FN Archimer Export Format PT J TI The Seagrass Methylome Is Associated With Variation in Photosynthetic Performance Among Clonal Shoots BT AF Jueterbock, Alexander Boström, Christoffer Coyer, James A. Olsen, Jeanine L. Kopp, Martina Dhanasiri, Anusha K. S. Smolina, Irina Arnaud-Haond, Sophie Van de Peer, Yves Hoarau, Galice AS 1:1,2;2:3;3:2,4;4:5;5:2;6:2;7:2;8:6;9:7,8,9;10:2; FF 1:;2:;3:;4:;5:;6:;7:;8:PDG-RBE-MARBEC-LHM;9:;10:; C1 Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway Marine Molecular Ecology Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland Shoals Marine Laboratory, University of New Hampshire, Durham, NH, United States Ecological Genetics-Genomics Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands UMR MARBEC, Université de Montpellier, Ifremer, IRD, CNRS, Sète, France Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Bioinformatics and Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa C2 UNIV NORD, NORWAY UNIV NORD, NORWAY UNIV ABO AKAD, FINLAND UNIV NEW HAMPSHIRE, USA UNIV GRONINGEN, NETHERLANDS IFREMER, FRANCE UNIV GHENT, BELGIUM UNIV GHENT, BELGIUM UNIV PRETORIA, SOUTH AFRICA SI SETE SE PDG-RBE-MARBEC-LHM UM MARBEC IN WOS Ifremer UMR DOAJ copubli-europe copubli-int-hors-europe copubli-sud IF 3.637 TC 18 UR https://archimer.ifremer.fr/doc/00652/76375/77363.pdf https://archimer.ifremer.fr/doc/00652/76375/77364.pdf https://archimer.ifremer.fr/doc/00652/76375/77365.zip https://archimer.ifremer.fr/doc/00652/76375/77366.zip https://archimer.ifremer.fr/doc/00652/76375/77367.zip https://archimer.ifremer.fr/doc/00652/76375/77368.xlsx https://archimer.ifremer.fr/doc/00652/76375/77369.xlsx https://archimer.ifremer.fr/doc/00652/76375/77370.xlsx https://archimer.ifremer.fr/doc/00652/76375/77371.xlsx https://archimer.ifremer.fr/doc/00652/76375/77373.xlsx https://archimer.ifremer.fr/doc/00652/76375/77374.xlsx https://archimer.ifremer.fr/doc/00652/76375/77375.xlsx https://archimer.ifremer.fr/doc/00652/76375/77376.xlsx https://archimer.ifremer.fr/doc/00652/76375/77377.xlsx https://archimer.ifremer.fr/doc/00652/76375/77378.xlsx https://archimer.ifremer.fr/doc/00652/76375/77379.xlsx https://archimer.ifremer.fr/doc/00652/76375/77380.xlsx https://archimer.ifremer.fr/doc/00652/76375/77381.xlsx https://archimer.ifremer.fr/doc/00652/76375/77382.xlsx LA English DT Article DE ;DNA methylation;ecological epigenetics;clonality;heat stress;seagrass;Zostera marina(eelgrass) AB Evolutionary theory predicts that clonal organisms are more susceptible to extinction than sexually reproducing organisms, due to low genetic variation and slow rates of evolution. In agreement, conservation management considers genetic variation as the ultimate measure of a population’s ability to survive over time. However, clonal plants are among the oldest living organisms on our planet. Here, we test the hypothesis that clonal seagrass meadows display epigenetic variation that complements genetic variation as a source of phenotypic variation. In a clonal meadow of the seagrass Zostera marina, we characterized DNA methylation among 42 shoots. We also sequenced the whole genome of 10 shoots to correlate methylation patterns with photosynthetic performance under exposure to and recovery from 27°C, while controlling for somatic mutations. Here, we show for the first time that clonal seagrass shoots display DNA methylation variation that is independent from underlying genetic variation, and associated with variation in photosynthetic performance under experimental conditions. It remains unknown to what degree this association could be influenced by epigenetic responses to transplantation-related stress, given that the methylomes showed a strong shift under acclimation to laboratory conditions. The lack of untreated control samples in the heat stress experiment did not allow us to distinguish methylome shifts induced by acclimation from such induced by heat stress. Notwithstanding, the co-variation in DNA methylation and photosynthetic performance may be linked via gene expression because methylation patterns varied in functionally relevant genes involved in photosynthesis, and in the repair and prevention of heat-induced protein damage. While genotypic diversity has been shown to enhance stress resilience in seagrass meadows, we suggest that epigenetic variation plays a similar role in meadows dominated by a single genotype. Consequently, conservation management of clonal plants should consider epigenetic variation as indicator of resilience and stability. PY 2020 PD SEP SO Frontiers In Plant Science SN 1664-462X PU Frontiers Media SA VL 11 IS 571646 UT 000572221200001 DI 10.3389/fpls.2020.571646 ID 76375 ER EF