
10	m6A	K1QLK8 CRAGI	GTP-binding protein SAR1b
11	m6A	K1QRG9 CRAGI	Uncharacterized protein
12	m6A	K1QRW4 CRAGI	Coronin
13	m6A		Tudor domain-containing protein 1
14	m6A	K1QRM1_CRAGI	Nuclear pore protein
16	m6A	K1RBZ5_CRAGI	Ran GTPase-activating protein 1
17	m6A	K1RLT4_CRAGI	Signal recognition particle subunit SRP68
18	m6A	K1R7N6_CRAGI	Eukaryotic translation initiation factor 6
19 20	m6A	K1P5F7_CRAGI	Metastasis-associated protein MTA1
20	m6A	K1RCW3_CRAGI	Elongation factor 1-beta
22	m6A	K1R2H9_CRAGI	WD repeat-containing protein 35
23	m6A	K1Q1K8_CRAGI	Elongation factor 1-beta
24	m6A	K1QTD9_CRAGI	Nucleolar protein 56
25 26	m6A	K1QBW6_CRAGI	Tudor domain-containing protein 1
27	m6A	K1QFR9_CRAGI	Spectrin beta chain
28	m6A	K1P9S7_CRAGI	Brix domain-containing protein 2
29	m6A	K1QEK7_CRAGI	Ubiquitin carboxyl-terminal hydrolase
30 31	m6A	K1PAM6_CRAGI	Uncharacterized protein
32	m6A	K1S3G2_CRAGI	HMGB1
33	m6A	K1QI11_CRAGI	Pyruvate dehydrogenase E1 component subunit alpha type II, mitochondrial
34 25	m6A	K1QF31_CRAGI	Serine/threonine-protein kinase PLK
35 36	m6A	K1QDA7_CRAGI	Uracil phosphoribosyltransferase
37	m6A	K1QKN4_CRAGI	Dynein neavy chain 6, axonemai
38	mbA	KIRNHI_CRAGI	bus ribusomai protein L18 (Fragment)
39 40	mbA m6A		Dynein neavy chain 7, axonemai
40 41	m6A	KIQED7_CRAGI	Electron transfer flavonrotein subunit beta
42	m6A	KIPPO1 CRAGI	14-3-3 protein gamma
43	m6A	K1R8T6 CRAGI	Cullin-1
44 45	m6A	K107E4 CRAGI	Ubiguitin-conjugating enzyme E2 N
46	m6A	K1RSZ6 CRAGI	40S ribosomal protein S7
47	m6A	K1Q1S3 CRAGI	Myosin-VI
48	m6A	K1QH70 CRAGI	Leucine-rich repeat-containing protein 40
49 50	m6A	K1QZI3 CRAGI	Myosin-le
50	m6A	K1Q4Z4 CRAGI	, Bifunctional purine biosynthesis protein PURH
52	m6A	K1Q5H6_CRAGI	FACT complex subunit SSRP1
53	m6A	K1PKL8_CRAGI	Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform
54	m6A	K1QUC6_CRAGI	Uncharacterized protein
55 56	m6A	K1QPP2_CRAGI	Elongation factor Tu, mitochondrial
57	m6A	K1QMH5_CRAGI	Small nuclear ribonucleoprotein Sm D1
58	m6A	K1PZD9_CRAGI	26S proteasome non-ATPase regulatory subunit 11
59 60	m6A	K1PBU0_CRAGI	L-fucose kinase
00	m6A	K1QYB6_CRAGI	Delta-1-pyrroline-5-carboxylate synthetase
	m6A	K1PMP3_CRAGI	Protoporphyrinogen oxidase
	m6A	K1Q2E0_CRAGI	AP-1 complex subunit mu-1
	m6A	K1QEF9_CRAGI	Protein-glutamine gamma-glutamyltransferase K
	mbA mcA	KIQGE4_CRAGI	Proteasome endopeptidase complex (Fragment)
	IIIbA mCA		Replication factor C subunit 4
	m6A		COF9 Signalusonne complex subuliit /d Dhanvlalanvl_tPNA synthetase alpha chain
	m6A		Incharacterized protein
	m6A	KINAH9 CRAGI	H/ACA ribonucleoprotein complex subunit
	m6A	K1PS13 CRAGI	Coatomer subunit beta (Fragment)
	m6A	K1QJ33 CRAGI	Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2
			, ,

1			
2	m6A	K1ORL6 CRAGI	Methenyltetrahydrofolate synthetase domain-containing protein
5 4	m6A	K1PU46 CRAGI	Lethal(2) giant larvae-like protein 1
5	m6A	K1R7J6 CRAGI	Putative sodium/potassium-transporting ATPase subunit beta-2
6	m6A	K1QYV6 CRAGI	NMDA receptor-regulated protein 1
7	m6A	K1R6E9 CRAGI	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex
8 Q	m6A	K1P7L9 CRAGI	Nucleolar GTP-binding protein 1
10	m6A	K1PIB7 CRAGI	Phenylalanyl-tRNA synthetase beta chain
11	m6A	K1PX23 CRAGI	Eukaryotic peptide chain release factor subunit 1
12	m6A	K1QDV6 CRAGI	Protein argonaute-2
13	m6A	K1R5G4_CRAGI	60S ribosomal protein L31
15	m6A	K1R9T2_CRAGI	Eukaryotic translation initiation factor 3 subunit B
16	m6A	K1PW99_CRAGI	Protein OSCP1
17	m6A	K1R1F0_CRAGI	ATP-dependent DNA helicase 2 subunit 1
18	m6A	K1Q260_CRAGI	Nucleolar protein 58
19 20	m6A	K1QFS4_CRAGI	Actin-related protein 2
21	m6A	K1QLZ1_CRAGI	Actin-related protein 3
22	m6A	K1Q6X5_CRAGI	Protein disulfide-isomerase
23	m6A	K1PJB0_CRAGI	Heat shock protein 70 B2
24	m6A	K1Q8K2_CRAGI	Importin subunit alpha
25	m6A	K1PKF6_CRAGI	26S proteasome non-ATPase regulatory subunit 13
27	m6A	K1QGL9_CRAGI	Mannose-1-phosphate guanyltransferase beta
28	m6A	K1RGJ7_CRAGI	Neogenin
29	m6A	K1PUJ1_CRAGI	Radixin
30 31	m6A	K1Q811_CRAGI	Alpha-centractin
32	m6A	K1QWZ0_CRAGI	Tetratricopeptide repeat protein 38
33	m6A	K1PRL4_CRAGI	60S ribosomal protein L38 (Fragment)
34	m6A	K1Q9I1_CRAGI	TRAF2 and NCK-interacting protein kinase
35 36	m6A	K1QVR0_CRAGI	26S proteasome non-ATPase regulatory subunit 8
37	m6A	K1QK68_CRAGI	Myosin-2 essential light chain
38	m6A	K1QMH2_CRAGI	DNA polymerase
39 40	m6A	KIPD36_CRAGI	
40 41	mea		Protessome subunit bets
42	m6A	KIQBIZ_CRAGI	60S ribosomal protein 124
43	m6A		Pyruvate dehydrogenase F1 component subunit beta, mitochondrial
44 45	m6A	K10DH9 CRAGI	Myosin-11
46	m6A	K1OW36 CRAGI	60S ribosomal protein L6
47	m6A	K1Q4Y8 CRAGI	Histone H1oo
48	m6A	K1PM66 CRAGI	60S ribosomal protein L12
49 50	m6A		AP-3 complex subunit delta-1
50	m6A	K1QPY8 CRAGI	Extracellular superoxide dismutase [Cu-Zn]
52	m6A		26S proteasome non-ATPase regulatory subunit 5
53	m6A	K1QW72_CRAGI	Catalase
54	m6A	K1QMD8_CRAGI	Proteasome subunit alpha type
55 56	m6A	K1PZC0_CRAGI	Structural maintenance of chromosomes protein
57	m6A	K1RBI9_CRAGI	Small nuclear ribonucleoprotein Sm D2
58	m6A	K1QCQ5_CRAGI	SuccinateCoA ligase [ADP-forming] subunit beta, mitochondrial
59	m6A	K1R0L4_CRAGI	Sodium/potassium-transporting ATPase subunit alpha
60	m6A	K1QKG9_CRAGI	Cysteine desulfurase, mitochondrial
	m6A	K1PPK1_CRAGI	Actin-related protein 2/3 complex subunit 4
	m6A	K1PUQ5_CRAGI	Histone H2B
	m6A	K1RFU6_CRAGI	Proteasome activator complex subunit 3
	m6A	K1Q615_CRAGI	Peroxiredoxin-1
	m6A	K1RII6_CRAGI	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
	mbA mcA	KIPQZ3_CRAGI	Armadillo repeat-containing protein 4
	IIIbA m6A		Leucine-zipper-like transcriptional regulator 1
	m6A	KINDZ_CKAGI	סא העות וווופו עוופוו מווו וופות כוומוו, מצטוופווומו Programmed cell death protein 4
	m6A		Dynein light chain roadhlock
	m64		HEAT repeat-containing protein 2
			······································

Page 125 of 151

The FEBS Journal

1			
2	m6A	K1QHM2 CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2
4	m6A	K1QY58 CRAGI	Eukaryotic translation initiation factor 3 subunit I (Fragment)
5	m6A	K1PLA7_CRAGI	Eukaryotic initiation factor 4A-II (Fragment)
6	m6A	K1R8I8_CRAGI	Acetyltransferase component of pyruvate dehydrogenase complex
7 0	m6A	K1R2L7_CRAGI	Glutaminyl-tRNA synthetase (Fragment)
9	m6A	K1QSD9_CRAGI	Uncharacterized protein
10	m6A	K1R008_CRAGI	Proteasome subunit alpha type
11	m6A	K1QBL3_CRAGI	Putative phosphoglycerate mutase
12	m6A	K1R6S5_CRAGI	40S ribosomal protein S9
13	m6A	K1QNS4_CRAGI	DnaJ-like protein subfamily C member 9
15	m6A	K1Q7X3_CRAGI	Pre-mRNA-splicing factor SYF1
16	m6A	K1QG65_CRAGI	rRNA 2'-O-methyltransferase fibrillarin
17	m6A	K1QU53_CRAGI	NAD(P) transhydrogenase, mitochondrial
10	m6A	K1RU04_CRAGI	Actin, cytoplasmic
20	m6A	K1RAH6_CRAGI	Ubiquitin-conjugating enzyme E2-17 kDa
21	m6A	K1PTV1_CRAGI	Splicing factor 3B subunit 4
22	m6A	K1PCR5_CRAGI	KH domain-containing, RNA-binding, signal transduction-associated protein 2
23 24	m6A	K1QYH6_CRAGI	COP9 signalosome complex subunit 3
25	m6A	KIQH74_CRAGI	Splicing factor, arginine/serine-rich 1
26	m6A	KIPX83_CRAGI	Coronin
27 20	mea	KIQJF7_CRAGI	Mothionyl tPNA synthetase, syteplasmic
20 29	m6A	KIPNAU_CRAGI	Uncharacterized protein
30	m6A	KIQIL4_CRAGI	Polyadenylate-binding protein-interacting protein 1
31	m6A		Proteasomal ubiquitin recentor ADRM1
32	m6A	K1Q220_CRAGI	Alpha-aminoadinic semialdehyde synthase mitochondrial
33 34	m6A	K1OVP6 CRAGI	Developmentally-regulated GTP-binding protein 1
35	m6A	K1QNU0 CRAGI	Non-specific serine/threonine protein kinase
36	m6A	K1Q6U0 CRAGI	Coatomer subunit zeta-1
37	m6A	K1S058 CRAGI	Transcription factor RFX3
30 39	m6A	K1R488 CRAGI	Actin-related protein 2/3 complex subunit
40	m6A		Tubulin gamma chain
41	m6A	K1PDL3_CRAGI	Ribosomal protein L19
42	m6A	K1PBL2_CRAGI	Eukaryotic initiation factor 4A-III
43 44	m6A	K1QE83_CRAGI	CCR4-NOT transcription complex subunit 1
45	m6A	K1R1Q8_CRAGI	Ras-related protein Rab-5C
46	m6A	K1R0P8_CRAGI	CTP synthase
47 10	m6A	K1QJ46_CRAGI	Putative methylcrotonoyl-CoA carboxylase beta chain, mitochondrial
40 49	m6A	K1QG70_CRAGI	Katanin p60 ATPase-containing subunit A1
50	m6A	K1RBF6_CRAGI	Uncharacterized protein yfeX
51	m6A	K1RZM3_CRAGI	Cartilage acidic protein 1
52	m6A	K1R5V4_CRAGI	GTP-binding nuclear protein
53 54	m6A	K1QZX9_CRAGI	Uncharacterized protein
55	m6A	K1Q6U7_CRAGI	78 KDa glucose-regulated protein
56	m6A	K10217 CBAC	FIOLENI DJ-1 Sarina/thraonina-protain kinaca SPDK1
57	mea	KIQ317_CRAGI	Serine/tilleonine-protein kindse SKPK1
50 59	m6A	KIQJE9_CRAGI	Putative histone-hinding protein Caf1
60	m6A		60S ribosomal protein 130
	m6A	K1QJM1_CRAGI	Proliferation-associated protein 2G4
	m6A	K1PMI9 CRAGI	Cleavage stimulation factor 77 kDa subunit
	m6A	K1RAU8 CRAGI	Eukarvotic translation initiation factor 3 subunit F
	m6A	K1RIS2 CRAGI	3-oxoacyl-[acyl-carrier-protein] reductase
	m6A	K1PLM3 CRAGI	Hydroxyacyl-coenzyme A dehvdrogenase. mitochondrial
	m6A	K1PWU5 CRAGI	Cytosolic carboxypeptidase 1
	m6A	K1QFF0_CRAGI	Vacuolar protein sorting-associated protein 35 (Fragment)
	m6A	_ K1P6C4_CRAGI	Poly [ADP-ribose] polymerase
	m6A	K1RG19_CRAGI	Protein FAM98A
	m6A	K1QCB0_CRAGI	40S ribosomal protein S5
	m6A	K1PCH8_CRAGI	Nucleoporin p54

2	m6A	K1Q2Y1_CRAGI	40S ribosomal protein S15
4	m6A	K1QGW4_CRAGI	Density-regulated protein
5	m6A	K1R6H7_CRAGI	Uncharacterized protein
6 7	m6A	K1R0D7_CRAGI	Eukaryotic translation initiation factor 3 subunit M (Fragment)
7 8	m6A	K1PPI6_CRAGI	Synaptobrevin-like protein YKT6
9	m6A	K1RMW3_CRAGI	Protein kinase C
10	m6A	K1QV25_CRAGI	Transcription elongation factor B polypeptide 2
11	m6A	K1QC27_CRAGI	Hydroxysteroid dehydrogenase-like protein 2
12	m6A	K1RAT9_CRAGI	Tubulin-specific chaperone D
14	m6A	K1QWJ4_CRAGI	Splicing factor 3B subunit 5
15	m6A	K1PZ08_CRAGI	Ras-related protein Rab-7a
16	m6A	K1QMQ1_CRAGI	TBC1 domain family member 10B
17	m6A	K1R811_CRAGI	Ribonucleoside-diphosphate reductase small chain
19	m6A	K1P8G1_CRAGI	Heterogeneous nuclear ribonucleoprotein H
20	m6A	K1R983_CRAGI	Protein transport protein SEC23
21	m6A	K1QDI4_CRAGI	Superoxide dismutase [Cu-Zn]
22	m6A	K1RDM2_CRAGI	60S ribosomal protein L18a
23 24	m6A	K1QYI9_CRAGI	Arginyl-tRNA synthetase, cytoplasmic (Fragment)
25	m6A	K1QVS0_CRAGI	Ras-like GTP-binding protein Rho1
26	m6A	K1PJS7_CRAGI	Poly [ADP-ribose] polymerase
27	m6A	K1QRD0_CRAGI	Cytoplasmic dynein 1 light intermediate chain 1
28 29	m6A	K1RUR7_CRAGI	Putative ATP-dependent RNA helicase DHX36
30	m6A	K1Q1F1_CRAGI	Serine/threohine-protein kinase 31
31	m6A	KIQI32_CRAGI	Synaptotagmin-like protein 5
32	m6A	KIPINIY9_CRAGI	Calmodulin
33 24	mbA	KIPAGO_CRAGI	WD repeat containing protein 10
35	mea	KIQWOI_CRAGI	CDR mannass 4.6 dabydratasa
36	mea	KIPZDO_CRAGI	Boshate carrier protein, mitochondrial
37	m6A	KIQTIS_CRAGI	Band 4.1-like protein 5
38	m6A	KINIZJ_CRAGI	N(G) N(G)-dimethylargining dimethylaminghydrolase 1
39 40	m6A	KIQI97_CRAGI	S-(bydroxymethyl)glutathione debydrogenase
41	m6A	K1REI2 CRAGI	Lon protease homolog mitochondrial
42	m6A	K1R1B1 CRAGI	35 kDa SR repressor protein
43	m6A	K1PRK2 CRAGI	Small glutamine-rich tetratricopentide repeat-containing protein beta
44 45	m6A	K10AT9 CRAGI	ATP-dependent RNA helicase DDX1
45	m6A	K1PEV9 CRAGI	4-trimethylaminobutyraldehyde dehydrogenase
47	m6A	K10LP5 CRAGI	Coatomer subunit delta
48	m6A	K1PIH2 CRAGI	V-type proton ATPase subunit E
49 50	m6A	K1RBU9 CRAGI	Non-specific serine/threonine protein kinase
50 51	m6A	K1QGP1 CRAGI	Replication factor C subunit 2
52	m6A	K1PJ96 CRAGI	Uncharacterized protein
53	m6A	K1QHH0 CRAGI	Protein henna
54	m6A		Ferritin
55 56	m6A	K1Q6W5_CRAGI	FACT complex subunit spt16
57	m6A	K1QEZ5_CRAGI	MON2-like protein
58	m6A	K1RJW8_CRAGI	Protein DEK
59	m6A	K1P752_CRAGI	UPF0195 protein FAM96B
60	m6A	K1RP91_CRAGI	Putative RNA exonuclease NEF-sp
	m6A	K1QSZ6_CRAGI	Uncharacterized protein
	m6A	K1RD83_CRAGI	Serine hydroxymethyltransferase
	m6A	K1R5W3_CRAGI	Uncharacterized protein
	m6A	K1S211_CRAGI	Poly(A) RNA polymerase gld-2-like protein A
	m6A	K1QTW6_CRAGI	Eukaryotic translation initiation factor 3 subunit F
	m6A	K1QEJ0_CRAGI	Ras GTPase-activating protein-binding protein 2
	m6A	K1R1R9_CRAGI	Pre-mRNA-processing factor 6
	m6A	K1QJL2_CRAGI	CCR4-NOT transcription complex subunit 10
	m6A	K1PUV4_CRAGI	40S ribosomal protein S24
	m6A	K1RH58_CRAGI	Alpha-actinin, sarcomeric
	m6A	K1PQI4_CRAGI	Enolase-phosphatase E1

1		
2 2 m6A	K1R7D7 CRAGI	Poly(A)-specific ribonuclease PARN
4 m6A	K1PS84 CRAGI	Alpha-crystallin B chain
5 m6A	K1QQV0 CRAGI	Histone H1.2
⁶ m6A	K1QPJ9 CRAGI	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B
7 。 m6A	K1QZX3_CRAGI	Vacuolar protein sorting-associated protein VTA1-like protein
o 9 m6A		Superkiller viralicidic activity 2-like 2
10 m6A	K1RJS5_CRAGI	Uncharacterized protein
¹¹ m6A	K1S3Q9_CRAGI	MAK16-like protein (Fragment)
¹² m6A	K1PKD4_CRAGI	40S ribosomal protein S30
15 14 m6A	K1PGZ0_CRAGI	Thyroid adenoma-associated protein
₁₅ m6A	K1REV3_CRAGI	DNA polymerase delta subunit 2
16 m6A	K1QGF1_CRAGI	Splicing factor 3B subunit 2
17 m6A	K1R8B2_CRAGI	Isovaleryl-CoA dehydrogenase, mitochondrial
¹⁰ m6A 19	K1PR25_CRAGI	Regulator of differentiation 1
20 m6A	K1PZ23_CRAGI	DnaJ-like protein subfamily C member 3
21 m6A	K1PLG1_CRAGI	Putative ribosomal RNA methyltransferase NOP2
22 m6A	K1PNY5_CRAGI	Splicing factor, proline-and glutamine-rich
²³ m6A 24 m c a	K1RG/9_CRAGI	Neuronal acetylcholine receptor subunit alpha-6
25 mCA	K1PRB6_CRAGI	Apolipoprotein D
26 ^{m6A}	KIPIR3_CRAGI	Oxysterol-binding protein
27 MbA	KIQIF4_CRAGI	405 ribosomal protein L3 (Fragment)
20 m6A		Actin_interacting protein 1
30 m6A	K1Q002_CRAGI	SEC13-like protein
31 	K1PRV7_CRAGI	Profilin
32 m6A	K10W76 CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1
34 m6A	K1R9S5 CRAGI	Cytosolic Fe-S cluster assembly factor NUBP2 homolog
³⁵ m6A	K1QUK0 CRAGI	NEDD8-activating enzyme E1 catalytic subunit
³⁶ m6A	K1PTE3 CRAGI	Uncharacterized protein
37 20 m6A	K1Q6M6 CRAGI	6-phosphofructokinase
39 m6A	K1QZN3_CRAGI	Myosin-Id
40 m6A	K1PB94_CRAGI	ATP-binding cassette sub-family E member 1
⁴¹ m6A	K1RNN9_CRAGI	Cytoskeleton-associated protein 5
⁴² m6A	K1PZL0_CRAGI	B-box type zinc finger protein ncl-1
43 44 m6A	K1RKZ5_CRAGI	DNA damage-binding protein 1
45 m6A	K1R138_CRAGI	Nuclear pore glycoprotein p62
46 m6A	K1Q9D7_CRAGI	Sorting nexin-2
⁴⁷ m6A	K1R6F1_CRAGI	Proteasome subunit alpha type
40 m6A 49	K1QKQ5_CRAGI	N-terminal acetyltransferase B complex subunit MDM20
50 m6A	K1PDC6_CRAGI	Proteasome subunit beta
51 m6A	A5LGH1_CRAGI	Voltage-dependent anion channel
52 m6A	K1PF60_CRAGI	3-ketoacyl-CoA thiolase, mitochondrial
55 m6A 54 m C	K1R924_CRAGI	RNA-binding protein 45
55 mCA	KIRIQ6_CRAGI	Fructose-bisphosphate aldolase
56 ^{MOA}	KIQ888_CRAGI	Hataraganaaus nuclear ribanucleanratain l
57 MOA	KIRZSS_CRAGI	Programmed cell death protein 6
59 m64	K1QIZ7_CRAGI	Inositol hevakishboshbate and dinhoshboinositol-nentakishboshbate kinase
⁶⁰ m64		EH domain-containing protein 1
m6A	K10784 CRAGI	Thioredoxin domain-containing protein 3-like protein
m6A	K1PJY4 CRAGI	Calcium-binding protein 39
m6A	K1PBC0 CRAGI	Non-neuronal cytoplasmic intermediate filament protein
m6A	K1PRD5 CRAGI	Trifunctional purine biosynthetic protein adenosine-3
m6A	K1QXH7 CRAGI	DNA replication licensing factor mcm4-B
m6A		Serine/threonine-protein kinase OSR1
m6A	K1QV87_CRAGI	Catenin alpha-2
m6A	K1PBH3_CRAGI	Dynein heavy chain 3, axonemal
m6A	K1R4M7_CRAGI	Serine/threonine protein phosphatase 2A regulatory subunit
m6A	K1R3A0_CRAGI	Transcription initiation factor IIB
m6A	K1QQQ5_CRAGI	Replication factor C subunit 5

1			
2	m6A	K1RJ70 CRAGI	Cytosolic non-specific dipeptidase
3 4	m6A	K1QNY7 CRAGI	Transport protein Sec24C
5	m6A	K1R481 CRAGI	Epimerase family protein SDR39U1
6	m6A	K1QRE1 CRAGI	COP9 signalosome complex subunit 6
7	m6A	K1RA63 CRAGI	Transmembrane protein 2
8 9	m6A		Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial
10	m6A	K1PQA3_CRAGI	Pseudouridylate synthase 7-like protein
11	m6A	K1PII4_CRAGI	YTH domain-containing protein 1
12	m6A	K1P8S5_CRAGI	Condensin complex subunit 3
13	m6A	K1QMT1_CRAGI	DnaJ-like protein subfamily B member 4
15	m6A	K1PN10_CRAGI	Intron-binding protein aquarius
16	m6A	K1PCR9_CRAGI	Proteasome endopeptidase complex
17	m6A	K1PZI3_CRAGI	SWI/SNF complex subunit SMARCC2
18	m6A	K1RIZ3_CRAGI	Bone morphogenetic protein 7
20	m6A	K1QMY1_CRAGI	Aconitate hydratase, mitochondrial
21	m6A	K1R3W9_CRAGI	Replication protein A 14 kDa subunit
22	m6A	K1PLD4_CRAGI	Dynein heavy chain 2, axonemal
23	m6A	K1QC78_CRAGI	Ras-related protein Rab-14
24 25	m6A	K1PTV5_CRAGI	Programmed cell death protein 10
26	m6A	K1RGG1_CRAGI	Alanyl-tRNA synthetase, cytoplasmic
27	m6A	K1R3R4_CRAGI	Cytosolic Fe-S cluster assembly factor NUBP1 homolog
28	m6A	K1R266_CRAGI	Retinal dehydrogenase 1
29	m6A	K1QGC9_CRAGI	Acetyl-coenzyme A synthetase
30	m6A	K1Q7T5_CRAGI	Protein disulfide-isomerase
32	m6A	K1QKQ8_CRAGI	THO complex subunit 4-A
33	m6A	K1QR54_CRAGI	Zinc finger RNA-binding protein
34	m6A	K1PEW1_CRAGI	Sorting nexin
35	m6A	K1PFL3_CRAGI	Dihydropteridine reductase
37	m6A	K1QC11_CRAGI	AP-1 complex subunit gamma
38	m6A	K1QQI3_CRAGI	Rab-like protein 5
39	m6A	K1R916_CRAGI	Structural maintenance of chromosomes protein
40	m6A	K1PF37_CRAGI	Thioredoxin domain-containing protein 9
41 42	m6A	K1PJW0_CRAGI	Talin-1
43	m6A	K1PUX5_CRAGI	Casein kinase II subunit alpha
44	m6A	K1QB86_CRAGI	Dynamin-1
45	m6A	K1QWX0_CRAGI	26S proteasome non-ATPase regulatory subunit 14
46 47	m6A	K1QBM3_CRAGI	Ras-related protein Rab-2
47	m6A	K1RG04_CRAGI	ALK tyrosine kinase receptor
49	m6A	K1PXH5_CRAGI	Putative saccharopine dehydrogenase
50	m6A	K1Q407_CRAGI	Ras G Pase-activating protein 1
51	m6A	K1PYK7_CRAGI	RNA-binding protein 39
52 53	m6A	K1PZR3_CRAGI	U2 small nuclear ribonucleoprotein A
54	IIIbA m6A	KIKBJ3_CKAGI	Unaj-like protein subfamily C member 13
55	m6A	KIQ324_CRAGI	Actin like protoin CA
56	mea	KIPADI_CRAGI	Actili-like protein oa
5/	mea	KIPWS6_CRAGI	Poly(A) polymoraso gamma
59	m6A	KIPLO4_CRAGI	Kinotochoro associated protein 1
60	m6A	KIND97_CRACI	Mannose-1-phosphate guanyltransferase alpha-A
	m6A	KIRK83 CRAGI	Tyrosine-protein kinase BA71B
	m6A	KINKOS_CRAGI	Short-chain specific acyl-CoA dehydrogenase mitochondrial
	m6A		High mobility group protein DSP1
	m6A		Tetratricopeptide repeat protein 21B
	m6A		S-phase kinase-associated protein 1
	m6A	K1RFF7 CRAGI	Protein lethal(2)essential for life
	m6A	K1R1T8 CRAGI	Nucleolar protein 56
	m6A	K1PNG7 CRAGI	Sorting nexin-33
	m6A	K1PCV0 CRAGI	Severin
	m6A	K1QVX4 CRAGI	Glycogen synthase kinase-3 beta
	m6A	K1P9V5_CRAGI	General transcription factor IIF subunit 1

1			
2	m6A	K1O904 CRAGI	PAN2-PAN3 deadenvlation complex subunit PAN3
3 4	m6A	K1REC3 CRAGI	Exportin-5
5	m6A	K1P137 CRAGI	Actin-related protein 2/3 complex subunit 5
6	m6A	K1QBT8 CRAGI	Uncharacterized protein
7	m6A	K1PZN1 CRAGI	Calcium/calmodulin-dependent protein kinase type II delta chain
8 9	m6A		Uncharacterized protein
10	m6A	K1REP0_CRAGI	Uncharacterized protein
11	m6A		Double-stranded RNA-specific editase 1
12	m6A	K1PVL5_CRAGI	tRNA 2'-phosphotransferase 1
13	m6A	K1Q6Y2_CRAGI	Uncharacterized protein
15	m6A	K1PMQ4_CRAGI	Microtubule-associated serine/threonine-protein kinase-like protein
16	m6A	K1PQR9_CRAGI	Squamous cell carcinoma antigen recognized by T-cells 3
17	m6A	K1R150_CRAGI	Ras-related protein Rab-1A
18	m6A	K1PNU2_CRAGI	Histone-arginine methyltransferase CARM1
20	m6A	K1PEX5_CRAGI	Protein hu-li tai shao
21	m6A	K1PDF0_CRAGI	Protein disulfide-isomerase A6
22	m6A	K1QC22_CRAGI	40S ribosomal protein S19
23	m6A	K1PUF0_CRAGI	G-protein coupled receptor moody
24 25	m6A	K1S422_CRAGI	Katanin p80 WD40 repeat-containing subunit B1
26	m6A	K1PI41_CRAGI	Flap endonuclease 1
27	m6A	K1R0N8_CRAGI	Flap endonuclease GEN-like protein 1
28	m6A	K1RXR4_CRAGI	Arrestin domain-containing protein 3
29 30	m6A	K1PXX6_CRAGI	Uncharacterized protein
31	m6A	K1QXP9_CRAGI	Uncharacterized protein
32	m6A	K1RJB4_CRAGI	Ubiquitin carboxyl-terminal hydrolase 1
33	A	K1QNA2_CRAGI	Vitellogenin-6
34 35	A	KIQHK9_CRAGI	Clathrin heavy chain, cytoplasmic
36	A	KIPINK3_CRAGI	Ciatrinin neavy chain Diwi like protoin 1
37	A A	KIQVJ8_CRAGI	Tubulin beta chain
38	Δ		
40	A	K1RLF8 CRAGI	Splicing factor 3B subunit 3
41	A	K1QQ68 CRAGI	Tubulin alpha chain
42	А	K1S2N7 CRAGI	Innexin
43 44	А	K1R164_CRAGI	Galectin-4
45	А	K1QMX5_CRAGI	Uncharacterized protein
46	А	K1QHI5_CRAGI	Pyruvate carboxylase, mitochondrial
47	А	K1PQP2_CRAGI	Nucleolin
48 49	А	K1PN21_CRAGI	Tubulin beta chain
50	А	K1PAG1_CRAGI	Dynein beta chain, ciliary
51	А	K1QII6_CRAGI	Tubulin alpha chain
52	A	K1R5B4_CRAGI	Proteasome activator complex subunit 4
55 54	A	K1QFW9_CRAGI	Uncharacterized protein
55	A	K1R4/3_CRAGI	lubulin alpha chain
56	A	K1PK85_CRAGI	Cullin-associated NEDD8-dissociated protein 1
57 50	A	KIR294_CRAGI	I-complex protein I subunit beta
50 59	A	KIPEUU_CRAGI	Heterogeneous pusicar ribenusicoprotein A/P
60	A A	KIPNIO_CRAGI	Cytoplasmic dynein 2 beawy chain 1
	A		T-complex protein 1 subunit gamma
	A	K1S4O2_CRAGI	T-complex protein 1 subunit delta (Fragment)
	A	K1QMA4 CRAGI	RRP5-like protein
	А	 K1R5R4_CRAGI	Dynein heavy chain 10, axonemal
	А		Isocitrate dehydrogenase [NADP]
	А	K1QGS8_CRAGI	Elongation factor 1-alpha
	А	K1QXX7_CRAGI	Myosin heavy chain, non-muscle (Fragment)
	А	K1S6V7_CRAGI	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
	А	K1R866_CRAGI	Puromycin-sensitive aminopeptidase
	A	K1QBK6_CRAGI	Splicing factor 3B subunit 1
	A	K1R3U2_CRAGI	Uncharacterized protein

1			
2	Δ		Bifunctional aminoacyl-tRNA synthetase
3 4	Δ	K1QNWJ_CRAGI	Pre-mRNA-processing-splicing factor 8 (Fragment)
5	A	K1R677 CRAGI	ATP synthase subunit alpha
6	A	K1R6O7 CRAGI	DNA topoisomerase I
7	A	K1R0S3 CRAGI	T-complex protein 1 subunit theta
8	A	K1RAJ1 CRAGI	T-complex protein 1 subunit alpha
9 10	А	K1PNQ5 CRAGI	Heat shock protein HSP 90-alpha 1
11	А	K1PVA1 CRAGI	Transitional endoplasmic reticulum ATPase
12	А	K1QHI6 CRAGI	Dynein heavy chain 5, axonemal
13	А		Fatty acid synthase
14	А	K1R401_CRAGI	Spectrin alpha chain
16	Α	K1PND7_CRAGI	Fatty acid synthase
17	А	K1RGT5_CRAGI	Metalloendopeptidase
18	А	K1PLF9_CRAGI	Arginine kinase
20	А	K1QET2_CRAGI	Coatomer subunit alpha
21	А	K1QSB2_CRAGI	26S protease regulatory subunit 6B
22	А	K1R9B6_CRAGI	H/ACA ribonucleoprotein complex subunit 4
23	А	K1R512_CRAGI	Uncharacterized protein
24 25	А	K1RK12_CRAGI	40S ribosomal protein S23
26	А	K1QQR1_CRAGI	Major vault protein
27	А	K1R420_CRAGI	Non-specific serine/threonine protein kinase
28	А	K1Q9W5_CRAGI	T-complex protein 1 subunit eta
29	А	K1QSX8_CRAGI	ATPase family AAA domain-containing protein 2B
31	A	K1Q350_CRAGI	Glyceraldehyde-3-phosphate dehydrogenase
32	Α	K1PJ85_CRAGI	26S protease regulatory subunit 6A
33	A	K1Q923_CRAGI	Putative ATP-dependent RNA helicase DDX4
34	A	K1PJ06_CRAGI	Importin subunit alpha-1
36	A	KIRLC5_CRAGI	T-complex protein 1 subunit epsilon
37	A	KIRZ/8_CRAGI	Fubulin beta chain
38	A ^	KIROLI_CRAGI	26S protessome non-ATPase regulatory subunit 2
39 40	Δ	KIPLI4_CRAGI	Transcriptional activator protein Pur-alpha
41	Α	K1RG73 CRAGI	Acetyl-CoA carboxylase
42	A	K10LK6 CRAGI	E3 ubiquitin-protein ligase HUWE1
43	A	K1PXN5 CRAGI	T-complex protein 1 subunit zeta
44 45	А	K1P9D0 CRAGI	Stress-70 protein, mitochondrial
46	А		Dipeptidyl peptidase 3
47	А		Malate dehydrogenase, mitochondrial
48	Α	K1Q988_CRAGI	Band 4.1-like protein 3
49 50	А	K1QB04_CRAGI	26S proteasome non-ATPase regulatory subunit 3
51	А	K1QRL4_CRAGI	Importin-5
52	А	K1Q1I2_CRAGI	26S protease regulatory subunit 7
53 54	А	K1QXR4_CRAGI	Pancreatic lipase-related protein 2
55	А	K1RH70_CRAGI	6-phosphogluconate dehydrogenase, decarboxylating
56	А	K1PH66_CRAGI	Fibrinolytic enzyme, isozyme C
57	А	K1PTY5_CRAGI	Protocadherin Fat 4
58	A	K1QI14_CRAGI	40S ribosomal protein S3a
59 60	Α	K1QBN0_CRAGI	Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial
00	A	K1QMD3_CRAGI	Glycerol-3-phosphate dehydrogenase [NAD(+)]
	A	K1QVN9_CRAGI	I-complex protein 1 subunit eta
	A	KIKN//_CRAGI	Nuclear autoantigenic sperm protein
	A		Putative ATP-dependent RNA helicase and
	A A		Insummine growth factor 2 mPNA hinding protein 1
	A A		Nisum-like growth factor 2 mknA-binding protein 1 V-box factor-like protein (Fragment)
	A A		Actin_2
	Δ		Putative methylmalonate-semialdehyde dehydrogenase [acylating] mitochondrial
	Α	K10FA6 CRAGI	Phosphoenolpyruvate carboxykinase [GTP]
	A	K1RNB5 CRAGI	Propionyl-CoA carboxylase beta chain, mitochondrial
	A	K1RJH5 CRAGI	Polyadenylate-binding protein
		_	

1		
2 2 A	K1PLY1 CRAGI	DNA polymerase
3 A 4 A	K1R5U4 CRAGI	Acetyl-CoA carboxylase 1
5 Δ	K1PE10 CRAGI	PAN2-PAN3 deadenvlation complex catalytic subunit PAN2
6 Δ	K1OBR5 CRAGI	Lincharacterized protein
7	KIQUKS_CRAGI	
8 4	K1RFT1 CRAGI	Band 4 1-like protein 3
9 A	K1R2V/1 CRAGI	Importin subunit beta-1
10 A 11 A	K1RW85 CRAGI	Adenosylhomocysteinase
12		Lincharacterized protein
13	K1PEG1 CRAGI	Uncharacterized protein
14		60S acidic ribosomal protein PO
15 A 16 A	KIQWAZ_CRAGI	Libiquitin-like modifier-activating enzyme 1
10 A 17 A		Dynein heavy chain 7 avonemal
18 A	KIRWWS CRAG	ATP synthase subunit beta
19	KIRIO7 CRAGI	Multifunctional protein ADE2
20		Actin cytoplasmic
21 ~		CAD protein
22 A 23 A	KINHA2 CRAGI	Spectrin heta chain, hrain A
24 A		
25	KIRLOU_CRACI	26S protessome pop_ATPase regulatory subunit 2
26	KIN412_CNAOI	ATP_citrate synthese
27 A	KINIKI_CRAGI	Costomer subunit beta
28 A 29 A		26S protessome non-ATPase regulatory subunit 7
30 A		Lough tPNA synthetase systemaserie
31		Dibydrolinovi dobydrogonaco
32 A		265 protoscomo pop ATPaco regulatory subupit 6
33 A		Dynamin-1-like protein
34 A 35 A	KIQTIZ_CRAGI	Cytosolic carboyypontidase 1
36		40S ribosomal protein S7
37	KINSZO_CRAGI	soleucyl_tPNA synthetase cytoplasmic
38 4		V-type proton ATPase catalytic subunit A
39 A	KIQ9V5_CRAGI	Transketolaso-like protoin 2
40 A	KINDC9_CRACI	Vigilin
42 <u>^</u>	KIPPPO_CRAGI	Ubiquitin carboxyl-terminal hydrolase
43		Endoplasmin
44	KIQAZO_CRACI	Costomer subunit gamma
45 A 46 A		
47 A		Uncharacterized protein
48		Phosphoglycerate kinase
49	KIQUUL_CRAGI	26S proteasome non-ATPase regulatory subunit 1
50	KIPJP9_CRAGI	78 kDa glucose-regulated protein
51 A 52 A		D-3-nhosnhoglycerate dehydrogenase (Fragment)
52 A 53 A	KIRN76 CRAGI	Eukarvotic translation initiation factor 3 subunit D
54 A	K1R3V8 CRAGI	COP9 signalosome complex subunit A
55	KINJVO_CRAGI	Long-chain-fatty-acidCoA ligase 1
56 ~	KINOLZ_CRAGI	La-related protein 7
57 Λ 58 Δ	KIODNI CRAGI	Heat shock protein 75 kDa, mitochondrial (Fragment)
59 A	K107F2 CRAGI	Exportin-7
60 A	K1PMT6 CRAGI	Heterogeneous nuclear ribonucleonrotein U-like protein 1
A	K1RCW5 CRAG	Fukaryotic translation initiation factor 4 gamma 3
Δ	K1R7I9 CRAGI	Heterogeneous nuclear ribonucleonrotein O
A		Delta-1-pyrroline-5-carboxylate synthetase
Δ	K1P3O5 CRAGI	Programmed cell death 6-interacting protein
A		Uncharacterized protein
Δ	K1ORF7 CRAGI	Hypoxia up-regulated protein 1
A		Filamin-C
Δ		Ribonucleoside-dinhosnhate reductase
A		Proteasome-associated protein FCM29-like protein
Δ		AP complex subunit beta
A	K1R4R9 CRAGI	Mitotic apparatus protein p62

2			
3	А	K1QXH3_CRAGI	Translational activator GCN1
4	A	K1P5D4_CRAGI	Cysteine synthase
5	A	K1RM80_CRAGI	Citrate synthase
0 7	А	K1PVH5_CRAGI	Centromere/kinetochore protein zw10-like protein
, 8	А	K1QQ27_CRAGI	Pancreatic lipase-related protein 2
9	А	K1QMX8_CRAGI	DNA replication licensing factor MCM7
10	А	K1QK56_CRAGI	Uncharacterized protein
11	А	K1QMB9_CRAGI	Eukaryotic translation initiation factor 3 subunit A
12	А	K1R0W4_CRAGI	Signal recognition particle subunit SRP72
14	А	K1QLT5_CRAGI	26S protease regulatory subunit 4
15	А	K1QSR2_CRAGI	Apoptosis inhibitor 5
16	А	K1QKA9_CRAGI	Piwi-like protein 2
17	А	K1RJM8_CRAGI	SAGA-associated factor 11 homolog
18	А	K1QQB6_CRAGI	40S ribosomal protein S14
19 20	А	K1PE57_CRAGI	Severin
21	А	K1PKK7_CRAGI	AP-2 complex subunit mu-1
22	А	K1QXS6_CRAGI	Heterogeneous nuclear ribonucleoprotein A2-like protein 1
23	А	K1R5F2_CRAGI	14-3-3 protein epsilon
24	А	K1Q4V0_CRAGI	Myosin-VIIa
25	А	K1QA50_CRAGI	V-type proton ATPase subunit H
20	А	K1QWK2_CRAGI	MAM domain-containing glycosylphosphatidylinositol anchor protein 2
28	А	K1PV49 CRAGI	RuvB-like helicase
29	А	K1QAB1 CRAGI	AP-2 complex subunit alpha
30	А	K1RK33 CRAGI	Exportin-1
31	А	K1PCS4 CRAGI	Eukarvotic translation initiation factor 2 subunit 3. Y-linked
32 33	А	K1RSA6 CRAGI	Methylcrotonovl-CoA carboxylase subunit alpha, mitochondrial
34	A	K1PI02 CRAGI	Talin-1
35	A	K1PNP4 CRAGI	26S proteasome non-ATPase regulatory subunit 11
36	A	K1RALO CRAGI	Aspartate aminotransferase, cytoplasmic
37	A	K10X08 CRAGI	DNA helicase
38	Δ		V-type proton ATPase subunit B
39 40	Α		Histone H3
41	Δ	K1S151 CRAGI	Rab GDP dissociation inhibitor
42	Δ		Strawberry notch-like protein 1
43	Δ		Adenvlvl cyclase-associated protein
44	Α	K10BW6 CRAGI	Tudor domain-containing protein 1
45 46	Δ		40S ribosomal protein S8
47	Δ		THO complex subunit 2
48	Δ	KIQOO4_CRAGI	Histone H2A
49	Δ		Malate dehydrogenase (Fragment)
50	A A	A7M7T7 CRAGI	Non-selenium glutathione neroxidase
51	A ^		26S protessome pop_ATPase regulatory subunit 3
53	A ^		Ans ribosomal protein SA
54	Δ		Polvadenvlate-hinding protein 2
55	A A		
56	A ^		S-adenosylmethionine synthese
57	A ^		Tudor domain-containing protein 1
59	A ^	KIQBLO_CRAGI	Very long-chain specific acyl-CoA dehydrogenase mitochondrial
60	A ^	KIQLSZ_CRACI	Pasic leucine zinner and W2 domain-containing protein 1
	A ^	KIFT/5_CRAGI	Lincharactorized protein
	A ^	KISZTU_CRAGI	ADD-ribosylation factor-like protein 15
	л л		Importin subunit alpha
	л л		Aspartate aminetransferase, mitechandrial
	A A		Aspartate animotransierase, initochonunana
	A A		605 ribosomal protoin 172
	A A		Drotoin argonauto 2
	A ^		Protein argonaule-2
	A ^		NAD(r) (ranshyurogenase, milochononal Dand 4.1 like protein F
	A	KIRIZY_CRAGI	Banu 4.1-like protein 5
	A	KIKZQ9_CRAGI	Aspartate aminotransferase
	А	KIQ4EI_CKAGI	N-acetyi-D-giucosamine kinase

Page 133 of 151

1		
2 2 A	K1R916 CRAGI	Structural maintenance of chromosomes protein
4 A	K1R2N0 CRAGI	Histone H4
5 A	K1P7K8 CRAGI	Vesicle-fusing ATPase 1
6 _A	K1PIC1 CRAGI	Adipophilin
7 A	K10VR0 CRAGI	26S proteasome non-ATPase regulatory subunit 8
8 A	K106X5 CRAGI	Protein disulfide-isomerase
10 Δ		40S ribosomal protein S17
10 Л 11 д	K10T21 CRAGI	Putative ATP-dependent RNA helicase DDX5
12 A		CCAAT/enhancer-hinding protein zeta
13 A		Talin-1
		405 ribosomal protein SA
15 Λ 16 Δ	K10H70 CRAGI	Leucine-rich repeat-containing protein 40
17 Δ		Transnortin-1
18 <u>A</u>	K10550_CRAGI	Incharacterized protein
19	K1PAV7 CRAGI	Pronionyl-CoA carboxylase alpha chain, mitochondrial
20	K1OPP2 CRAGI	Flongation factor Tu, mitochondrial
21 A	KIDY23 CRACI	Eukarvotic pentide chain release factor subunit 1
22 A 23 A		Lincharacterized protein
24 A	KIQKOJ_CKAOI	Phenylalanyl-tRNA synthetase beta chain
25	KIRID7_CRAGI	Succipate debydrogenase [ubiquinone] flavonrotein subunit mitochondrial
26		Succinate denyal ogenase (abiquinone) havoprotein subunit, initochonanal
27 A	KIPP90_CRAGI	605 ribosomal protoin 122
28 A 29 A		Eukaryotic translation initiation factor 3 subunit M (Fragment)
30 A	KIRUD7_CRAGI	CDR L fuçoso synthetaso
31		Diactin 2
32 A	KIKZDO_CRAGI	Plastill-S
33 A		V type proton ATPase subunit D
35 A		Acetyl CoA carbowlaso
36 A	KIR955_CRAGI	14.2.2 protoin gamma
37	KIPPQI_CRAGI	14-5-5 protein gamma
38 4		Protoin argining N mothyltransforase 1
39 A 40 A	KIPHSI_CRAGI	Coll division control protoin 2 like protoin (Fragment)
40 A 41 A	KIRDV7_CRAGI	Populator of popsonso transcripts 1
42 <u>^</u>	KIPDZ4_CRAGI	Constitutive coastivator of PDAP, gamma like protein 1 like protein
43	KIPUJ7_CRAGI	Cold shock domain-containing protein F1
44	KIPVZJ_CRACI	Eukaryotic initiation factor (A-II (Fragment)
45 A 46 A	KIFLA/_CRAGI	
40 A 47 A	KIQISS_CRAGI	Transport protein Sec31A
48		Splicing factor, argining/sering-rich 1
49	KIQHT4_CRAOI	Kinetochore-associated protein 1
50 A	KINDS7_CRACI	Exportin-5
51 A 52 A	KIRLCS_CRACI	Transcription factor BTE2
52 A 53 A	KINGIS CRAGI	Importin-A
54		ATD-hinding cassette sub-family E member 2
55		Importin-7
56 ^		DNA-directed RNA polymerase mitochondrial
57 A	K1PD30 CRAGI	Putative histone-hinding protein Caf1
50 A		
60 <u></u>		DNA helicase
Δ		Eosinonhil perovidase
Δ		Cytochrome b-c1 complex subunit 2 mitochondrial
Δ		SUMO-activating enzyme subunit 2
Δ		Replication protein A subunit
Δ		2-amino-3-ketohutyrate coenzyme & ligase mitochondrial (Fragment)
Δ		Transmembrane protein 2
Δ		Fukaryotic translation initiation factor 6
Δ		Methenyltetrahydrofolate synthetase domain-containing protein
Δ	KIPNIN CRACI	Intron-binding protein aquarius
Δ		Aldehyde dehydrogenase mitochondrial
Δ		Actin-related protein 3
<i>/ \</i>		

3	А	K1R9T2_CRAGI	Eukaryotic translation initiation factor 3 subunit B
4	A	K1PS27_CRAGI	DNA helicase
5	А	K1Q5G6_CRAGI	60 kDa heat shock protein, mitochondrial
6	А	K1QRM1_CRAGI	Nuclear pore protein
/ 8	А	K1QGC9_CRAGI	Acetyl-coenzyme A synthetase
9	А	K1RLT4_CRAGI	Signal recognition particle subunit SRP68
10	А	K1PAR4_CRAGI	Unc-45-like protein A
11	А	K1QVE8_CRAGI	Phosphoacetylglucosamine mutase
12	А	K1Q4Z4 CRAGI	Bifunctional purine biosynthesis protein PURH
13	А	K1P8W6_CRAGI	60S ribosomal protein L4
14	А	K1QQK1 CRAGI	26S proteasome non-ATPase regulatory subunit 12
16	A	K1RIT6 CRAGI	NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial
17	А	– K1R2L7 CRAGI	Glutaminyl-tRNA synthetase (Fragment)
18	А	K1QRQ2 CRAGI	Glutamate dehydrogenase 1, mitochondrial
19	А	K1RKZ5 CRAGI	DNA damage-binding protein 1
20 21	А	K1QC10 CRAGI	GTP-binding protein 1
22	А	K1PGZ0 CRAGI	Thyroid adenoma-associated protein
23	А	K1OUK0 CRAGI	NEDD8-activating enzyme E1 catalytic subunit
24	A	K100P1_CRAGI	Programmed cell death protein 4
25	A	K1PM50 CRAGI	40S ribosomal protein S16
26	Δ	K1PIS7 CRAGI	Poly [ADP-ribose] polymerase
27	Α		Enclase
29	Α		ValvI-tRNA synthetase
30	Α		Alpha-centractin
31	Δ	K1OR73 CRAGI	40S ribosomal protein S13
32	Δ		Katanin n60 ATPase-containing subunit A1
33 34	Δ		60S ribosomal protein 1.6
35	Δ		Phospholinase A-2-activating protein
36	Δ	K1P9N7 CRAGI	14-3-3 protein zeta
37	Δ	K1PG07_CRAGI	Lunus La-like protein
38	Δ		Ceramide kinase-like protein
39 40	Δ		Alpha-aminoadinic semialdehyde synthase mitochondrial
41	Δ		Dynein heavy chain 5, axonemal
42	Δ	K1PCV0 CRAGI	Severin
43	A A		Caprin-1
44	A ^		Costomer subunit beta (Fragment)
45 46	A A	K10272 CPAG	60S ribosomal protein 114
47	A ^		
48	A ^		Periostin
49	A ^	KIQVVJ_CRAGI	ATB synthase subunit gamma mitechendrial
50	A ^	KIFIIZ_CRAOI	Dynein heavy chain 6 ayonemal
51	A ^	KIQKIN4_CRAGI	CDR mannassa 4.6 dabydratassa
53	A ^	K1F2B8_CRAGI	AP-1 complex subunit gamma
54	A ^		Ubiguitin conjugation factor E4 P
55	A ^		Tetratricopentide repeat protein 28
56	A ^	KIQWZU_CRAGI	S (hydroxymothyl)glutathiono dohydrogonaco
5/	A	KIQKF6_CRAGI	S-(InvaloxyInethyl)glutatillone denydlogenase
59	A 	KIRDOS_CRAGI	ATD dependent DNA holicase 2 subunit 1
60	A	KIRIFU_CRAGI	ATP-dependent DNA helicase 2 subunit 1
	A		Nucleolor complex protein 2 homolog
	A		ACC ribesomal protein S26
	A	KIPISU_CRAGI	405 hbosoniai protein 526
	A A	KIRGIO_CKAGI	Culler I
	A A	KIPOFU_CKAGI	next repeat-containing protein z
	A A		renney unreonine-protein prosphatase
	A A		INNA 2 -O-Methyliransierase IIDMilarin
	A .		Uncharacterized protein
	A A		Uncharacterized protein
	A A		US Small nucleolar KINA-associated protein 6-like protein
	A	KIKEJZ_CKAGI	Lon procease nomolog, mitochondrial
	А	KIPLD4_CKAGI	Dynein neavy chain 2, axonemai

1		
2 2 A	K1OPC6 CRAGI	Nucleolar complex protein 2-like protein
3 A 4 A	K1POZ3 CRAGI	Armadillo repeat-containing protein 4
5 Δ	K106F7 CRAGI	V-type proton ATPase subunit C
6 _A	K1RPF7_CRAGI	60S ribosomal protein L5
7 A	K10H06 CRAGI	Acyl-CoA dehydrogenase family member 9. mitochondrial
8 A	K1PES5 CRAGI	Flongation factor 1-gamma
10 A	K1PPW8 CRAGI	Coatomer subunit beta
11 A	K10GF4_CRAGI	Proteasome endopentidase complex (Fragment)
12 A	K10DX9 CRAGI	Ribosome biogenesis protein BMS1-like protein
13 A	K108K2 CRAGI	Importin subunit alpha
14 A	K1OTW6 CRAGI	Eukarvotic translation initiation factor 3 subunit F
16 A	K1OBW8 CRAGI	Uncharacterized protein
17 A	K1OT97 CRAGI	N(G)-dimethylarginine dimethylaminohydrolase 1
¹⁸ A	K1OWK6 CRAGI	Metalloendopeptidase
19 A	K10093 CRAGI	Adenosine kinase 1
20 A	K1PWD9 CRAGI	Uncharacterized protein
22 A	K1R6S5 CRAGI	40S ribosomal protein S9
23 A	K1OBL3 CRAGI	Putative phosphoglycerate mutase
²⁴ A	K1RH58 CRAGI	Alpha-actinin. sarcomeric
25 A	K1R5V4 CRAGI	GTP-binding nuclear protein
26 A	K1P8I1 CRAGI	Pleckstrin-like protein domain-containing family F member 2 (Fragment)
28 A	K1PA54 CRAGI	Replication factor C subunit 3
29 A	K1QYI9 CRAGI	Arginyl-tRNA synthetase, cytoplasmic (Fragment)
³⁰ A	K1PVV6 CRAGI	Putative aminopeptidase W07G4.4
31 22 A	K1RV41 CRAGI	Guanine nucleotide-binding protein subunit beta-2-like 1
32 33 A	K1PMP3 CRAGI	Protoporphyrinogen oxidase
34 A	K1PJ96 CRAGI	Uncharacterized protein
35 A	K1RG19 CRAGI	Protein FAM98A
³⁶ A	_ K1QIP0 CRAGI	26S proteasome non-ATPase regulatory subunit 5
37 20 A	K1QXF5 CRAGI	Calcyphosin-like protein
38 39 A	K1Q6W5 CRAGI	FACT complex subunit spt16
40 A	K1QRK9 CRAGI	Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial
⁴¹ A	K1R983 CRAGI	Protein transport protein SEC23
⁴² A	K1P5V7 CRAGI	Eukaryotic translation initiation factor 3 subunit C
43 44 A	K1RCW3_CRAGI	Elongation factor 1-beta
45 A		Fructose-bisphosphate aldolase
46 A	K1QPY8_CRAGI	Extracellular superoxide dismutase [Cu-Zn]
⁴⁷ A	K1PCQ2_CRAGI	E3 ubiquitin-protein ligase UBR4
⁴⁸ A	K1Q7T5_CRAGI	Protein disulfide-isomerase
49 50 A	K1PLM3_CRAGI	Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial
50 51 A	K1RAT9_CRAGI	Tubulin-specific chaperone D
52 A	K1QKK5_CRAGI	Vacuolar protein sorting-associated protein 4B
53 A	K1QJL6_CRAGI	Microtubule-associated protein RP/EB family member 3
⁵⁴ A	K1QB86_CRAGI	Dynamin-1
55 56 A	K1QN11_CRAGI	Pre-mRNA-processing-splicing factor 8
57 A	K1QHH0_CRAGI	Protein henna
58 A	K1QVP6_CRAGI	Developmentally-regulated GTP-binding protein 1
⁵⁹ A	K1PQI4_CRAGI	Enolase-phosphatase E1
⁶⁰ A	K1R3I6_CRAGI	Nucleolar complex protein 2-like protein (Fragment)
А	K1QJF7_CRAGI	Coronin
А	K1PKF5_CRAGI	Protein-glutamine gamma-glutamyltransferase 4
А	K1R266_CRAGI	Retinal dehydrogenase 1
А	K1Q3F9_CRAGI	Armadillo repeat-containing protein 8
А	K1QSZ6_CRAGI	Uncharacterized protein
А	K1P8B7_CRAGI	Ubiquitin-conjugating enzyme E2-17 kDa (Fragment)
А	K1QLK8_CRAGI	GTP-binding protein SAR1b
А	K1QF31_CRAGI	Serine/threonine-protein kinase PLK
А	K1RKC1_CRAGI	Far upstream element-binding protein 3
А	K1PHF1 CRAGI	Putative ubiquitin carboxyl-terminal hydrolase FAF-X
	KIIIILI_CIAOI	

2 3	А	K1R008_CRAGI	Proteasome subunit alpha type
4	А	K1QBG8 CRAGI	Proteasome subunit beta type-4
5	А	K1R8B2 CRAGI	Isovaleryl-CoA dehydrogenase, mitochondrial
6	А	K1RNN9 CRAGI	Cytoskeleton-associated protein 5
7	А	K1QYG7 CRAGI	Glucosaminefructose-6-phosphate aminotransferase [isomerizing] 1
8 9	А		Uncharacterized protein
10	А	K1PRD5_CRAGI	Trifunctional purine biosynthetic protein adenosine-3
11	А	K1PBH3_CRAGI	Dynein heavy chain 3, axonemal
12	А	K1QVK0_CRAGI	Transaldolase
13	А	K1PAM6_CRAGI	Uncharacterized protein
14	А	K1Q948_CRAGI	Alpha-1,4 glucan phosphorylase
16	А	K1RGG1_CRAGI	Alanyl-tRNA synthetase, cytoplasmic
17	А	K1Q9P5_CRAGI	Mitochondrial-processing peptidase subunit beta
18	А	K1QTE3_CRAGI	ATP-binding cassette sub-family F member 1
19 20	А	K1PZ08_CRAGI	Ras-related protein Rab-7a
20	А	K1RGJ7_CRAGI	Neogenin
22	А	K1RK68_CRAGI	Uncharacterized protein
23	А	K1QEF9 CRAGI	Protein-glutamine gamma-glutamyltransferase K
24	А	K1RHB2 CRAGI	Nucleolar RNA helicase 2
25	А	K1QAF3 CRAGI	Alanine aminotransferase 2
20 27	А	K1PB94 CRAGI	ATP-binding cassette sub-family E member 1
28	А	K1R488 CRAGI	Actin-related protein 2/3 complex subunit
29	А	K1QC65 CRAGI	DNA polymerase alpha subunit B
30	А	K1PCR9 CRAGI	Proteasome endopeptidase complex
31	А	K1RFU6 CRAGI	Proteasome activator complex subunit 3
2∠ 33	А	K1R9R5 CRAGI	Proteasome subunit alpha type
34	А		Ubiquitin-like modifier-activating enzyme 1
35	А	K1Q1L4 CRAGI	Uncharacterized protein
36	А	K1Q982 CRAGI	Malignant fibrous histiocytoma-amplified sequence 1
37	А	K1PKF6 CRAGI	26S proteasome non-ATPase regulatory subunit 13
38 39	А	K1QBT2 CRAGI	Proteasome subunit beta
40	А	K1P5Z3 CRAGI	Lysosomal aspartic protease
41	А	K1P7L9 CRAGI	Nucleolar GTP-binding protein 1
42	А	K1Q9M7 CRAGI	Histone H1-delta
43	А	K1PS84 CRAGI	Alpha-crystallin B chain
44 45	А	K1R6C2 CRAGI	Peroxisomal 3.2-trans-enovl-CoA isomerase
46	A	K1PZC0_CRAGI	Structural maintenance of chromosomes protein
47	A	K1PMJ9 CRAGI	Cleavage stimulation factor 77 kDa subunit
48	A	K1R4M7_CRAGI	Serine/threonine protein phosphatase 2A regulatory subunit
49	A	K1S3G2 CRAGI	HMGB1
50 51	A	K1PB82_CRAGI	Electron transfer flavoprotein subunit beta
52	A	K1PWP4 CRAGI	Phenylalanyl-tRNA synthetase alpha chain
53	A	K10NS4 CRAGI	Dnal-like protein subfamily C member 9
54	A	K107F4 CRAGI	Ubiguitin-conjugating enzyme F2 N
55	A	K1R6F1 CRAGI	Proteasome subunit alpha type
56	A	K10667_CRAGI	tRNA-splicing ligase RtcB homolog
58	A	K10WC3 CRAGI	40S ribosomal protein S3
59	A	K1RAH6 CRAGI	Ubiguitin-conjugating enzyme E2-17 kDa
60	A	K1RIM7 CRAGI	Methionine aminopeptidase 2
	A	K1PXS8 CRAGI	
	A	K1RIG6 CRAGI	LSM14-like protein A
	A	K1R168 CRAGI	Dynein heavy chain 2, axonemal
	A		Inter-alpha-trypsin inhibitor heavy chain H4
	Α		Tudor domain-containing protein 1
	Δ	KIRNRE CRACI	Alpha-aminoadinic semialdebyde debydrogenase
	Δ		ADP ATP carrier protein
	Δ	KINERS CRACI	CCR4-NOT transcription complex subunit 1
	Δ		Snectrin heta chain
	Λ	KIRADE CDACI	Malic enzyme
	^		Myosin-Ic
	~		iviyusiii-iu

1		
2 2 A	K10AH9 CRAGI	H/ACA ribonucleoprotein complex subunit
3 Λ Δ Δ		26S proteasome non-ATPase regulatory subunit 1
5 Δ		40S ribosomal protein S12
6 _A	K1PY89 CRAGI	Extracellular superoxide dismutase [Cu-Zn]
7 A	K10662 CRAGI	Actin-interacting protein 1
8 A	K104G7 CRAGI	Tubulin gamma chain
10 A	K1R472 CRAGI	Synaptobrevin-like protein YKT6
11 д	K1PS69 CRAGI	Importin-9
12 A	K10DU9 CRAGI	3-nhosphoinositide-dependent protein kinase 1
13 A	K1PEU5 CRAGI	Ubiquitin-conjugating enzyme F2 C
14 A	K10KG8 CRAGI	Unstream activation factor subunit spp27
15 A	K1R0P8 CRAGI	CTP synthase
17 д	K107X9 CRAGI	Uncharacterized protein
18 A	K1OTD9 CRAGI	Nucleolar protein 56
19 A	K1PIP8 CRAGI	Proteasome subunit beta
20 A	K1RBF6 CRAGI	Uncharacterized protein vfeX
21 A	K1PW99 CRAGI	Protein OSCP1
23 A	K1PWB9_CRAGI	FH domain-containing protein 1
²⁴ A	K1PU46 CRAGI	Lethal(2) giant larvae-like protein 1
25 A	K10YH6 CRAGI	COP9 signalosome complex subunit 3
26 A	K106I1 CRAGI	Ubiquitin-conjugating enzyme E2 L3
27 A	K1PF60 CRAGI	3-ketoacyl-CoA thiolase, mitochondrial
29 A	K1POD4 CRAGI	Phosphoglucomutase-1
³⁰ A	K1PSN0 CRAGI	Pre-mRNA-processing factor 40-like protein A
31 A	K1R834 CRAGI	60S ribosomal protein L9
32 A	K1RBU9 CRAGI	Non-specific serine/threonine protein kinase
34 A	K10HM2 CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2
35 A	K1QW73 CRAGI	Glycoprotein 3-alpha-L-fucosyltransferase A
³⁶ A	K1Q7X3 CRAGI	Pre-mRNA-splicing factor SYF1
37 20 A	K1PUJ1 CRAGI	Radixin
30 39 A		Acetyltransferase component of pyruvate dehydrogenase complex
40 A	K1PRL4 CRAGI	60S ribosomal protein L38 (Fragment)
⁴¹ A	K1Q0G7_CRAGI	Developmentally-regulated GTP-binding protein 2
⁴² A	K1PBN1_CRAGI	Phospholipase
43 44 A	K1QJ33_CRAGI	Aminoacyl tRNA synthetase complex-interacting multifunctional protein 2
45 A	A5LGH1_CRAGI	Voltage-dependent anion channel
46 A	K1PUV4_CRAGI	40S ribosomal protein S24
47 A	K1QJE9_CRAGI	Uncharacterized protein
⁴⁸ A	K1R005_CRAGI	Filamin-C (Fragment)
50 A	K1RGB7_CRAGI	Epidermal retinal dehydrogenase 2
51 A	K1PPJ6_CRAGI	Nicotinamide phosphoribosyltransferase
52 A	K1PEW1_CRAGI	Sorting nexin
⁵³ A	K1QDH9_CRAGI	Myosin-11
⁵⁴ A	K1QPJ9_CRAGI	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B
₅₆ A	K1R9S5_CRAGI	Cytosolic Fe-S cluster assembly factor NUBP2 homolog
57 A	K1PTV1_CRAGI	Splicing factor 3B subunit 4
58 A	K1Q5H6_CRAGI	FACT complex subunit SSRP1
59 A	K1RN05_CRAGI	Transportin-3
⁰⁰ A	K1PDE4_CRAGI	Protein arginine N-methyltransferase
A	K1Q9G3_CRAGI	Isocitrate dehydrogenase [NAD] subunit, mitochondrial
A	K1R2H9_CRAGI	WD repeat-containing protein 35
A	K1PA61_CRAGI	Actin-like protein 6A
Α	K1QQT2_CRAGI	Uncharacterized protein y4xO
Α	K1PJG8_CRAGI	Timeless-like protein
A	K1QJM1_CRAGI	60S ribosomal protein L30
A	K1QK68_CRAGI	Myosin-2 essential light chain
A	K1R517_CRAGI	Superkiller viralicidic activity 2-like 2
A	K1Q6V6_CRAGI	Replication factor C subunit 4
A	K1Q888_CRAGI	i ransiin
A	K1QQC1_CRAGI	Dynein light chain roadblock

₃ A	K1Q1F4_CRAGI	60S ribosomal protein L3 (Fragment)
4 A	K1Q2E0_CRAGI	AP-1 complex subunit mu-1
5 A	K1Q155_CRAGI	THO complex subunit 1
6 A	K1R3M4_CRAGI	Ubiquitin-like modifier-activating enzyme 1
΄ Α	K1PML4_CRAGI	Pre-mRNA-processing factor 39
9 A	K1QEK7_CRAGI	Ubiquitin carboxyl-terminal hydrolase
10 A	K1QDI4_CRAGI	Superoxide dismutase [Cu-Zn]
11 A	K1Q1Z3_CRAGI	Seryl-tRNA synthetase, cytoplasmic
¹² A	K1Q4X8_CRAGI	DNA mismatch repair protein Msh2
13 14 A	K1P5F7_CRAGI	Metastasis-associated protein MTA1
15 A	K1R7J6_CRAGI	Putative sodium/potassium-transporting ATPase subunit beta-2
16 A	K1QNY7_CRAGI	Transport protein Sec24C
17 A	K1QKQ5_CRAGI	N-terminal acetyltransferase B complex subunit MDM20
¹⁸ A	K1PH10_CRAGI	Polyadenylate-binding protein-interacting protein 1
19 20 A	K1Q329_CRAGI	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
20 21 A	K1QI08_CRAGI	Ribose-phosphate pyrophosphokinase 1
22 A	K1QV87_CRAGI	Catenin alpha-2
23 A	K1PXD4_CRAGI	Putative ATP-dependent RNA helicase DDX6
²⁴ A	K1QCQ5_CRAGI	SuccinateCoA ligase [ADP-forming] subunit beta, mitochondrial
25 26 A	K1QCL6_CRAGI	Proteasomal ubiquitin receptor ADRM1
20 27 A	K1PFV9_CRAGI	4-trimethylaminobutyraldehyde dehydrogenase
28 A	K1PTR3_CRAGI	Oxysterol-binding protein
29 A	K1R1T8 CRAGI	Nucleolar protein 56
³⁰ A	K1QUC6_CRAGI	Uncharacterized protein
31 32 A	K1QCM0_CRAGI	Rho GDP-dissociation inhibitor 1
32 33 A	K1QNZ3_CRAGI	Serine/threonine-protein phosphatase
34 A	K1QKG9_CRAGI	Cysteine desulfurase, mitochondrial
35 A	K1RUW0_CRAGI	E3 SUMO-protein ligase RanBP2
³⁶ A	K1QPZ1_CRAGI	Actin-related protein 2/3 complex subunit 3
\prec		
38 A	K1QHT0_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial
38 A 39 A	K1QHT0_CRAGI K1Q5I4_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2
38 A 39 A 40 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH
38 A 39 A 40 A 41 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5 CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1
38 A 39 A 40 A 41 A 42 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2
38 A 39 A 40 A 41 A 42 A 43 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1PKL8_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1S1X3_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1S1X3_CRAGI K1Q3F4_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1S1X3_CRAGI K1Q3F4_CRAGI K1P7J8_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1S1X3_CRAGI K1Q3F4_CRAGI K1P7J8_CRAGI K1QXR6_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial
38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1RA63_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1S1X3_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4T3_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX84_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI K1QMT1_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1PKL8_CRAGI K1S1X3_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI K1RBZ5_CRAGI K1PST9_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI K1PST9_CRAGI K1QWJ4_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI K1PST9_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI K1PST9_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QMT1_CRAGI K1PST9_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1QZI3_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWT1_CRAGI K1PST9_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1QZ13_CRAGI K1Q23_CRAGI K1Q324_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWT1_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QZI3_CRAGI K1Q2I3_CRAGI K1Q324_CRAGI K1QY71_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A </td <td>K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q264_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QY77_CRAGI K1QZI3_CRAGI K1Q324_CRAGI K1Q324_CRAGI K1QY71_CRAGI</td> <td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase</td>	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q264_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QY77_CRAGI K1QZI3_CRAGI K1Q324_CRAGI K1Q324_CRAGI K1QY71_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A </td <td>K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QY7_CRAGI K1QY7_CRAGI K1Q2I3_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QY71_CRAGI K1QV71_CRAGI</td> <td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E</td>	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QY7_CRAGI K1QY7_CRAGI K1Q2I3_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QY71_CRAGI K1QV71_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <td>K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K197J8_CRAGI K1Q3F4_CRAGI K1QX76_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QWJ4_CRAGI K1QY77_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZ4_CRAGI K1QY71_CRAGI K1QQ71_CRAGI K1QA7_CRAGI K1QA7_CRAGI K1QRD0_CRAGI</td> <td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1</td>	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K197J8_CRAGI K1Q3F4_CRAGI K1QX76_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QWJ4_CRAGI K1QY77_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZI3_CRAGI K1QZ4_CRAGI K1QY71_CRAGI K1QQ71_CRAGI K1QA7_CRAGI K1QA7_CRAGI K1QRD0_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A </td <td>K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q264_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QY77_CRAGI K1QY77_CRAGI K1QY77_CRAGI K1Q2I3_CRAGI K1Q23_CRAGI K1Q324_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QY71_CRAGI K1QQ71_CRAGI K1QRD0_CRAGI K1QRD0_CRAGI K1Q719_CRAGI</td> <td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1 Serine/threonine-protein kinase OSR1</td>	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q264_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QY77_CRAGI K1QY77_CRAGI K1QY77_CRAGI K1Q2I3_CRAGI K1Q23_CRAGI K1Q324_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QY71_CRAGI K1QQ71_CRAGI K1QRD0_CRAGI K1QRD0_CRAGI K1Q719_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1 Serine/threonine-protein kinase OSR1
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <td>K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QX76_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QWJ4_CRAGI K1QY77_CRAGI K1QY77_CRAGI K1Q2I3_CRAGI K1Q2I3_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QV71_CRAGI K1QA7_CRAGI K1QRD0_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1Q719_CRAGI</td> <td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1 Serine/threonine-protein kinase OSR1 Histone H5</td>	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1QX8_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QX76_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QWJ4_CRAGI K1QY77_CRAGI K1QY77_CRAGI K1Q2I3_CRAGI K1Q2I3_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QV71_CRAGI K1QA7_CRAGI K1QRD0_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1Q719_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha DnaJ-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1 Serine/threonine-protein kinase OSR1 Histone H5
38 A 38 A 39 A 40 A 41 A 42 A 43 A 44 A 45 A 46 A 47 A 48 A 49 A 50 A 51 A 52 A 53 A 54 A 55 A 56 A 57 A 58 A 59 A 60 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A </td <td>K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1Q2I3_CRAGI K1Q23_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QY71_CRAGI K1QQ71_CRAGI K1QA7_CRAGI K1QA7_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1QJ71_CRAGI</td> <td>Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha Dnal-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1 Serine/threonine-protein kinase OSR1 Histone H5 Sulfotransferase 1C4</td>	K1QHT0_CRAGI K1Q5I4_CRAGI K1PLW6_CRAGI K1PWU5_CRAGI K1P9S7_CRAGI K1Q260_CRAGI K1Q260_CRAGI K1Q1X3_CRAGI K1Q3F4_CRAGI K1Q3F4_CRAGI K1QXR6_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q4Q8_CRAGI K1Q8T3_CRAGI K1Q8T3_CRAGI K1QWJ4_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1QYT7_CRAGI K1Q2I3_CRAGI K1Q23_CRAGI K1Q324_CRAGI K1QY71_CRAGI K1QY71_CRAGI K1QQ71_CRAGI K1QA7_CRAGI K1QA7_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1Q719_CRAGI K1QJ71_CRAGI	Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial COP9 signalosome complex subunit 2 Bifunctional purine biosynthesis protein PURH Cytosolic carboxypeptidase 1 Brix domain-containing protein 2 Nucleolar protein 58 Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit alpha isoform SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 Inorganic pyrophosphatase 6-phosphofructokinase Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial Transmembrane protein 2 Importin subunit alpha Dnal-like protein subfamily B member 4 Ran GTPase-activating protein 1 Brefeldin A-inhibited guanine nucleotide-exchange protein 1 Splicing factor 3B subunit 5 COP9 signalosome complex subunit 7a Poly(A)-specific ribonuclease PARN Myosin-le Methionyl-tRNA synthetase, cytoplasmic Heterogeneous nuclear ribonucleoprotein K Histone H2B Uracil phosphoribosyltransferase Eukaryotic translation initiation factor 3 subunit E Cytoplasmic dynein 1 light intermediate chain 1 Serine/threonine-protein kinase OSR1 Histone H5 Sulfotransferase 1C4

1		
2	K1RBI9 CRAGI	Small nuclear ribonucleonrotein Sm D2
3 Λ Δ Δ		Ras GTPase-activating protein-binding protein 2
5 Δ		Fukaryotic translation initiation factor 2 subunit 2
6 _A	K1RGS1_CRAGI	WD repeat-containing protein 19
7 A	K1R195 CRAGI	Protein DI-1
8 A	K1R8Y1 CRAGI	Obg-like ATPase 1
10 A	K1RRH1 CRAGI	Chromodomain-helicase-DNA-binding protein Mi-2-like protein
10 Л 11 д	K1PM66_CRAGI	60S ribosomal protein L12
12 A	K1PKO3 CRAGI	Uncharacterized protein
13 13 A	K10IB2 CRAGI	Mitogen-activated protein kinase
14 15 A	K1PSN4 CRAGI	Tetratricopeptide repeat protein 39C
16 A	K1PT09 CRAGI	Uncharacterized protein
17 д	– K1SOI4 CRAGI	Methylthioribose-1-phosphate isomerase
¹⁸ A	K1Q9I1 CRAGI	TRAF2 and NCK-interacting protein kinase
19 20 A	K1R5G4 CRAGI	60S ribosomal protein L31
20 21 A		Cystathionine gamma-lyase
22 A	– K1QGP1 CRAGI	Replication factor C subunit 2
23 A	K1Q4S7 CRAGI	Calreticulin
²⁴ A	K1RTQ6 CRAGI	Fructose-bisphosphate aldolase
25 26 A		40S ribosomal protein S11
20 27 A	K1R6E9_CRAGI	Dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex
28 A	K1PXU6_CRAGI	60S ribosomal protein L24
²⁹ A	K1PVA0_CRAGI	Cullin-5
³⁰ A	K1QSZ4_CRAGI	Serinepyruvate aminotransferase
31 32 A	K1RNH1_CRAGI	60S ribosomal protein L18 (Fragment)
33 A	K1PIH2_CRAGI	V-type proton ATPase subunit E
34 A	K1QG08_CRAGI	Phosphatidylinositol-binding clathrin assembly protein LAP
35 A	K1RVR1_CRAGI	Telomerase protein component 1
30 A	K1Q9D7_CRAGI	Sorting nexin-2
38 A	K1PDC6_CRAGI	Proteasome subunit beta
39 A	K1R1E2_CRAGI	Arp2/3 complex 34 kDa subunit
40 A	K1PCR5_CRAGI	KH domain-containing, RNA-binding, signal transduction-associated protein 2
41 A 42	K1P8S5_CRAGI	Condensin complex subunit 3
43 A	KIPCH8_CRAGI	Nucleoporth p54
44 ^A	KIQISA_CRAGI	Eukaryotic translation initiation factor 5 subunit (Fragment)
45 A 46 A	KIQ947_CRAGI	Peroviredovin-1
47 Δ	KIQUIS_CRAGI	Ras-related protein Rah-14
48 6	KIQC70_CRAGI	Neurobeachin
49 A	K1PG48 CRAGI	Dynein-1-beta heavy chain, flagellar inner arm 11 complex
50 A	K1R9P5 CRAGI	Mitochondrial import receptor subunit TOM70
52 A	K1PGV8 CRAGI	Nucleoprotein TPR
53 A	K1PRV7 CRAGI	Profilin
⁵⁴ A	K1QIZ7 CRAGI	Programmed cell death protein 6
55 56 A	K1Q4U7 CRAGI	AP-3 complex subunit delta-1
57 A	K1QGL9_CRAGI	Mannose-1-phosphate guanyltransferase beta
58 A	K1PBL2_CRAGI	Eukaryotic initiation factor 4A-III
⁵⁹ A	K1R3A0_CRAGI	Transcription initiation factor IIB
⁶⁰ A	K1P7Q2_CRAGI	Elongation factor 1-gamma
А	K1PNU2_CRAGI	Histone-arginine methyltransferase CARM1
А	K1PWP8_CRAGI	Echinoderm microtubule-associated protein-like 1
А	K1QV46_CRAGI	Tetratricopeptide repeat protein 21B
А	K1QKQ9_CRAGI	Dynein heavy chain 7, axonemal
Α	K1PR47_CRAGI	Eukaryotic translation initiation factor 2A
A	K1S058_CRAGI	I ranscription factor RFX3
A	K1QEG3_CRAGI	Heat snock /U kDa protein 12B
A	KIK481_CRAGI	Epimerase family protein SDK3901
A ^		Casein kinase II subunit alaba
A A	KIOKOS CEACI	Caseni Ninase ii subunit alpina IST1-like protein
/ \		

1		
2 2 A	K1RDV2 CRAGI	Myotrophin-like protein
4 A	K1PDL3 CRAGI	Ribosomal protein L19
5 A	K1S2S8 CRAGI	Signal recognition particle 54 kDa protein
6 _A	K1OZ11 CRAGI	Geranylgeranyl transferase type-2 subunit alpha
7 A	K10U47 CRAGI	Dual oxidase 2
8 A	K1OXF9 CRAGI	Acyl-protein thioesterase 2
10 A	K1PL64 CRAGI	Poly(A) polymerase gamma
11 A	K1ROJ6 CRAGI	Enhancer of mRNA-decapping protein 4
¹² A	K10LP5 CRAGI	Coatomer subunit delta
13 1 A	K1PJB0 CRAGI	Heat shock protein 70 B2
14 15 A	K1Q404 CRAGI	DNA topoisomerase 2
16 A	K1QJA7 CRAGI	Histone chaperone asf1-B
17 A	K1RP91 CRAGI	Putative RNA exonuclease NEF-sp
¹⁸ A	K1PZD9 CRAGI	26S proteasome non-ATPase regulatory subunit 11
19 20 A		Synaptotagmin-like protein 5
20 21 A	K1RK83 CRAGI	Tyrosine-protein kinase BAZ1B
22 A	K1QQG2 CRAGI	ATP-dependent RNA helicase DHX8
23 A	K1PUQ5 CRAGI	Histone H2B
²⁴ A	K1QW72 CRAGI	Catalase
25 26 A		Universal stress protein A-like protein
20 27 A	K1PY30 CRAGI	Septin-2
28 A		Putative ATP-dependent RNA helicase DDX47
29 A	K1QNP9_CRAGI	Putative deoxyribose-phosphate aldolase
³⁰ A	K1PDF0_CRAGI	Protein disulfide-isomerase A6
31 32 A	K1R1R9_CRAGI	Pre-mRNA-processing factor 6
32 33 A	K1Q3G8_CRAGI	Chaperone activity of bc1 complex-like, mitochondrial
34 A	K1QBH4_CRAGI	ATP-dependent RNA helicase DDX42
35 A	K1PEM0_CRAGI	Ubiquitin-like modifier-activating enzyme 5
³⁶ A	K1QD23_CRAGI	Acetyl-CoA acetyltransferase B, mitochondrial
37 38 A	K1RJ96_CRAGI	Sphere organelles protein SPH-1
39 A	K1R1B1_CRAGI	35 kDa SR repressor protein
40 A	K1QCB0_CRAGI	40S ribosomal protein S5
41 A	K1RGZ8_CRAGI	Wings apart-like protein
⁴² A	K1Q107_CRAGI	Histidine triad nucleotide-binding protein 1
45 A	K1QYM1_CRAGI	Thymidylate synthase
45 A	K1QYT5_CRAGI	Phosphate carrier protein, mitochondrial
46 A	K1QJT3_CRAGI	COP9 signalosome complex subunit 1
47 A	K1QAU8_CRAGI	Peptidyl-prolyl cis-trans isomerase E
48 49	K1RG28_CRAGI	Kinase C and casein kinase substrate in neurons protein 2
50 A	K1R2S4_CRAGI	NEDD8-activating enzyme E1 regulatory subunit (Fragment)
51 A	K1Q4Y8_CRAGI	Histone H1oo
52 A	K1PYQ1_CRAGI	Protein phosphatase 1 regulatory subunit 7
53 Α 54	K1RWE5_CRAGI	Thioredoxin-like protein 1
55 A	K1QJL2_CRAGI	CCR4-NOT transcription complex subunit 10
56 A	K1P6C4_CRAGI	Poly [ADP-ribose] polymerase
57 A	K1PNL0_CRAGI	Microtubule-associated protein futsch
58 A	KIQSA2_CRAGI	Short-chain specific acyl-CoA denydrogenase, mitochondrial
60	KIQU3U_CRAGI	MON2-like protein
A	K1Q317_CRAGI	Serine/threonine-protein kinase SRPK1
A ^		ri ustaglahulli reuutase 1 Arginul-tPNA synthetase, syteplasmis
A		Arginyi-ikiyA synthetase, cytopiasmic Earritin
A 	KIRUWU_CKAGI	Ferrium Glycerol 2-phosphoto dobydrogonoso [NAD(1)]
A A	KICODO CRACI	Distative ATE-dependent PNA holicase DDV42
A 		r utative At r-dependent RNA Helicase DDA43
A A	KIOSI CACI	JIDEO160 protein MVG1 mitochondrial (Fragment)
A A		Incharacterized protein
Α Δ	KIQNFO_CKAGI	Chromatin assembly factor 1 subunit A
Δ		Alnha-toconherol transfer-like protein
~		Hydroxysteroid dehydrogenase-like protein 2
А		

1			
2	Δ	O70MT4 CRAGI	40S ribosomal protein S10
3 4	A	K1POB4_CRAGI	Acyl-CoA dehydrogenase family member 10
5	A	K1PZI3 CRAGI	SWI/SNE complex subunit SMARCC2
6	A	K1PNS2 CRAGI	33 kDa inner dynein arm light chain, axonemal
7	A	K1RG36 CRAGI	Phosphoribosylformylglycinamidine synthase (Fragment)
8 Q	А	K1QMQ0 CRAGI	Putative exonuclease mut-7-like protein
10	A	K1QD80_CRAGI	Protein quaking-B
11	А	K1R0M2_CRAGI	Uncharacterized protein
12	Α	K1QKI4_CRAGI	LysinetRNA ligase
13 14	А	K1PPH6_CRAGI	Kelch domain-containing protein 8B
15	А	K1QBE2_CRAGI	Syntaxin-5
16	А	K1RHP3_CRAGI	Proliferation-associated protein 2G4
17	А	K1PZU1_CRAGI	Hsc70-interacting protein
10	A	K1RMW3_CRAGI	Protein kinase C
20	Α	K1R1Q8_CRAGI	Ras-related protein Rab-5C
21	A	K1PPK1_CRAGI	Actin-related protein 2/3 complex subunit 4
22	A	K1R8Y9_CRAGI	I ranslin-associated protein X
23 24	A	KIQW4I_CRAGI	Leucine-zipper-like transcriptional regulator 1
25	A ^	KIQIGZ_CKAGI	Elongator complex protein 1
26	A ^	KIRA/9_CRAGI	Cartilage acidic protein 1
2/	Δ	KINZIVIS_CRAGI	Ubiquitin conjugation factor E4 A
20	Δ	KIQUSI_CRAGI	
30	A	K1RU04 CRAGI	Actin cytoplasmic
31	A	K10ND2 CRAGI	Septin-2
32 33	A	K1PR25 CRAGI	Regulator of differentiation 1
34	A	K1QV25 CRAGI	Transcription elongation factor B polypeptide 2
35	А	K1RJ70_CRAGI	Cytosolic non-specific dipeptidase
36	A	K1R751_CRAGI	Nuclear pore complex protein Nup88
37 38	Α	K1QDK0_CRAGI	Engulfment and cell motility protein 2
39	A	K1PLV6_CRAGI	F-actin-capping protein subunit alpha 🚫
40	A	K1QWN2_CRAGI	Elongation factor 1-delta
41 42	Α	K1RRP7_CRAGI	Uncharacterized protein
42 43	А	K1R6H7_CRAGI	Uncharacterized protein
44	A	K1REP0_CRAGI	Uncharacterized protein
45	A	K1R0L4_CRAGI	Sodium/potassium-transporting ATPase subunit alpha
46 47	A	K1R0V5_CRAGI	Cell differentiation protein RCD1-like protein
48	A	K1R2N1_CRAGI	Glutathione reductase
49	A	KIPRB6_CRAGI	Apolipoprotein D
50	A	KIQWFI_CRAGI	Cathonsin I
51	A A	KIRSE/_CRAGI	Charged multivesicular body protein 4b
53	Δ	K107N3 CRAGI	Myosin-Id
54	A	K1Q2N3_CRAGI	Glutamate receptor-interacting protein 1
55	A	K1RDM2 CRAGI	60S ribosomal protein L18a
50 57	А	K1R0R7 CRAGI	Putative ATP-dependent RNA helicase DHX36
58	A		26S proteasome non-ATPase regulatory subunit 14
59	А	K1PQA3_CRAGI	Pseudouridylate synthase 7-like protein
60	Α	K1Q7K0_CRAGI	Putative serine carboxypeptidase CPVL
	A	K1R7N8_CRAGI	Proteasome endopeptidase complex
	А	K1QCL7_CRAGI	Uncharacterized protein
	А	K1QQB3_CRAGI	Glycyl-tRNA synthetase
	А	K1RFU8_CRAGI	High mobility group protein DSP1
	А	K1PJW0_CRAGI	Talin-1
	A	K1RBJ3_CRAGI	DnaJ-like protein subfamily C member 13
	A	K1PRV2_CRAGI	I hreonine synthase-like 1
	A	K1K347_CRAGI	retratricopeptide repeat protein 38
	A A		Natanin pou WD40 repeat-containing subunit B1 Ovtochrome b5
	Δ	KIOHIR CRACI	Cell division cycle protein 20-like protein
	· \	N14005_CNA01	sen anvision cycle protein zo nike protein

1		
2 3 A	K1QRM9 CRAGI	Acidic leucine-rich nuclear phosphoprotein 32 family member A
4 A	K1R373 CRAGI	ATP-binding cassette sub-family F member 3
5 A	K1RE81 CRAGI	Transport protein Sec24B
6 A	K1QW21 CRAGI	39S ribosomal protein L40, mitochondrial
7 A	K1PLG1 CRAGI	Putative ribosomal RNA methyltransferase NOP2
8 A	K1R712 CRAGI	Transforming growth factor-beta receptor-associated protein 1
9 10 A	K1Q1K8 CRAGI	Elongation factor 1-beta
11 A	K1PNK5 CRAGI	Ras GTPase-activating-like protein IQGAP1
¹² A	K1Q1F1 CRAGI	Serine/threonine-protein kinase 31
13 1. A	K1QFS4 CRAGI	Actin-related protein 2
14 15 A	K1PUK3 CRAGI	Armadillo repeat-containing protein 6
16 A	K1PI41 CRAGI	Flap endonuclease 1
17 A	K1QU96 CRAGI	Pre-rRNA-processing protein TSR1-like protein
¹⁸ A	K1QFK8 CRAGI	Target of Mvb protein 1
19 20 A	K1R4Q3 CRAGI	Spectrin beta chain, brain 1
20 21 A	K1QMS7 CRAGI	Malonyl CoA-acyl carrier protein transacylase, mitochondrial
22 A	K1P8O1 CRAGI	Putative methyltransferase TARBP1
23 A	K1RXV8 CRAGI	PAT1-like protein 1
²⁴ A	K1PXH5 CRAGI	Putative saccharopine dehydrogenase
25 A	K1OWP1 CRAGI	Nucleoporin seh1
26 27 A	K1RDF6 CRAGI	Long-chain specific acyl-CoA dehydrogenase, mitochondrial
28 A	K1QYH5 CRAGI	Ubiguitin carboxyl-terminal hydrolase 14
29 A	K1S0J9 CRAGI	Uncharacterized protein
³⁰ A	K1R247 CRAGI	Condensin complex subunit 1
31 22 A	K1QKZ6 CRAGI	Inosine-5'-monophosphate dehydrogenase
32 33 A	K1QQ48 CRAGI	Serine/threonine-protein kinase N2
34 A	K1RIZ3 CRAGI	Bone morphogenetic protein 7
35 A	K1PVQ8 CRAGI	Eukaryotic translation initiation factor 3 subunit K
³⁶ A	K1QMQ1 CRAGI	TBC1 domain family member 10B
37 20 A	K1QFF0 CRAGI	Vacuolar protein sorting-associated protein 35 (Fragment)
38 39 A	K1Q435 CRAGI	Eukaryotic translation initiation factor 2 subunit 1
40 A	K1QNZ7 CRAGI	Ubiguilin-1
⁴¹ A	K1QYI6 CRAGI	Cullin-3-B
⁴² A		Eukaryotic translation initiation factor 4E
43 44 A	K1QVV1 CRAGI	Ribose-5-phosphate isomerase
44 45 A		Glutaredoxin-3
46 A	K1PNG7 CRAGI	Sorting nexin-33
⁴⁷ A	K1PYK7_CRAGI	RNA-binding protein 39
⁴⁸ A	K1QCP3_CRAGI	Crooked neck-like protein 1
49 50 A	K1QSV4_CRAGI	RNA helicase
51 A	K1R811_CRAGI	Ribonucleoside-diphosphate reductase small chain
52 A	K1R944_CRAGI	Tetratricopeptide repeat protein 37
⁵³ A	K1QS07_CRAGI	Proteasome subunit beta type-3
⁵⁴ A	K1PZV3_CRAGI	Guanine nucleotide-binding protein-like 3-like protein (Fragment)
55 A	K1QNU0_CRAGI	Non-specific serine/threonine protein kinase
57 A	K1R3R4_CRAGI	Cytosolic Fe-S cluster assembly factor NUBP1 homolog
58 A	K1RJS5_CRAGI	Uncharacterized protein
⁵⁹ A	K1RNK8_CRAGI	Rho GTPase-activating protein 17
⁶⁰ A	K1RG79_CRAGI	Neuronal acetylcholine receptor subunit alpha-6
А	K1QVF8_CRAGI	Uncharacterized protein in QAH/OAS sulfhydrylase 3'region (Fragment)
А	K1Q4C3_CRAGI	Fumarylacetoacetase
А	K1R7T0_CRAGI	GMP synthase [glutamine-hydrolyzing]
А	K1QX22_CRAGI	4-hydroxyphenylpyruvate dioxygenase
А	K1RIS2_CRAGI	3-oxoacyl-[acyl-carrier-protein] reductase
А	K1Q407_CRAGI	Ras GTPase-activating protein 1
А	K1R9I0_CRAGI	Myosin-VIIa
А	K1Q0N9_CRAGI	Uncharacterized protein
А	K1PUE8_CRAGI	Serine/threonine-protein phosphatase 4 regulatory subunit 3
А	K1PSY2_CRAGI	Fragile X mental retardation syndrome-related protein 1
А	K1RA35_CRAGI	Splicing factor, arginine/serine-rich 7

1		
2 3 A	K1QW39 CRAGI	Neurobeachin
4 A	K1QJI9 CRAGI	Importin-13
5 A	K1R3M6 CRAGI	Ubiguitin-conjugating enzyme E2-22 kDa
⁶ A	K1RCR8 CRAGI	Carbonyl reductase [NADPH] 1
7 A	K1RJW8 CRAGI	Protein DEK
8 9 A		SEC13-like protein
10 A		Diacylglycerol kinase
11 A	K1PWV7_CRAGI	Uncharacterized protein
¹² A	K1R3W9_CRAGI	Replication protein A 14 kDa subunit
13 14 A	K1P8G1_CRAGI	Heterogeneous nuclear ribonucleoprotein H
15 A	K1R2S2_CRAGI	Peptidylprolyl isomerase
16 A	K1PNY5_CRAGI	Splicing factor, proline-and glutamine-rich
17 A	K1P7Q6_CRAGI	40S ribosomal protein S19
18 A 19	K1PZN1_CRAGI	Calcium/calmodulin-dependent protein kinase type II delta chain
20 A	K1PBC0_CRAGI	Non-neuronal cytoplasmic intermediate filament protein
21 A	K1QNN9_CRAGI	MICOS complex subunit MIC60
22 A	K1QJ46_CRAGI	Putative methylcrotonoyl-CoA carboxylase beta chain, mitochondrial
23 A 24	K1R2G7_CRAGI	Ran-binding protein 3
25 A	K1RJG6_CRAGI	Heterogeneous nuclear ribonucleoprotein 27C
26 ^A	K1QZ58_CRAGI	Splicing factor UZAF 26 KDa subunit
27 A		Eukaryotic translation initiation factor 3 subunit G
28 A 29 A	KIPHZ5_CRAGI	Homogglutinin (amphoeuto aggregation factor
30 A	KIN97_CRAGI	6-phosphofructokinase
31	KIQOMO_CRAGI	Malonyl-CoA decarboxylase mitochondrial
32 ^	K1R9O4 CRAGI	Uncharacterized protein
34 A	K1OPX8 CRAGI	Alkyl/aryl-sulfatase BDS1
35 A	K1PJP2 CRAGI	Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15
³⁶ A	K1RRZ9 CRAGI	MKI67 FHA domain-interacting nucleolar phosphoprotein-like protein
37 20 A	K1S6R2 CRAGI	N-acetyltransferase 11
30 39 A		Calcium-binding protein 39
40 A	K1Q1G9_CRAGI	Putative ATP-dependent RNA helicase DHX37
⁴¹ A	K1RA95_CRAGI	Filamin-A
⁴² A	K1Q865_CRAGI	Trafficking protein particle complex subunit 4
43 44 A	K1RFQ4_CRAGI	Tetratricopeptide repeat protein 27
45 A	K1QRD4_CRAGI	S-formylglutathione hydrolase
46 A	K1Q9Z4_CRAGI	Aldehyde dehydrogenase
47 A 48	K1QB76_CRAGI	Uncharacterized protein
48 A 49	K1Q2Y1_CRAGI	40S ribosomal protein S15
50 A	K1S3Q9_CRAGI	MAK16-like protein (Fragment)
51 A	K1RAF8_CRAGI	Uncharacterized protein
52 A	K1QE44_CRAGI	OPF0663 transmembrane protein C1/orf28
55 A 54 A	KIPN44_CRAGI	Casein kinase ii subunit beta
55	KIPWR4_CRAGI	3 - hydroxyacyl-CoA dehydrogenase type-2
56 A	KIQD31_CRAGI	BNA-hinding protein 45
57 A	K10W76 CRAGI	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1
59 A	K1PSH2 CRAGI	28S ribosomal protein S12. mitochondrial
⁶⁰ A	K1QKL1 CRAGI	DNA-directed RNA polymerases I, II, and III subunit RPABC3
А	K1RCY7_CRAGI	Eukaryotic peptide chain release factor GTP-binding subunit ERF3B
А	_ K1Q6U7_CRAGI	78 kDa glucose-regulated protein
А		Prolyl endopeptidase
А	K1R4M1_CRAGI	Intraflagellar transport protein 52-like protein
А	K1RB91_CRAGI	Neutral alpha-glucosidase AB
А	K1Q056_CRAGI	Calpain-A
А	K1REW8_CRAGI	Ribosomal protein L15
А	K1QQQ5_CRAGI	Replication factor C subunit 5
А	K1QLC6_CRAGI	JmjC domain-containing protein 8
А	K1QFP5_CRAGI	NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial
А	K1Q7H0_CRAGI	ATP-dependent DNA helicase II subunit 2

K1PYW7_CRAGI CDK5 regulatory subunit-associated protein 3 А K1QVD0 CRAGI Small nuclear ribonucleoprotein Sm D3 А Α K1QAT9_CRAGI ATP-dependent RNA helicase DDX1 А K1R920_CRAGI Eukaryotic translation initiation factor 1A, X-chromosomal K1QQG7_CRAGI DNA-directed RNA polymerase subunit А K1R0T1_CRAGI V-type proton ATPase subunit G А K1PD36_CRAGI 10 A Ubiquitin 11 A K1QHI2_CRAGI Heterogeneous nuclear ribonucleoprotein L 12 Α K1RED7_CRAGI Poly(RC)-binding protein 3 13 COP9 signalosome complex subunit 6 А K1QRE1_CRAGI 14 15 A K1QHS9_CRAGI Tubulin polyglutamylase TTLL13 16 A K1R6Y8_CRAGI Uncharacterized protein 17 A K1RC37_CRAGI Uncharacterized protein 18 А K1PBG6_CRAGI Uncharacterized protein 19 20 A K1R150_CRAGI Ras-related protein Rab-1A 21 A K1QVS0_CRAGI Ras-like GTP-binding protein Rho1 22 A K1R716_CRAGI Putative isovaleryl-CoA dehydrogenase 23 A K1Q1I3_CRAGI Ornithine aminotransferase 24 А K1Q151_CRAGI 60S ribosomal protein L32 25 26 A K1QMY8_CRAGI Dedicator of cytokinesis protein 9 ₂₇ A K1PR93_CRAGI 3-hydroxyisobutyrate dehydrogenase 28 A K1QZX3_CRAGI Vacuolar protein sorting-associated protein VTA1-like protein 29 A K1Q3W3_CRAGI NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial 30 K1RHA5 CRAGI Nucleoside diphosphate kinase Α 31 ₃₂ A K1RG61_CRAGI Cytosolic carboxypeptidase 2 33 A K1RSK5_CRAGI Kelch-like protein 6 Ferrochelatase 34 A K1Q105 CRAGI 35 A K1QCS7_CRAGI Leucine-rich repeat-containing protein 16A 36 А K1PWR0_CRAGI Protein SET 37 ₃₈ A K1RIA0_CRAGI Molybdopterin molybdenumtransferase 39 A K1RC43 CRAGI U4/U6 small nuclear ribonucleoprotein Prp31 40 A K1S185_CRAGI Counting factor associated protein D ⁴¹ A K1PFL3_CRAGI Dihydropteridine reductase 42 Putative tRNA (cytidine(32)/guanosine(34)-2'-O)-methyltransferase А K1QIU2_CRAGI 43 44 A K1S6H7_CRAGI Vacuolar protein sorting-associated protein 13C 45 A K1QMM4_CRAGI Leucine zipper transcription factor-like protein 1 46 A K1PEX5_CRAGI Protein hu-li tai shao ⁴⁷ A K1PUM5_CRAGI Cytoplasmic aconitate hydratase 48 А K1QE49_CRAGI DnaJ-like protein subfamily A member 1 49 ₅₀ A K1QGF1_CRAGI Splicing factor 3B subunit 2 51 A Histidyl-tRNA synthetase, cytoplasmic K1P8Z2_CRAGI 52 A K1QFN2_CRAGI Uncharacterized protein ⁵³ A K1QI48 CRAGI Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 54 А K1PZ93_CRAGI Dihydropyrimidine dehydrogenase [NADP(+)] 55 56 A K1QN99_CRAGI Regulator of nonsense transcripts 2 57 A K1QXX2_CRAGI Ubiquitin-conjugating enzyme E2 Q2 58 A Coatomer subunit zeta-1 K1Q6U0_CRAGI 59 Α K1P8F1_CRAGI Uncharacterized protein 60 UDP-glucose:glycoprotein glucosyltransferase 1 Α K1RTD6_CRAGI K1RKE5_CRAGI IQ and AAA domain-containing protein 1 Α Uncharacterized protein K1QKD6_CRAGI А K1QN55_CRAGI 60S acidic ribosomal protein P1 A K1RGT9_CRAGI 60S ribosomal protein L13a Α K1PZ23_CRAGI DnaJ-like protein subfamily C member 3 A K1PCC8_CRAGI Serine/threonine-protein kinase 25 A A K1PKD4_CRAGI 40S ribosomal protein S30 Α K1RXA0_CRAGI cAMP-dependent protein kinase regulatory subunit K1QAL3_CRAGI **RNA-binding protein 28** A Eukaryotic translation initiation factor 2-alpha kinase 4 A K1Q6J3_CRAGI Putative RNA-binding protein 16 A K1S049_CRAGI

1 2

3

4

5

6

7

8
Page 145 of 151

1	
2 2 A K1RBT3 CRAGI	ATP-dependent RNA helicase SUV3-like protein, mitochondrial
4 A K1QFS8 CRAGI	Importin-9
5 A K1QVF4 CRAGI	Heterogeneous nuclear ribonucleoprotein L
⁶ A K1PGD2_CRAGI	Putative aminopeptidase NPEPL1
A K1QUT5_CRAG	Amine oxidase
9 A K1QAG0_CRAG	Serine-threonine kinase receptor-associated protein
10 A K1PHS4_CRAGI	Ribosome-binding protein 1
11 A K1RMS0_CRAG	Translation initiation factor eIF-2B subunit beta
12 A K1R604_CRAGI	DCC-interacting protein 13-alpha
13 A K1PQE3_CRAGI	RNA-binding protein Raly
15 A K1PXH6_CRAGI	Cullin-4A
16 A K1PM29_CRAG	Glucose-6-phosphate 1-dehydrogenase
1/ A K1QNK4_CRAG	3-oxoacyl-[acyl-carrier-protein] reductase
10 A K1PD41_CRAGI	DNA primase
20 A K1PTV5_CRAGI	Programmed cell death protein 10
21 A KIPV35_CRAGI	Kyphoscollosis peptidase
22 A KIQ4J3_CRAGI	Nuclear cap-binding protein subunit 1
24 KIRJYS_CRAGI	I R585-like protein
26 KICKIG_CRACI	U3 small nucleolar RNA-associated protein 6-like protein
28 A K1PF70 CRAGI	MON2-like protein (Fragment)
29 A K1RFF7 CRAGI	Protein lethal(2)essential for life
³⁰ A K1PG60 CRAGI	60S ribosomal protein L17
31 32 A K1Q189 CRAGI	F-box/WD repeat-containing protein 9
32 33 A K1QBM3 CRAG	I Ras-related protein Rab-2
34 A K1PNP9_CRAGI	Bullous pemphigoid antigen 1, isoforms 1/2/3/4
³⁵ A K1QIJ3_CRAGI	Nuclear pore complex protein Nup85
A K1QX44_CRAGI	Ras-related protein Rab-11B
37 A K1QLD7_CRAGI	Kinetochore protein NDC80-like protein
39 A K1QUD7_CRAG	Conserved oligomeric Golgi complex subunit 3 (Fragment)
40 A K1Q9Z5_CRAGI	Peptidyl-prolyl cis-trans isomerase
41 A K1RLTO_CRAGI	D-erythrulose reductase
42 A K1PG98_CRAGI	rRNA-processing protein FCF1-like protein
44 A K1QKQ8_CRAG	THO complex subunit 4-A
45 A K1RB07_CRAGI	60S ribosomal protein L27a
46 A K1PEZ6_CRAGI	Kyphoscoliosis peptidase
48 A KARES CRACK	Cystatin B-like protein
49 A KIRJ53_CRAGI	DNA (Cutasian E) mathultransformed 1 (Ergament)
50 A KIQCH9_CRAG	TBC1 domain family member 15
57 A KIPG17 CRAGI	60S ribosomal protein 121
53 A K1009 CRAG	Uncharacterized protein
⁵⁴ A K1RG04 CRAGI	Alk tyrosine kinase receptor
55 A K1PZP3 CRAGI	Conserved oligomeric Golgi complex subunit 2
57 A K1QH68 CRAGI	Syntenin-1
58 A K1S4H5 CRAGI	, Adenosylhomocysteinase
⁵⁹ A K1R4L8_CRAGI	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial
⁶⁰ A K1RFD2_CRAGI	Adenylate kinase
A K1PB87_CRAGI	Uncharacterized protein
A K1PM74_CRAG	DNA mismatch repair protein Msh6
A K1RR99_CRAGI	Rho guanine nucleotide exchange factor 12
A K1QGQ5_CRAG	I Superoxide dismutase
A K1PBB1_CRAGI	Stress-induced-phosphoprotein 1
A K1Q681_CRAGI	Clustered mitochondria protein homolog
A K1PQR9_CRAGI	Squamous cell carcinoma antigen recognized by T-cells 3
A K1QSV1_CRAGI	Uncharacterized protein
A K1QKY7_CRAGI	Uncharacterized protein
A K1QBJ7_CRAGI	Uncharacterized protein
A K1S5H/_CRAGI	Cell division cycle 5-related protein

1			
2	٨		Suppressor of C2 allele of SKD1 like protoin
3 ⊿	A ^	KIRDJ9_CRAGI	Methyltransforase-like protein 12
4	A ^	KINZZZ_CRAGI	Papi GTPase-GDP dissociation stimulator 1-A
6	A A		Kinesin-associated protein 3
7	Δ	K1R374 CRAGI	5'-3' evoribonuclease 1
8	Δ	K1P951 CRAGI	5-5 exoniboliticlease 1 Fanconi anemia group D2 protein
9 10	Δ		6-nhosnhogluconolactonase
11	Δ	KIND/_CRAGI	Brain protein 16
12	Δ		LIBX domain-containing protein 1
13	Δ		40S ribosomal protein S28
14	A	K10729 CRAGI	Uncharacterized protein
15	A	K1R136 CRAGI	Phosphatidylinositol transfer protein alpha isoform
17	A	K1R969 CRAGI	Uncharacterized protein
18	A	K1R1E4 CRAGI	Serine/threonine-protein kinase Chk2
19	A	K10VL1 CRAGI	Serine/threonine-protein phosphatase 4 regulatory subunit 4
20	А	K1QYD8 CRAGI	Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase
22	А	K1Q927 CRAGI	Neurofibromin
23	А	K1QAU3 CRAGI	WD repeat-containing protein 63
24	А	K1Q8P7 CRAGI	Aspartyl aminopeptidase
25	А		Nuclear pore complex protein Nup98-Nup96
20	А	K1PLR8_CRAGI	Chromosome transmission fidelity protein 18-like protein (Fragment)
28	А	K1P752_CRAGI	UPF0195 protein FAM96B
29	А	K1QAY3_CRAGI	Dipeptidyl-peptidase 1 (Fragment)
30	А	K1R669_CRAGI	Uncharacterized protein
32	А	K1PWS8_CRAGI	Mitotic spindle assembly checkpoint protein MAD2A
33	А	K1PK87_CRAGI	Putative E3 ubiquitin-protein ligase TRIP12
34	А	K1QKU6_CRAGI	mRNA export factor
35	А	K1QQV0_CRAGI	Histone H1.2
30 37	А	K1QR54_CRAGI	Zinc finger RNA-binding protein
38	А	K1PE13_CRAGI	Uncharacterized protein
39	А	K1QUW5_CRAGI	U2 snRNP auxiliary factor large subunit
40	А	K1PTH4_CRAGI	ADP-ribosylation factor
41	A	K1Q3C3_CRAGI	Lambda-crystallin-like protein
43	A	K1RE82_CRAGI	Uncharacterized protein
44	A	K1P486_CRAGI	Heat shock /U kDa protein 12A
45	A	KIR/A4_CRAGI	Actin related protoin 8
40 47	A ^	KIPECO_CRAGI	Actin-related protein 8
48	A ^	KINARO_CRAGI	Tuder domain-containing protein 7
49	A ^	KIQZDZ_CRAGI	Activator of 90 kDa beat shock protein ATPase-like protein 1
50	A A		PAN2-PAN3 deadenviation complex subunit PAN3
52	Δ	K1P6N8 CRAGI	Libiquitin carboxyl-terminal hydrolase 7
53	A	K1RBM7_CRAGI	Ubiquitin-conjugating enzyme E2 variant 1
54	A	K1PV92 CRAGI	Hsp90 co-chaperone Cdc37
55	A	K1POU8 CRAGI	Sperm-associated antigen 6
56 57	A	K1QUK4 CRAGI	Protein SET
58	A	K1QJ85 CRAGI	Glutathione S-transferase A
59	А	K1QJW3 CRAGI	Heat shock 70 kDa protein 12B
60	А		MAK10-like protein
	А	K1QZ84_CRAGI	Thioredoxin domain-containing protein 3-like protein
	А	K1QXH7_CRAGI	DNA replication licensing factor mcm4-B
	А	K1Q1L9_CRAGI	Interferon-induced protein 44-like protein
	А	K1RGD5_CRAGI	F-box only protein 36
	А	K1Q3B4_CRAGI	DNA topoisomerase
	А	K1P8Z1_CRAGI	Uncharacterized protein
	А	K1PYA2_CRAGI	Host cell factor
	А	K1PZR3_CRAGI	U2 small nuclear ribonucleoprotein A
	A	K1QB69_CRAGI	Uncharacterized protein
	A	K1PI78_CRAGI	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1
	Α	K1RKK2 CRAGI	Phosphatidylinositol-4-phosphate 5-kinase type-1 alpha

2			
3	А	K1QLS5_CRAGI	Uncharacterized protein
4	А	K1QFI3_CRAGI	Apoptosis-inducing factor 3
5	А	K1QKB1_CRAGI	Tryptophanyl-tRNA synthetase, cytoplasmic
6	А	K1REU2_CRAGI	WD repeat and HMG-box DNA-binding protein 1
/	А	K1QUK3_CRAGI	Putative ATP-dependent RNA helicase DDX41
0 9	А	K1QBT8 CRAGI	Uncharacterized protein
10	А	K1QVX4 CRAGI	Glycogen synthase kinase-3 beta
11	А	K1PF20 CRAGI	Gamma-tubulin complex component
12	A	K1REG1_CRAGI	Lipoxygenase-like protein domain-containing protein 1
13	Δ	K1PCI8 CRAGI	Cullin-2
14	Δ		LIBX domain-containing protein 6
15	A A	KIQ527_CRAGI	
17	A ^		
18	A		AD 2 complex subusit bate
19	A		AP-3 complex subunit beta
20	A	K1PXAU_CRAGI	Uncharacterized protein
21	A	K1QA13_CRAGI	Calcium-transporting Al Pase
22	A	K1QXY4_CRAGI	Kinase
23	A	K1PBW4_CRAGI	Uncharacterized protein
24 25	А	K1PUF0_CRAGI	G-protein coupled receptor moody
26	А	K1QMY9_CRAGI	Uncharacterized protein
27	А	K1QZ54_CRAGI	Coiled-coil domain-containing protein 39
28	А	K1QWU8_CRAGI	Uncharacterized protein
29	А	K1Q3L1_CRAGI	Kielin/chordin-like protein
30	А	K1PGR2_CRAGI	G patch domain-containing protein 1
31	А	K1RXP9 CRAGI	Ventricular zone-expressed PH domain-containing-like protein 1
२८ २२	А	K1PIB2 CRAGI	Uncharacterized protein
34	А	K1R4U3 CRAGI	Uncharacterized protein
35			
36			
37			
38			
39 40			
40 41			
42			
43			
44			
45			
46			
4/ ⊿Q			
40 49			
50			
51			

1 2					
3	Data S3 [.] Con	nnlete list of GO t	terms of clustered genes of m64 interacting proteins (p-value<0.05)		
4 5	Cluster	term ID	description	log10 p-value	Class
6	cluster1	GO:0006172	ADP biosynthetic process	-2,848	Biological process
7	cluster1	GO:0006886	intracellular protein transport	-6,1176	Biological process
8 0	cluster1	GO:0015031	protein transport	-1,6944	Biological process
9 10	cluster1	GO:0006511	ubiquitin-dependent protein catabolic process	-1,8071	Biological process
11	cluster1	GO:0030833	regulation of actin filament polymerization	-2,5256	Biological process
12	cluster1	GO:0006563	L-serine metabolic process	-2,3716	Biological process
13 14	cluster1	GO:0006544	glycine metabolic process	-2,0706	Biological process
15	cluster1	GO:0016192	vesicle-mediated transport	-3,119	Biological process
16	cluster1	GO:0006429		-2,1703	Biological process
17 19	cluster1	GO:0006122	mitochondrial electron transport, ubiquipol to cytochrome c	-1,3708	Biological process
19	cluster1	GO:0048280	vesicle fusion with Golgi apparatus	-2.3699	Biological process
20	cluster1	GO:0006888	ER to Golgi vesicle-mediated transport	-1,4737	Biological process
21	cluster1	GO:0030117	membrane coat	-3,0546	Cellular component
22 23	cluster1	GO:0030127	COPII vesicle coat	-1,6994	Cellular component
24	cluster1	GO:0030131	clathrin adaptor complex	-1,5595	Cellular component
25	cluster1	GO:0005737	cytoplasm	-2,3551	Cellular component
26 27	cluster1	GO:0031105	septin complex	-2,0349	Cellular component
27	cluster1	GO:0005850	eukaryotic translation initiation factor 2 complex	-2,6924	Cellular component
29	cluster1	GO:0005856	cytoskeleton	-1,6967	Cellular component
30	cluster1	GO:0005750	mitochondrial respiratory chain complex III	-1,9328	Cellular component
31	cluster1	GO:000139	Goigi membrane translation initiation factor activity	-1,4207	Molecular function
33	cluster1	GO:0003743	alveine hydroxymethyltransferase activity	-2,0304	Molecular function
34	cluster1	GO:0005488	binding	-1.66	Molecular function
35	cluster1	GO:0008565	protein transporter activity	-2.7964	Molecular function
30 37	cluster1	GO:0004823	leucine-tRNA ligase activity	-2,1763	Molecular function
38	cluster1	GO:0008242	omega peptidase activity	-2,0158	Molecular function
39	cluster1	GO:0008536	Ran GTPase binding	-1,4396	Molecular function
40	cluster1	GO:0005525	GTP binding	-1,9855	Molecular function
41 42	cluster1	GO:0016813	hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amidines	-1,9675	Molecular function
43	cluster1	GO:0002161	aminoacyl-tRNA editing activity	-1,4387	Molecular function
44	cluster1	GO:0016776	phosphotransferase activity, phosphate group as acceptor	-2,0567	Molecular function
45 46	cluster1	GO:0005543	phospholipid binding	-1,3689	Molecular function
40 47	cluster1	GO:0004017	adenylate kinase activity	-2,2504	Molecular function
48	cluster1	GO:0019205	nucleobase-containing compound kinase activity	-1,9387	Molecular function
49	cluster1	GO:0019904	protein domain specific binding	-1,4245	Molecular function
50 51	cluster1	GO:0004843	actin binding	-1,0590	Molecular function
52	cluster 2	GO:0006376	mRNA splice site selection	-2.2802	Biological process
53	cluster 2	GO:0016192	vesicle-mediated transport	-1,9467	Biological process
54 55	cluster 2	GO:0006511	ubiquitin-dependent protein catabolic process	-1,895	Biological process
55 56	cluster 2	GO:0051603	proteolysis involved in cellular protein catabolic process	-1,4434	Biological process
57	cluster 2	GO:0006281	DNA repair	-1,946	Biological process
58	cluster 2	GO:0006164	purine nucleotide biosynthetic process	-1,9132	Biological process
59 60	cluster 2	GO:0006606	protein import into nucleus	-1,6687	Biological process
00	cluster 2	GO:0006367	transcription initiation from RNA polymerase II promoter	-1,8729	Biological process
	cluster 2	GO:0045893	positive regulation of transcription, DNA-templated	-1,8902	Biological process
	cluster 2	GO:0051276	chromosome organization	-1,9322	Biological process
	cluster 2	GO:0005685		-2,0889	Cellular component
	cluster 2	GO:0005094	nroteasome core complex alpha-subunit complex	-1,0509	Cellular component
	cluster 2	GO:0015775	proteasome core complex	-1 4/3/	Cellular component
	cluster 2	GO:0005643	nuclear pore	-1.5471	Cellular component
	cluster 2	GO:0003938	IMP dehvdrogenase activity	-2.5964	Molecular function
	cluster 2	GO:0005488	binding	-5,6024	Molecular function
	cluster 2	GO:0008536	Ran GTPase binding	-3,3815	Molecular function
	cluster 2	GO:0008565	protein transporter activity	-1,3099	Molecular function
	cluster 2	GO:0017056	structural constituent of nuclear pore	-2,5981	Molecular function
	cluster 2	GO:0016844	strictosidine synthase activity	-2,4472	Molecular function
	cluster 2	GO:0042578	phosphoric ester hydrolase activity	-2,0068	Molecular function
	cluster 2	GO:0008641	small protein activating enzyme activity	-1,8257	Molecular function
	cluster 2	GO:0003729	mRNA binding	-1,9507	Molecular function
	cluster 2	GO:0000166	nucleotide binding	-1,9175	Molecular function
	cluster 2	GO:0030554	adenyi nucleotide binding	-1,4276	Nolecular function
	cluster 2	GO:0004175	endopeptidase activity	-1,4434	Molecular function
	cluster 2	GO:0004298	(obsolete) GTP catabolic process	-1,4434	Biological process
	cluster 2	GO:0007156	homophilic cell adhesion via nlasma membrane adhesion molecules	-1,5457	Biological process
	cluster 3	GO:0008152	metabolic process	-1,9382	Biological process

1 2					
3	cluster 3	60.0015986	ATP synthesis coupled proton transport	-4 8627	Biological process
4 5	cluster 3	GO:0015566	glycolytic process	-1 4156	Biological process
6	cluster 3	GO:0051258	protein polymerization	-2.6757	Biological process
7	cluster 3	GO:0044262	cellular carbohydrate metabolic process	-2,0966	Biological process
8	cluster 3	GO:0006388	tRNA splicing via endonucleolytic cleavage and ligation	-1 523	Biological process
9	cluster 3	GO:0006879	cellular iron ion homeostasis	-1 4857	Biological process
10	cluster 3	GO:0007017	microtubule-based process	-2 4915	Biological process
17	cluster 3	GO:0006412	translation	-2 0331	Biological process
13	cluster 3	GO:0006122	mitochondrial electron transport, ubiquinol to cytochrome c	-2,0551	Biological process
14	cluster 3	GO:0000276	mitochondrial proton-transporting ATP synthese complex coupling factor $F(0)$	-4 1068	Cellular component
15	cluster 3	GO:0005750	mitochondrial respiratory chain complex, coupling factor (6)	-2 0662	Cellular component
16	cluster 3	GO:0045261	nroton-transporting ATP synthese complex catalytic core E(1)	-2,0002	Cellular component
17	cluster 3	GO:0005874	proton-transporting Arr synthase complex, catalytic core r (1)	-2,0025	Cellular component
18	cluster 3	GO:0005874	intermediate filament	-2,2282	Cellular component
20	cluster 3	GO:0003882	intracellular membrane bounded organelle	-1,9007	Cellular component
21	cluster 3	GO:0045251	intracential membrane-bounded organelle	-2,1492	Cellular component
22	cluster 3	GO:0005852	eukaryotic translation initiation lactor 3 complex	-1,0821	Cellular component
23	cluster 3	GO:0005737	cytoplasm	-1,9776	Cellular component
24	cluster 3	GO:0005840	ribosome	-2,0503	Cellular component
25 26	cluster 3	GO:0043234	protein complex	-2,6757	Cellular component
20	cluster 3	GO:0004739	pyruvate denydrogenase (acetyl-transferring) activity	-2,8179	Molecular function
28	cluster 3	GO:0016624	oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor	-2,0554	Molecular function
29	cluster 3	GO:0005200	structural constituent of cytoskeleton	-2,3865	Molecular function
30	cluster 3	GO:0005525	GTP binding	-1,9304	Molecular function
31	cluster 3	GO:0015078	hydrogen ion transmembrane transporter activity	-3,0193	Molecular function
32	cluster 3	GO:0046961	proton-transporting ATPase activity, rotational mechanism	-1,6263	Molecular function
33 34	cluster 3	GO:0046933	proton-transporting ATP synthase activity, rotational mechanism	-1,7326	Molecular function
35	cluster 3	GO:0004775	succinate-CoA ligase (ADP-forming) activity	-2,3995	Molecular function
36	cluster 3	GO:0046912	transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer	-2,3982	Molecular function
37	cluster 3	GO:0016874	ligase activity	-1,4798	Molecular function
38	cluster 3	GO:0048037	cofactor binding	-1,6628	Molecular function
39	cluster 3	GO:0008199	ferric iron binding	-1,4607	Molecular function
40	cluster 3	GO:0005544	calcium-dependent phospholipid binding	-1,6049	Molecular function
41 42	cluster 3	GO:0003878	ATP citrate synthase activity	-2,3995	Molecular function
43	cluster 3	GO:0003735	structural constituent of ribosome	-1,9881	Molecular function
44					
45					
46					
47					
48 40					
50					
51					
52					
53					
54					
55 56					
57					

- 52 53 54 55 56 57

Table S1: Transitions used for	each compound. A: first tra	ansition, B: second transition

Nucleoside	Retention time (min)	MRM precursor	MRM product (m/z)		Collision Energy (V)	
		(m/z)	А	В	Α	В
А	3.07	268.0	135.9	119.0	-30	-12
m ⁶ A	2.12	282.0	150.1	123.1	-17	-46

<u>Table S2</u>: Correspondence between development stages in our study, and the GigaTON database.

Development stages : This Study	Development stages : GigaTON [53]		
Oocytes	E (Eggs)		
	TC (Two Cell embryos)		
2/8 Cells	FC (Four Cell embryos)		
	EM (Early Morula)		
Morula	M (Morula)		
Blastula	B (Blastula)		
Diastula	RM (Rotary Movement)		
	FS (Free Swimming)		
Gastrula	EG (Early Gastrula)		
Cuotinia	G (Gastrula)		
	T (Trochophore) 1		
	T2		
	Т3		
Trochophore	T4		
	Т5		
	ED (Early D larvae) 1		
	ED2		
	D (D larvae)1		
D Jarvae	D2		
	D3		
	D4		
	D5		
Spat	S (Spat)		
Juvenile	J (Juvenile)		