FN Archimer Export Format PT J TI Antagonistic cytoprotective effects of C60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. BT AF Moore, Michael N. Sforzini, Susanna Viarengo, Aldo Barranger, Audrey Aminot, Yann Readman, James W. Khlobystov, Andrei N. Arlt, Volker M. Banni, Mohamed Jha, Awadhesh N. AS 1:1,2,3;2:4;3:4;4:1;5:1;6:1,3;7:5,6;8:7,8;9:9;10:1; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:; C1 School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK Institute for the study of Anthropic impacts and Sustainability in marine environment – IAS, National Research Council – CNR, Via de Marini, 6, 16149 Genova, GE, Italy School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK Kings Coll London, MRC PHE Ctr Environm & Hlth, Dept Analyt Environm & Forens Sci, London SE1 9NH, England Toxicology Department, GAB Consulting GmbH, 69126, Heidelberg, Germany Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia C2 UNIV PLYMOUTH, UK UNIV EXETER, UK PML, UK CNR, ITALY UNIV NOTTINGHAM, UK UNIV NOTTINGHAM, UK KINGS COLL LONDON, UK GAB CONSULTING, GERMANY ISA, TUNISIA IF 10.754 TC 10 UR https://archimer.ifremer.fr/doc/00652/76394/77414.pdf LA English DT Article DE ;Antagonism;Autophagy;Complexity;Lysosomes;C-60-nanoparticles;Oxidative-injury AB The hypothesis that C60 fullerene nanoparticles (C60) exerts an antagonistic interactive effect on the toxicity of benzo[a]pyrene (BaP) has been supported by this investigation. Mussels were exposed to BaP (5, 50 & 100 μg/L) and C60 (C60 - 1 mg/L) separately and in combination. Both BaP and C60 were shown to co-localise in the secondary lysosomes of the hepatopancreatic digestive cells in the digestive gland where they reduced lysosomal membrane stability (LMS) or increased membrane permeability, while BaP also induced increased lysosomal lipid and lipofuscin, indicative of oxidative cell injury and autophagic dysfunction. Combinations of BaP and C60 showed antagonistic effects for lysosomal stability, mTORC1 (mechanistic target of rapamycin complex 1) inhibition and intralysosomal lipid (5 & 50 μg/L BaP). The biomarker data (i.e., LMS, lysosomal lipidosis and lipofuscin accumulation; lysosomal/cell volume and dephosphorylation of mTORC1) were further analysed using multivariate statistics. Principal component and cluster analysis clearly indicated that BaP on its own was more injurious than in combination with C60. Use of a network model that integrated the biomarker data for the cell pathphysiological processes, indicated that there were significant antagonistic interactions in network complexity (% connectance) at all BaP concentrations for the combined treatments. Loss of lysosomal membrane stability probably causes the release of intralysosomal iron and hydrolases into the cytosol, where iron can generate harmful reactive oxygen species (ROS). It was inferred that this adverse oxidative reaction induced by BaP was ameliorated in the combination treatments by the ROS scavenging property of intralysosomal C60, thus limiting the injury to the lysosomal membrane; and reducing the oxidative damage in the cytosol and to the nuclear DNA. The ROS scavenging by C60, in combination with enhanced autophagic turnover of damaged cell constituents, appeared to have a cytoprotective effect against the toxic reaction to BaP in the combined treatments. PY 2021 PD FEB SO Science Of The Total Environment SN 0048-9697 PU Elsevier BV VL 755 IS 1 UT 000600537400074 DI 10.1016/j.scitotenv.2020.142355 ID 76394 ER EF