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Data from commercial fishing vessels may enhance the range of observations available for monitoring the marine environment. However, ef-
fort and catch data provide information on fish distribution with a bias due to spatial targeting and selectivity. Here, we measured the short-
comings of standard fishery-dependent data and advocate for the utilization of more precise datasets indirectly collected by the commercial
fishery. Data from a Danish traceability system, which records size of commercial fish at the haul level, are held against the set-up of current
eLog and sales slips’ data collected for the Danish fisheries. We showed that the most accurate mapping of the spatial distribution of catches
per size group is not only possible through size records collected at the haul level but also by high resolution on fishing effort data. In Europe,
the regulation to land all catches with a quota or minimum size limit, including unwanted, has increased the focus on avoidance and discards;
we show the potential of such data sources to inform on fish abundance and distribution, especially of importance where fishery-dependent
data are the only source of information.
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Introduction
In many areas, commercial fishers are required to declare the

landed amount of species in official logbooks. Since 2015, EU ves-

sels must report landings in weight in the logbooks for each haul,

or as a minimum once every 24 hr (EU, 2012). In addition, EU

vessels above 12 m in length are required to carry a Vessel

Monitoring System (VMS) (EU, 2011), which transmit time, po-

sition, speed, and course of the vessel at predefined time intervals.

By coupling logbook and VMS data, it is possible to estimate the

spatial and temporal distribution of landings by species

(Bastardie et al., 2010; Gerritsen and Lordan, 2011). However, the

entry format of logbooks only provides knowledge on the species,

not the body sizes of the fish (EU, 2011). Concurrently, along

assessing the status of the marine fish species, scientific surveys

conducted by research vessels do collect species and size informa-

tion at a fine spatial scale. However, the temporal coverage and

data quantity are much lower for survey data than commercial

fisheries data that pose challenges in using them for widescale

mapping of fish (Pennino et al., 2016; Bourdaud et al., 2017).

In a fisheries management context, the objective of the meas-

ures is to limit the fishery within predefined objectives (Hilborn,

2007). For such purpose, more detailed information on the catch

composition including size of the fish at the actual fishing event

(“haul” for active gears) may allow for better adaptations of man-

agement measures, at least in regions like the EU where the on-

board observer coverage is closer to 1% than to 100% (Little

et al., 2015; James et al., 2019). The full implementation of the

European landing obligation in 2019 (EU, 2013; Salomon et al.,

2014) further increases the need for more detailed information as

the fisheries adapt to the regulation, by increasing the fishing gear

selectivity, e.g. with mesh size changes, grid panels or LED lights

on gear (O’Neill et al., 2019), or by avoiding the hotspots of
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unwanted fish spatially, which is also a way of making the fishing

more selective (Little et al., 2015; Reid et al., 2019). Although certain

species are always unwanted, some target species can also become

unwanted, e.g. in the case where the allocated quota is close to being

exhausted (Borges and Lado, 2019), or the encountered fish are un-

dersized and therefore not marketable (Catchpole et al., 2018;

Villasante et al., 2019), or simply because fishers have expectations

on market preferences for certain species or sizes (Ono et al., 2013;

Batsleer et al., 2015). Conversely, some bycatches may be wanted be-

cause they act as a bonus on top of the regular targeted species

(Mortensen et al., 2018). Therefore, being able to locate where the

species population distribute and where its unwanted components

are located, especially the undersized fish, is of importance to help

achieve a more selective fishing (STECF, 2018) while maintaining

the profitability of the fishery. Tailoring the avoidance of unwanted

fish depends on the individual vessel, and the species and fishing

grounds may at times translate into subtle tactical avoidance meas-

ures based on empirical experience at sea. For example, Mortensen

et al. (2018) described some avoidance tactics used by individual

fisher, some of which may appear counterintuitive: if large amount

of saithe (Pollachius virens) are caught in a haul, the best approach

might simply be to continue with a new haul at the same heading as

the previous, on the basis that the previous haul had passed through

the school of saithe, whereby a new haul in the same transect would

likely be after the school.

Tools such as averaged species distribution maps can assist the

fishermen in optimizing their fishing tactics at a larger scale (Little

et al., 2015; Reid et al., 2019; Robert et al., 2019), but at the scale of

the individual fishing operation, better knowledge on the size dis-

tribution of target species may not only help spatial avoidance but

could also increase the profit of fishing, in the situation of limited

overall catch allowance, because of higher prices per kg fish landed.

The current data level in eLog reporting is at the haul level and

sales slips’ information from landings in port. This means that

any size information is collected at the level of the full fishing trip

(EU, 2011, 2016). This trip-level information can be redistributed

back to the haul level by using the size composition of each spe-

cies for the fishing trip, under the assumption that size composi-

tion at the trip level reflects the size composition at the haul level

(Plet-Hansen et al., 2018). Possible discrepancies when deducing

spatial distribution from analysing commercial fishing data might

not be an issue when using data from small-scale vessels, which

perform only few hauls within short distance, but could be pro-

nounced for large-scale vessels conducting several hauls per day

and weeklong fishing trips, making a mismatch between trip and

haul fish size composition highly likely. In this study, we investi-

gated this possible mismatch using a recent commercial fisheries

system collecting at-sea observations of species and their com-

mercial size class from grading machines on-board vessels. We

test whether a difference exists in terms of the false presence of

certain size classes at the haul level, estimate the impact of the

level of spatial resolution for data aggregation based on trip-level

records, and investigate the potential bias that would arise from

the chosen grid cell size and shape (Dark and Bram, 2007).

Material and methods
At-sea grading machine, “Sporbarhed I Fiskerisektoren”
data
The Danish “Sporbarhed I Fiskerisektoren” (SIF) database con-

tains information on haul positions and times derived from

fishers entries in their electronic logbook (eLog) and landed

amount in kg of each commercial size class by species derived

from records by on-board grading machines on the vessel. It has

been mandatory for Danish fishing vessels to fill in their eLog for

each since 2015 (Fødevareministeriet, 2014). SIF therefore con-

tains landings of species and their commercial size classes to-

gether with positional data at a haul-by-haul level. Commercial

size classification follows the requirements of the EU (EU, 1996).

Plet-Hansen et al. (2018) previously described the SIF dataset in

details and investigated its usefulness for scientific purposes

through comparison to logbook and sales slips data. The dataset

was considered suitable for further scientific analyses, notwith-

standing some variability in data quality across years, vessels, spe-

cies, and size classes (Plet-Hansen et al., 2018).

In the present study, we used SIF data from 10 092 hauls from

six vessels over the period 2015–2017, for which the quality was

deemed high for the following 12 species: cod (Gadus morhua),

haddock (Melanogrammus aeglefinus), hake (Merluccius merluc-

cius), lemon sole (Microstomus kitt), ling (Molva molva), monk-

fish (Lophius spp.), pollack (Pollachius pollachius), saithe (P.

virens), turbot (Scophthalmus maximus), witch flounder

(Glyptocephalus cynoglossus), wolffish (Anarhichas spp.), and

whiting (Merlangius merlangus) (Table 1). These 12 species con-

stituted 76.5% of the total landings in value and 67.1% of the to-

tal landings in weight for the 3 years for these six vessels. The

final dataset after the validation according to Plet-Hansen et al.

(2018) is the baseline for comparison as records of species and

sizes are directly available at the individual haul level. The dataset

is henceforth referred to as “SIF”.

Trip-level reconstructed data
To estimate the gain of having size class recorded at the haul level,

we calculated a second dataset from aggregating the SIF data to

mimic the level of aggregation of standard logbooks data. In this

second dataset, we aggregated the weight of the specific size clas-

ses for each of the 12 species in SIF to the trip level, as this is the

stage at which size class information can be derived from vessels

without on-board grading machines in Denmark. We calculated

the full landing of each species for each haul, disregarding the size

class information to mimic the entry format in the eLog. We then

reallocated the average size composition aggregated at the trip

level for each species back to the full landings of each species at

Table 1. Total degrees of freedom (DF), r-squared (r2), and r-
squared for data with log-transformation (log-transformed r2) for
the 12 species identified as being well in accordance with sales slips
and logbook records for the six vessels in the years 2015–2017.

Species DF r2 Log-trans r2

Cod 3 510 0.871 0.841
Haddock 1 589 0.884 0.877
Hake 1 503 0.810 0.935
Lemon sole 1 549 0.916 0.944
Ling 1 058 0.974 0.937
Monkfish 2 382 0.944 0.944
Pollack 824 0.962 0.928
Saithe 1 617 0.879 0.916
Turbot 1 653 0.894 0.931
Witch flounder 1 653 0.908 0.931
Whiting 167 0.950 0.865
Wolffish 1 161 0.916 0.944
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each haul. Thereby, this second dataset has the size class informa-

tion as if it had been then the trip-level origin of size records

(TOR). TOR thus represents the size class information that can

be collected under the current limitation of size class information

at the trip level, while full species composition information is

available at the haul level from the eLog. Giving an example for il-

lustration: two hauls recorded in SIF, one with 2 kg of size class 5

cod, and one with 8 kg of size class 1 cod will in TOR result in

two hauls that both have size class 5 and size class 1 recorded.

However, in TOR, the first haul will have 0.4 kg of size class 5 cod

and 1.6 kg of size class 1 cod and the second haul will have 1.6 kg

of size class 5 cod and 6.4 kg of size class 1 cod. The reason for

this is that the TOR dataset is created under the assumption that

the trip level size composition is the same as the haul level size

composition. There, the percentage of size class 5 cod and the

percentage for size class 1 cod for the full trip (20% for size class

5 and 80% for size class 1) will be redistributed back to the hauls

as if the percentwise size composition for the trip also is the per-

centwise size composition for each haul.

Estimation of difference between SIF and TOR
For each haul, we calculated the difference between SIF and TOR

by weight in landings of each species and size class and we aggre-

gated size classes into two overall groups for each species (“small

fish” and “large fish”) to reduce the number of categories and

amplify the potential differences between the datasets. Such a

small/large fish division can be based on different factors, such as

age and maturity. Here, we used the price difference as the main

factor (Sjöberg, 2015; Hoff et al., 2019). Because SIF data are

commercial data and are influenced by the expected price of the

sold fish, the separation was based on the economic value of the

size classes for each species. The mean price per commercial size

classes was calculated on SIF for the study period 2015–2017. The

threshold under which size classes at the fish market are perceived

as “small” was defined at the point where the value of the fish

drops. In addition, we used literature indicating size class and

economic effect on discarding practices as an extra indication to

help validate this threshold (Table 2). Hence, for cod, haddock,

hake, saithe, pollack, whiting, ling, and lemon sole these divisions

coincide with 75–100% expected maturity of the fish (Silva et al.,

2013; ICES, 2014a, b, c, d; Macdonald et al., 2017; FishBase,

2019a). For monkfish, turbot, wolffish and witch flounder, the

maturity at division between “small” and “large” is uncertain but

likely <50%, potentially as low as 0% (Bowering, 1976; Robinson

et al., 2010; Gunnarsson et al., 2013; Silva et al., 2013; Macdonald

et al., 2017; FishBase, 2019b, 2020.

When using fishery-dependent data from active fishing gear

types, each haul can be viewed as a data sampling transect. Every

haul containing a species and size class thereby becomes a record

of presence. An analysis of fish presence/absence between SIF and

TOR data set-up was made to estimate possible “false presence”

samples (hauls) occurring when size class information from trip

level is redistributed to the haul level. Haul locations were

assigned to grid cells of 0.1� latitude by 0.2� longitude represent-

ing ca. 121 km2 at the study area latitude (North Sea region). The

grid cell size was decided based on two factors: (i) the average dis-

tance of hauls (�17 km N/S and �16 km E/W), meaning that an

average haul would not cross through more than two or three

grid cells; and (ii) to comply with regulation protecting the confi-

dentiality of individual vessels data on the fine-scale and

infrequent fishing grounds. Each haul is thereby treated as a tran-

sect passing through a grid cell. Because only the total amount

caught per haul in this dataset is known and therefore the exact

timing of each caught fish within the haul is unknown, the landed

amount from each haul is treated as equally likely to originate

from any grid cell in which the haul passed through. The share of

“false presence” samples was calculated for each species and size

grouping as presence records in TOR where no presences oc-

curred in SIF, divided by the total number of hauls passing

through the grid cell.

To evaluate the degree of discrepancy between SIF and TOR

when describing the spatial patterns of landed amounts of fish

sizes, and the effect of the grid cell resolution, we used the SPAtial

EFficiency metric (SPAEF) introduced in Koch et al. (2018).

SPAEF is calculated as:

SPAEF ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 1ð Þ2 þ b� 1ð Þ2 þ c� 1ð Þ2

q
;

where a is the Pearson correlation coefficient between SIF and

TOR grid values, b is the coefficient of variation for SIF grid val-

ues divided by the coefficient of variation for TOR grid values,

and c is the histogram overlap between the grid patterns with SIF

values and grid patterns with TOR values. SPAEF is thereby a

multi-composite and statistical metric that summarizes the de-

gree of matching of two spatial patterns in one single value (be-

tween �1 and 1 where 1 is full overlap) based on the balancing

between multiple components from where the spatial comparison

can be made, an approach that has been advocated for among

geoscientists (Krause et al., 2005; Gupta et al., 2012; Koch et al.,

2018). While the topic for which this metric has been developed

is not within the field of fisheries, the metric should be universal

for spatial analysis and apply to any spatially distributed data

such as delocalized recording of fish catches (Ciannelli et al.,

2008). Comparison of two by two spatial patterns results in many

SPAEF outputs. Therefore, the visual SPAEF outputs are illus-

trated only for monkfish (Figures 2–5), which is a data-poor spe-

cies in the study area (Poos et al., 2018). SPAEF metrics of the

remaining species are presented briefly, but detailed visual out-

comes for each of the other species are available in the

Supplementary material.

To illustrate the effect of chosen grain size, also known as the

Modifiable Areal Unit Problem, which exists in spatial analysis in-

cluding those directed at fisheries management (Jelinski and Wu,

1996; Dark and Bram, 2007; Guisan et al., 2007; Salmivaara et al.,

2015), SPAEF was calculated at different raster grid cell sizes. In

addition to the above-mentioned default cell size of 0.1 by 0.2�,
we chose the coarser grids defined by The International Council

for the Exploration of Sea (ICES), whereby statistical rectangles

(0.5 by 1.0�) are officially used for landings declaration in fisher’s

logbooks (Hintzen et al., 2019; ICES, 2019), and the finer grid

resolution of 0.05 by 0.05�, which have been used for VMS analy-

sis, including in the ICES Working Group on Spatial Fisheries

Data (Hintzen et al., 2012; ICES, 2018).

Results
False presence sampling estimation
Across all species, size groupings, and years, the average number

of cells with a “false presence” recorded by TOR was 33 out of the

total cell count of 883 when using a grid cell extend of 0.1� lati-

tude by 0.2� longitude. The highest number of hauls recorded in

Value of commercial fish size distribution 2731
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SIF passing through a grid cell during 2015–2017 was 31 while

the lowest is 1. The “false presence” recorded hauls by TOR com-

pared to SIF in the affected grid cells ranged from 3.22% (small

hake) to 100% (Figure 1).

The amount of false presence samples (hauls) occurring in

TOR differed between species and size class groupings (Figure 1).

Large cod, haddock, lemon sole, large ling, monkfish, pollack,

small saithe, small witch flounder, and wolffish all had a share of

false presence hauls in TOR extending to 100%. Large saithe (up

to 15 hauls), small haddock (up to 11 hauls), small hake (up to

12 hauls), small monkfish (up to 31 hauls), small turbot (up to

22 hauls), and small wolffish (up to 25 hauls) had grid cells where

this false presence share was out of >10 hauls. For all other spe-

cies and size groupings, the false presence share was applying to

<10 hauls passing through a false positive cell. Smaller sizes were

affected more than the larger sizes by the false presence in TOR,

the lack of a finer information assuming small fish to distribute

on where they were not found in reality (i.e. in SIF), and this was

particularly consistent for monkfish, turbot, and wolffish, which

showed signs for smaller fish to not be distributed evenly but en-

countered patchily.

Distribution of landed amount and spatial resolution
effect
Higher SPAEF coefficient was found for monkfish of the size

grouping “large” (Figure 2) compared to monkfish of the size

grouping “small” (Figure 4). In addition, small grid cells (VMS)

produce larger SPAEF output (Figure 2) compared to large grid

cells (ICES square) (Figure 3). That is, for monkfish in 2017, the

difference in spatial distribution of abundance data between SIF

and TOR is higher for the small size grouping of monkfish and

also becomes higher if data are aggregated to grid cells with sub-

stantial spatial extend (ICES squares) compared to grid cells with

a relatively small spatial extent (VMS). The difference in the gra-

dient scale extend between Figures 2 and 3 is caused by the aggre-

gation of more samples into each grid cell when the spatial extent

of a grid cell is relatively large (ICES squares) compared to rela-

tively small grid cells (VMS).

Cod, haddock, hake, lemon sole, ling, large monkfish, small

pollack, saithe, turbot, large witch flounder, and large wolffish

have SPAEF values close to 1 when moving from large grid cell

sizes (ICES, 0.5� by 1.0�) towards small grid cell sizes (VMS,

0.05� by 0,05�) (Figure 5). Small monkfish, large pollack, small

witch flounder, whiting, and small wolffish do not show the same

tendency. Small monkfish, large Pollack, and small witch flounder

have the main increase in SPAEF value when moving from the

largest grid cell size (ICES, 0.5� by 1.0�) to the medium grid cell

sizes (0.1� by 0.2�) and with no apparent increase in SPAEF value

going from medium grid cell sizes to the smallest grid cell sizes

(VMS, 0.05� by 0,05�). Whiting and small wolffish have no ap-

parent increase in SPAEF value regardless of grid cell sizes, if any

change, rather a potential decrease in SPAEF value when moving

from large grid cell sizes (ICES, 0.5� by 1.0�) towards small grid

cell sizes (VMS, 0.05� by 0,05�). For the species and size group-

ings with a tendency for an increase in SPAEF value when grid

cell sizes are reduced, the main SPAEF metric behind the in-

creased SPAE value is the histogram overlap.

Discussion
We set out to estimate the potential mismatch that occurs be-

tween the fish size composition in the marine-wild fisheries land-

ings data only collected at the individual trip-at-sea level

compared to the more accurate but less available haul-by-haul

level. If redistributing trip-based data to hauls are routinely done,

e.g. in Denmark, it remains crucial to examine and confirm if

such an approach does provide actual benefits with better esti-

mates. We used opportunistically the data collected by a trace-

ability system (SIF), to make this estimation. However, the data

were only available for a subset of the Danish fleet and mainly for

large-scale demersal trawlers.

Our findings show that spatial mismatch in species landings

distribution, for instance due to “false presence” records, do arise

from the lack of fish body size information at the haul level.

While the mismatch occurs for both large and small size groups,

it is more profound for small individuals compared to the large

individuals. A possible explanation for this is that in general, the

large animal size groupings contain more commercial size classes

than the small animal size group. Thereby, the information

Table 2. Division by size class and kg between small and large grouping.

Species Division small/large

Number of size
classes in size
group small

Number of size
classes in size
group large Rationale

Cod Size class 3 (�2.00 kg) 2 4 Ulrich et al. (2013)
Haddock Size class 2 (�0.57 kg) 2 2 Stratoudakis et al. (1998) and

Bergsson et al. (2017)
Hake Size class 2 (�1.20 kg) 2 3 Bergsson et al. (2017)
Lemon sole Size class 2 (�0.35 kg) 1 2 Prices 2015–2017
Ling Size class 2 (�3.00 kg) 1 2 Prices 2015–2017
Monkfish Size class 4 (�1.00 kg) 1 4 Prices 2015–2017
Pollack Size class 2 (�3.00 kg) 2 2 Prices 2015–2017
Saithe Size class 3 (�1.5 kg) 1 3 Bergsson et al. (2017)
Turbot Size class 3 (�1.00 kg) 1 3 Prices 2015–2017
Witch flounder Size class 2 (�0.3 kg) 1 2 Prices 2015–2017
Whiting Size class 2 (�0.35 kg) 2 2 Stratoudakis et al. (1998) and

Bergsson et al. (2017)
Wolffish Size class 3 (�1.00 kg) 1 2 Prices 2015–2017
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aggregation for larger size classes resembles that of size data col-

lected at a trip level more than that of the small size classes. The

focus of this study was to present the added value of size level at

the haul level and the influence of the geographical resolution

chosen for the gridding. Hence, we divided the landings per size

group related to a price index to illustrate this added value. If this

grouping could appear coarse, our findings already measure a

substantial spatial mismatch between the two levels of data reso-

lution, which underpins the influence of the data record level.

Besides, when aggregating data spatially, the specific area size

and shape will affect which samples fall within the area and

thereby affect the modelled outcome (Guisan et al., 2007;

Amoroso et al., 2018a). In theory, this problem could be avoided

if each observation is analysed individually (Jelinski and Wu,

1996). In reality, it is often necessary to aggregate data spatially,

e.g. due to the spatial resolution at which data are available and

thereby the scale at which it is reasonable to present the data

(Salmivaara et al., 2015; Amoroso et al., 2018b; Kroodsma et al.,

2018). When choosing the grid cell size for modelling spatial gra-

dient data, a balance between the data record level and the wanted

analysis has to be made.

The outcome of the mismatch analysis for most species and

size groups in our study was that the mismatch reduced when the

used grid was fine. At first, this might give the impression that

Figure 1. The box-and-whiskey plot of the share of “false presence” samples (hauls) in grid cells of 0.1� latitude by 0.2� longitude where
species are absent in SIF but present in TOR. The x-axis shows species and size grouping, and the y-axis shows the percentile share of hauls
with a “false positive” record in TOR out of the total amount of hauls passing through a cell.
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grid cell sizes should simply be as small as possible. However, one

has to take into account whether the data record level truly allows

for pinpointing data to small grid cell sizes. Otherwise, one risk

representing data in grid cells that in fact did not contain these

records in reality. While most species show a trend towards a

higher SPAEF value when grid cell size decreases, the trend is

asymptotic with the main increase in the degree of overlap

achieved when moving from ICES grid cells to lat. 0.1� by long.

0.2� grid cell sizes. In addition, the SPAEF metric, which

mainly drives this increase, is the histogram overlap, meaning

that whether a data record truly originate from a grid cell or not

is key. That is, whether false presences or absences are inserted

Figure 2. SPAEF output when using VMS grid cell sizes (0.05� by 0.05�) for large monkfish in 2017. Subplot (a) compares the spatial overlap
for TOR and SIF. Gradient colour is the amount of monkfish in kg associated with each grid cell on a logarithmic scale. Grey area is a sketch
of western Norway and Denmark. Subplot (b) compares the histogram overlap and the correlation between TOR and SIF. SPAEF coefficient is
0.95, histogram overlap is 0.97, Pearson correlation is 0.98, and C.V./C.V. is 1.04.
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into the data when aggregating into grid cells. False absence or

methodological absence occurs when the method for data collec-

tion is unable to ensure a valid record of absences, whereby data

records will have absences where presences should have been ob-

served (Lobo et al., 2010; Barbet-Massin et al., 2012). What our

analysis shows (Figure 1) is that the reverse situation, false pres-

ence, may also occur when relying on fishery-dependent data as a

source of data. Unlike the false absence, the false presence does

not present itself at the species level as the species was actually

caught. When integrating commercial fisheries data with

scientific surveys to boost the data availability (Rufener et al.,

2018), there is a risk of inducing false presences for fish body size

into the distribution of the commercial fisheries data if potential

false presences are not accounted for. However, for most species

in our analysis, such mismatch can be decreased using smaller

grid cell sizes.

Figure 3. SPAEF output when using ICES grid cell sizes (0.5� by 1.0�) for large monkfish in 2017. Subplot (a) compares the spatial overlap for
TOR and SIF. Gradient colour is the amount of monkfish in kg associated with each grid cell on a logarithmic scale. Grey area is a sketch of
western Norway and Denmark. Subplot (b) compares the histogram overlap and the correlation between TOR and SIF. SPAEF coefficient is
0.58, histogram overlap is 0.58, Pearson correlation is 0.99, and C.V./C.V. is 1.03.

Value of commercial fish size distribution 2735

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/7-8/2729/5908261 by IFR
EM

ER
 user on 18 January 2021



Our findings suggest that, besides fish body size records at the

haul level, positional data records of fishing activities (effort data)

recorded at a fine-scale also will lower the mismatch between size

class collected at the haul level or the trip level. Fine-scale effort

data will allow for finer grid cells because the positional data will

represent the correct track line of the fishing vessel better than

when coarser positional data are used (Needle et al., 2015).

Several possibilities to achieve this exist. Since EU fishing vessels

are already required to carry VMS, in theory higher precision of

effort data could be recorded by simply increasing the ping rate.

That is, instead of recording position, speed, and course at every

1 to 2 hr, the record could be done at, e.g. a 5-min interval, just

like that of AIS data (Gerritsen et al., 2013; Girard and Du Payrat,

2017). Another option would be to use AIS data from the fishing

fleet. One should keep in mind, however, that AIS was developed

for security and navigational purposes (IMO, 2019) and therefore

skippers can turn AIS equipment on and off as they wish, con-

trary to the VMS. A third option would be to use electronic mon-

itoring systems that record positional data at 10 s intervals besides

recording the on-going fishing activities with sensors on the

Figure 4. SPAEF output when using VMS grid cell sizes (0.05� by 0.05�) for small monkfish in 2017. Subplot (a) compares the spatial overlap
for TOR and SIF. Gradient colour is the amount of monkfish in kg associated with each grid cell on a logarithmic scale. The grey area is a
sketch of western Norway and Denmark. Subplot (b) compares the histogram overlap and the correlation between TOR and SIF. SPAEF
coefficient is 0.40, histogram overlap is 0.50, Pearson correlation is 0.72, and C.V./C.V. is 0.81.
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fishing gear (Plet-Hansen et al., 2019; van Helmond et al., 2020).

Indeed, such electronic monitoring systems, where no video feed

is installed but merely sensor and GPS equipment, are already

mandatory for certain mussel fisheries in Denmark and Scotland

(Nielsen et al., 2014).

In our study, there are a few cases where a higher resolution of

spatial effort data does not seem to translate into a higher degree

of overlap. Whiting, small monkfish, large pollack, small wolffish,

and arguably small witch flounder show no obvious improvement

in spatial allocation when using smaller grid cell sizes. Indeed for

whiting and small wolffish, it seems that the use of smaller grid

cell sizes even makes the spatial allocation mismatch larger. One

reason could be that these species and size classes are landed in

lower amounts than for instance species and size classes like large

monkfish or wolffish or species like cod, haddock, or saithe. The

lower amount of entries for SPAEF to be run on may simply

make the statistics less robust. Whether this is the case or if other

factors like different spatial distribution of these species and size

classes are at play could be subject for further study.

From an ecological modelling perspective, more data availabil-

ity of size records is of interest to feed into species distribution

models (Elith and Leathwick, 2009) given that fish tend to dis-

tribute differently along their life stages while fishing activities se-

lect only a fraction of the overall abundance. On-going advances

using image recognition could increase the relevance of grading

machine data, including data from sea-packing grading machin-

ery, by automating the recording of fish lengths of fish packed in

boxes according to the EU commercial size class specifications

(Álvarez-Ellacurı́a et al., 2019). However, because fishers target

specific species of commercial interest and use specific fishing

techniques, which are differently selective over fish body sizes,

commercial fishing is by nature a non-random process, which

means that the fishery-dependent data cannot be assimilated to

stratified random sampling (Smith, 2000; Sims et al., 2008;

Madsen and Valentinsson, 2010; Fauconnet and Rochet, 2016).

Using such kind of data source for the species distribution model-

ling would risk biasing the modelling with “false absence”

(Barbet-Massin et al., 2012) that may originate from the spatial,

temporal, and technical selectivity of the commercial fisheries

data (Lobo et al., 2010).

In this study, size grouping was based on categories that would

relate to fishers’ behaviour and thereby fisheries management.

This is because the actual size composition of catches and land-

ings is the result of, among other driving factors, the fish quota

availability and the fish price per kg that influence the targeting

behaviour of fishers (Graham et al., 2007; Bourdaud et al., 2019;

Robert et al., 2019). If species-related non-sized data may be suffi-

cient in informing the possible avoidance of unwanted catches,

including fish body size-related information will also help to sup-

port other economic drivers for the fishers to optimize their fish-

ing effort spatially. Anticipating the possible size composition of

the following hauls holds both ecological and economic values

that are likely to influence fishers’ decision-making (Little et al.,

2009; Bourdaud et al., 2019). Such refined information as used in

this study may help in adapting management measures to fit

management goals better by accounting for the adaptive behav-

iour of fishers (Abbott and Haynie, 2012) and by supporting the

fisheries sector with documentation and tools, easing the compli-

ance with the rules, and eventually minimizing the fishing

impacts (Bradley et al., 2019; Hintzen et al., 2019; Reid et al.,

2019). It is important to keep in mind, however, that the com-

mercial fisheries data used in this study only contain information

on landings and thereby lack information for potential discards.

Conclusion
Our study measured to what extent using commercial fisheries

data to deduce the spatial distribution of species and sizes comes

with the risk of assuming that fish sizes are distributed to where

Figure 5. Box-and-whiskers plot of outcome for SPAEF and its three composite coefficients for the large and small size groups of the 12
species by the three grid cell sizes for the years 2015–2017. A SPAEF at 1 means full match between the two trip-based TOR and haul-based
SIF spatial patterns.
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they are not. We compared data recorded at the haul level to the

same data arranged as if it was recorded at the trip level. The mis-

match was found to be greater for small sizes of a species com-

pared to larger sizes. Using commercial fisheries data records

recorded at the trip level may be useful or even necessary. Yet it is

important to acknowledge the limitations and potential bias of

one’s data sources. A clear limitation with the commercial fisher-

ies data used in this study is that it relies solely on records of

landings, whereby the influence of potential discards cannot be

covered. Our findings do however suggest that the potential bias

induced by redistributing sizes recorded at the trip level onto the

haul level could be decreased if the positional data for the actual

fishing activities are collected at an interval allowing for refined

fishing effort data. For certain species, however, fine-scale effort

data did not help, while size information recorded at the haul

level still did. While this might be influence by low landing vol-

umes, other factors such as different spatial distribution of these

species could be a potential reason too. Further studies are

needed to investigate this.
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