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Abstract :   
 
Quantitative and qualitative analysis of acoustic backscattered signals from the seabed bottom to the sea 
surface is used worldwide for fish stocks assessment and marine ecosystem monitoring. Huge amounts 
of raw data are collected yet require tedious expert labeling. This paper focuses on a case study where 
the ground truth labels are non-obvious: echograms labeling, which is time-consuming and critical for the 
quality of fisheries and ecological analysis. We investigate how these tasks can benefit from supervised 
learning algorithms and demonstrate that convolutional neural networks trained with non-stationary 
datasets can be used to stress parts of a new dataset needing human expert correction. Further 
development of this approach paves the way toward a standardization of the labeling process in fisheries 
acoustics and is a good case study for non-obvious data labeling processes. 
 
 
Highlights 

► Non-uniform expert labeling of complex data is a common issue, typically illustrated in fisheries 
acoustics and noisy raw datasets. ► A common labeling process is a first step toward comparable 
computational methods in fisheries acoustics. ► A method to automate and standardize the labeling 
process in fisheries acoustics with machine learning is presented. ► Convolution neural networks are 
identified as good features extractor and can benefit from non stationary fisheries acoustics datasets. 
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TRODUCTION 

Cost and reliability of the labeling processes in data driven applications: the c

eries acoustics 

ing pattern recognition problems with machine learning algorithms strongly rely 

lability of reliable ground truth datasets. For obvious labeling tasks as naming pict

yday life objects, large reliable ground truth datasets can be acquired at relatively low

using crowd labeling methods (Griffin et al. 2007; Deng et al. 2009). In the case o

plex data, the labeling must be done by experts, which increases costs but also 

rtitude on finding ground truth labels. Indeed, for some complex data, different exper

 different labels. This issue is particularly experienced in medical computer-aid dia

kar et al. 2010) but also in remote sensing applications, e.g: in object detection wit

yth et al. 1995) or in fisheries acoustics (McClatchie et al. 2000).  

Fisheries acoustics is the main nondestructive method for estimating the abunda

gic and semi-pelagic fish (Simmonds and MacLennan 2005; Brehmer 2006). 

ations are critical for fisheries worldwide because they allow managers to p

mmendations on fishing effort level adjustment to avoid overexploitation, m

ystem health, and ensure food security. Large datasets have been routinely co

ldwide to estimate fish abundance (MacLennan 1986) or, for example, used to stud

vior (Guillard et al. 2010), and even in aquaculture (Brehmer et al. 2006). Labeling

sets is a keypoint for any further quantitative or qualitative analysis. In this pap

sed on the expert labeling process of these data.  

One of the first operations needed before any inference for assessing fish abundan

rawn is to identify the bottom depth along the survey path (Korneliussen 2004; MacL
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l. 2004). Indeed, accurate correction of the bottom line is needed because fish abund

ated by integrating the acoustic signal from bottom to surface. Since the bottom a

al is often strong, small errors in bottom depth estimation can lead to the overestima

abundance in the water column. Indeed, if the bottom depth estimated is miscalculat

 below the true bottom depth, the echo integration may contribute substantial errors b

ill interpret the amount of energy backscattered by the bottom as biological resource

Mitson 1996; Villalobos et al. 2013).  

This paper investigates how supervised learning can help automate the labeling p

e bottom correction as a case study. Nowadays, bottom-detection algorithms with a 

 echo sounder rely on echo-amplitude measurements within a depths range specified

ard operator as the upper and lower depth limits most likely to be used during an a

survey (e.g., see “bottom detection” in Simrad EK60). However, this procedure can fa

ety of reasons, e.g., either coming from onboard errors in manual setting of the instrum

 noise in the reflected signal itself that can perturb the bottom-detection algorith

ple, over soft and weakly reflecting grounds, the bottom may be detected below i

l. Also, a high density of fish present near the seabed can generate a false detection

om echo (MacLennan et al. 2004). Thus, before producing fish stock assessments from

rvations, the signal must be hand post-processed by an expert to find and correct these

ha et al. 1996). This consists of visually scrutinizing the entire echogram for ba

ions and poor bottom detection and then removing questionable data and redefini

om as needed (Bartholomä 2006). This task is expensive because it requires an exper

ugh all of the echograms, i.e.several millions of pings, depending on the cruise duratio
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typical case of a labeling process where the ground truth label is non-obvious and

 one expert to another.  

Surprisingly, few studies in the fisheries acoustics field have focused on imp

om detection or correction (Foote et al. 1991), and most have concentrated 

rimination of sediment or seabed classification (e.g., Bartholomä 2006) and obv

ogical targets identification (Simmonds and MacLennan 2005; Brehmer et al. 

taset et al., 2020).  

 

achine learning to automate the data labeling process? 

 problem at hand is typical of the challenges faced by the remote sensing (RS) comm

ed RS data are expensive to collect, error-prone, and require expert interpretation. Ba

7) suggested machine learning (ML) and deep learning (DL) methods to autom

an-engineering process. Fisheries acoustics data (provided as an echogram matr

rently highly dimensional. Furthermore, as underwater feature extraction methods gra

me less effective with the expansion of acoustic datasets, the need to find auto

ods and procedures to extract meaningful features is sharper.  

Deep Neural Networks (DNN) are neural networks with multiple hidden layers. Th

 a representation of the data with multiple levels of abstraction (hidden layers) and a

d to making inferences from large volumes of complex data in an end-to-end fashion 

. 2015). The premise of DL is to partially automate the feature engineering made by h

ey often suffer from biases. Indeed, it is often the case that two experts might not ag

orrection of a given echogram. 
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However, only a few attempts to apply DL and ML were achieved in fisheries aco

cite Williams (2016) and Denos et al. (2017) who first attempted to classify unde

cted objects with DL, but were facing the problem of insufficient availability of t

. Recently, Brautaset et al., (2020) used a convolutional autoencoder architecture for a

school detection and classification, and got promising results but still facing the prob

training dataset quality. In the case of fish school identification, overpassing the prob

ing dataset quality is complicated because of the difficulty to get a “field truth” of

ies reflected the signal (Simmonds et al. 2008).  

Two approaches are possible using ML methods: (1) to directly predict the bottom

 the echogram and (2) to evaluate the quality of the pings by classifying them in

ps, depending on whether the bottom needs correction or not. The first approach coul

lop a system to fully automate human intervention, but errors would be harder t

ed, when the biological resource being targeted for echointegration require high pre

an intervention would still be needed, and the first automation procedure would not gi

ht to the expert to spot them. So, we took a step back and decided to address the prob

cing the expert’s time to perform the most basic, but also the most time-consuming 

-processing task needed for direct fish stock assessment, i.e. the bottom depth correcti

gned a system that would help the expert to gain time by highlighting pings with a 

ihood of requiring correction. Another benefit of this method is that by automati

ling process, it removes the inherent variability among different experts and mak

ling process unified for different sea surveys.  Here the idea is to lay down a metho

would leverage datasets collected in past campaigns to support the bottom correction p

 newly collected dataset. Hence, the ML task is to provide a “quality label” for each 
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dataset so that the expert can focus only on the echogram sections that are likely t

ection, i.e., to avoid replaying the whole survey. 

ontributions  

evaluated several ML procedures to leverage past labeled data for which an exp

dy corrected the bottom line prediction, thus large training datasets are availabl

ific task investigated was to identify the parts of the echogram requiring the expert to 

bottom line. Our first contribution is to propose a comparison of different machine le

rithms for this task. Four learning algorithms are compared: Random Forests, Convol

ral Networks, Support Vector Machines, and Feed-Forward Neural Networks.

rparameters were found using Bayesian Optimisation. This led to the identification o

e most adapted learning algorithm.  

In most applications when the best ML algorithm is discovered, it is used in prod

ew datasets. However, in our case, a new dataset may have different attributes such as

he label distribution, or a different noise structure. For instance, the frequency of

iring an expert correction might be different from one sea campaign to another as dis

e. Also, the noise might not be distributed equally from one sea campaign to anothe

motivated our second contribution, we provide experimental evidence showing the ben

ct of mixing training datasets from different sea surveys to improve performance at tes

efer to this technique as cross-domain training in the following. Jo
ur

na
l P

re
-p

ro
of
Page 6 of 44 



 

2. M

In s atting, 

labe  means 

and section 

2.2 dataset 

opti

 

2.1 D

2.1.1

Aco search 

cent atasets 

corr ridtjof 

Nan  2018). 

Here ing the 

back e from 

prep atecho 

soft olumn 

was ertical 

reso ted by 

an a usually 

corr m and 

Journal Pre-proof
ATERIALS AND METHODS 

ection 2.1 we provide an exhaustive description of the crude dataset collection, form

ling method, and the subdivision in training, validation, and test datasets. Computing

associated limitations on the size of the processed dataset are also described here. In 

we present the methodology for learning algorithms comparison, for training 

mization and the training settings. 

ata Processing 

 Description of the crude dataset 

ustic data came from an international collaboration of northwest African fishery re

ers, which gathered their data at the subregional level. The data consist of two d

esponding to two campaigns from the Nansen project (Fisheries Research Vessel Dr. F

sen) that took place in 2011 and 2015 off northwest Africa (Fig 1) (e.g., Sarré et al.

, each acoustic pulse is called a ping, and we call the matrix obtained from gather

scattered signals of a sequence of pings the echogram. These echograms usually com

rocessed acoustic surveys at sea (Fig 1). The data preprocessing was done using the M

ware (Perrot et al. 2018). The backscattered signal from the upper 500 m of the water c

 extracted, and the echo at each depth was interpolated on a regular grid with a v

lution of 20 cm. Still, during preprocessing, the ocean depth for each ping was estima

utomatic algorithm that searched for the maximum gradient of the acoustic signal, 

esponding to the acoustic signal at the bottom. Then in post-processing, the echogra
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automatic bottom line detection were visualized by an expert who manually perform

ection of the bottom line. 

Data were acquired with an echosounder fixed to the hull of the vessel. The vess

acoustic wave pulses of four distinct frequencies in the water at a pulse length of 1 ms.

y, we used the 38 kHz frequency as it is a common frequency used in fisheries acoust

t limited over the continental shelf (500–600 m maximum depth). Table 1 gives a su

e variables present in each dataset used. The crude echogram presents some irregu

to the onboard recording settings. Typical errors of the automatic procedure for botto

ction are shown in Fig. 2a., and it can be seen that the expert (red line) roughly cut th

oid including the bottom signal in the echo-integration.  

In particular, NaN (not a number) values were usually present between 500 

imum recording depth in this case study) and ~20–30 m below the predicted bottom. 

use, during data collection at sea, the echo sounder operator(s) set the maximum d

t data acquisition to the water column. Nevertheless, in some cases, real values we

buted to much greater depths under the actual bottom (Fig 2). Furthermore,

ularities were distributed differently between the 2011 and 2015 datasets (Fig 2) a

 dependent on the survey configuration at sea vs. the local depth surveyed. 

ularities, common in fisheries acoustics sea surveys, typically challenge tradition

oaches. Indeed, to deal with such differences in the dataset’s noise the modeler i

ired to build complex pipelines for feature extraction. The rationale behind the use of

arn in an end-to-end fashion, with as few preprocessing operations as possible.  Jo
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 Formatting the dataset 

e transformations were applied to extract a standardized format and minimalist t

set from the crude one. We reduced the size of the training dataset to reduce learni

ad times on remote calculation servers. 

The first transformation was carried out to get the same number of rows for our da

h initially varied slightly (Table 1). To do that, we removed the first 31 rows from the

 echogram (~ 6 meters), as well as the first 17 rows of the 2015 echogram (~ 3.3 m

 was required because frequently there were strong signals in the first rows that subseq

rbed the learning process. Such a transformation was necessary to allow the same

orks to be trained and applied to the two dataset subsamples. Finally, we were left wit

s in each of the preprocessed datasets. 

The second transformation was aimed at reducing the size of the dataset by rem

s for which no learning could be extracted, to distinguish between bottom qualitie

n pings in the echogram did not hit the bottom. This occurred when the vessel was loc

s deeper than 500 m because only the first 500 m were recorded during the sea cam

se pings were removed using a threshold-based filter. We discriminated betwe

grams with and without a bottom, based on the presence or absence of strong backsca

32 dB), considered as a bottom signature. Finally, as we needed every ping to have th

ensions for further calculation, and numerical algorithms could not process NaN valu

aced all of the NaN values by −200 dB, a value that corresponds to the weakest re

es in the echograms (−199 dB for 2011 and −198 dB for 2015). This operation can b

placing non-recorded values by noise. Indeed, values below ~−90 dB are never (or s
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bottom and not reached by the acoustic signal. The sizes of the 2011 and 2015 for

sets are summarized in Table 2. Finally, both datasets were standardized before trainin

 Data labeling  

followed a generic ML methodology (Goodfellow et al. 2016). The goal of the proce

assify the data (here, acoustic pings) into two classes before the intervention of the ex

nalize their work when correcting the crude echogram. The first class gathers the pi

ch the automatic procedure usually performed well, thus needing less attention fro

rt. The second class regroups the pings for which the expert usually needed to corr

matic bottom prediction. We labeled each remaining ping (after formatting; see the pr

ion) as belonging to one of these two classes according to the distance between the

ection (variable “CleanBottom,” Table 1) and the initially predicted bottom depth (v

ttom,” Table 1). Thus, if |CleanBottom − Bottom| < 3.31, pings were labeled 

ection,” i.e., no or weak expert correction needed, while if |CleanBottom − Bottom| >

s were labeled “strong correction,” i.e., major expert correction needed. Examples o

classes are shown in Fig 2. The threshold value of 3.31 was chosen by compari

racy obtained after one epoch of training for different threshold values ranging from 

 with a step of 0.01, and we selected the threshold that gave us the best classif

racy. 

The distribution of those classes varied significantly from 2011 to 2015. Indeed, th

rong correction accounted for 13% of the pings in 2011, whereas it accounted for only

. As can be seen in Fig 1, there is no clear pattern from the pings to correct. Hen

ct to use ML methods to automate the finding of the ping, with a high likelih

iring a strong correction. 
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 Sampling methodology 

 we describe datasets that were used to (1) optimize hyperparameters, (2) compare le

rithms performances, and (3) train the best-identified learning algorithm with a 

set. To begin with, the first 2,000,000 pings of each campaign were selected to constit

 of data. 2,000,000 was the maximum we can fit into memory. In the following, to e

tion every 1000 pings are going to be treated as 1K pings. 

For the Bayesian optimization, we used a dataset of 100K pings randomly extracte

complete 2011 pool dataset (Fig 3a). For comparing learning algorithms perform

sets with successive sizes of 200K, 400K, 600K, 800K, and 1000K pings were also ex

 the 2011 pool dataset (respectively 2.0, 4, 6.0, 8.0, and 10.0 Go). The largest datas

training was made of 1000K pings because it was tedious to upload large datasets o

ters online. Furthermore, to compare different learning algorithms, each of these datase

 into 90% of the pings for the training set and 10% for the test set (Fig 3b). To evalu

ct of cross-domain training on the best-identified algorithm, 100K, 300K, 500K, and

s were sampled from the 2011 pool dataset for training along with 100K pings fol

 other from the 2015 pool. Those 100K pings were further randomly divided in

sets of 50K pings, one that would serve as a validation dataset and one that would se

s-training (Fig 3c).  

 Computing Means and Limitations 

atting of the dataset and the labeling operations were performed on a personal com

training purposes, we uploaded the dataset on a cloud platform to perform 
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ulations with graphical processing units (GPUs). However, the local Internet conn

d and stability limited the size of the dataset that could be uploaded. Also, the size

pped 2011 preprocessed echogram was 22.81 Gigabytes, which scarcely fitted into r

ss memory (RAM). For training algorithms, a maximum of 1000K pings has been u

w the dataset to be uploaded.  

xperimental set up 

 Methods for Comparing learning algorithms performances 

 first experiment was to compare the ability of different algorithms to learn

sounder datasets at different scales. The compared algorithms suggested in the lite

 Random Forests (RF), Support Vector Machines (SVM), Feed-Forward Neural Ne

N) and Convolutional Neural Networks (CNN) (Niu et al. 2017 ; Ferguson et al. 2018

A principled approach to compare machine-learning algorithms is to find their res

rparameters following a single optimization method. Here we used Bayesian Optim

) as opposed to grid search and random search, as it has been shown that Ba

mization finds better hyperparameters significantly faster than random search wh

rior to grid search (Snoek et al. 2012). Moreover, BO surpasses a human expert at se

rparameters on the competitive CIFAR-10 dataset frequently used to benchmark co

n algorithms (Snoek et al. 2012). 

In this study, we used the open source python Library GyOpt for BO, with ex

rovement as acquisition function and Gaussian Processes to model the surrogate fu

 the acquisition parameter equal to 0.1. For each algorithm, we fixed the range of va
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) are the number of decision trees (range [10,1000]) and the minimum samples p

ge [20,50]). Concerning SVM we chose a linear kernel as the number of features is im

0) (Hsu et al. 2003) and we optimize only the hyperparameter C (range [10, 1000

N was chosen to have 3 hidden layers (ranging respectively [5,600], [5, 320] and [

ons) and with dropout for the last hidden layer (ranging [0,1]. Every hidden laye

U as an activation function. Finally, the CNN hyperparameters were three convol

rs (ranging each [5, 60]), followed by three hidden layers (with the same range 

N), and with only dropout applied at the last hidden layer (range [0,1]). For BO

ing algorithm was trained with a subset of 100,000 pings from the 2001 dataset, (Fig 3

edure was repeated for 50 iterations. At each iteration, the hyperparameters are tuned a

 validation accuracy is recorded. The maximum number of iterations was set to 50, b

stop before if hyperparameters converge. 

Once the set of hyperparameters that maximize learning were found for each algo

trained each algorithm on 5 datasets of sizes: 200K pings, 400K pings, 600K pings

s and 1,000K pings ( 2.0, 4, 6.0, 8.0 and 10.0 Go, respectively) to evaluate their res

ity to scale to big data. Also, the experiment was repeated 5 times to evaluate param

itivity to the learning process. Furthermore, SVM, FFNN, and CNN were trained f

hs each. The test accuracy of both the CNN and the FFNN were obtained using Monte

pout (Gal et al. 2015). In other words, their performance was assessed on the test set 50

the mean value was recorded. Monte Carlo Dropout allows neural networks to e

rtainty for their prediction due to the dropout factor at the end of the network. It ha

en to yield better results than standard test evaluation (standalone test run) (Gal et al.

 SVM and RF were trained with Scikit-learn (Pedregosa et al. 2011). The framework a
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o use multiprocessing, and the computation was distributed on 6 processors. SVM

ed with stochastic gradient descent. FFNN and CNN were trained with TensorFlow 

. 2016). Parameters were updated after each epoch using the Adam optimization pro

 default parameters (Kingma et al. 2014) and binary cross-entropy as cost function. 

 

 Comparing simple and cross domain training  

 requirement to explore the effect of learning on a cross-domain dataset was to disp

al learning curve when we scaled the size of the training set and compare it with a le

e made with a cross-domain dataset. We compared the effect of mixing during train

dataset coming from each pool of data (2011 and 2015). To this end, the subsam

000 pings from 2015 was randomly divided into two datasets of 50,000 pings; one 

ation set, and the other that would be used to mix with data from 2011 (see Fig 3

after). 

Firstly, we successively trained on two datasets of sizes: 100,000 and 300,000 p

a baseline learning curve, denoted respectively as ST-100K and ST-300K (simple t

 pings and simple training 300K pings). Secondly, to evaluate the impact of mixi

sets with different label distribution and different noise structure we trained on two d

ize 550,000 pings described as follows: (1) 550,000 pings randomly sampled from th

 dataset only (hereafter referred as ST-550) and (2) a mix of 500,000 pings ran

pled from the 2011 pool dataset and 50,000 pings randomly selected from the 1

ample ping 2015 datasets (hereafter referred as CDT-550K). The rationale behind the 

oach was to avoid overlearning from the irregularities and data distributions specific

 dataset, and to assess the effect of mixing during training. Finally, the general
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ormance of each model was evaluated locally by testing the classification accuracy

els trained in each setting (ST-100K, ST-300K, ST-550K, and CDT-550K) on two te

ne hand the remaining unseen part of the 2011 dataset, on the other hand, the unseen 

015 dataset. 

 

ESULTS 

omparing learning algorithms’ performances  

 best validation accuracy obtained for a set of hyperparameters were obtained in less t

tions for SVM and in about 22 iterations for RF. This is sound, indeed RF h

rparameters and SVM only one. On the other hand, FFNN and CNN improved but w

ed even after 50 iterations (Fig 4). The final set of hyperparameters for each le

rithm is displayed in Table IV. 

Learning algorithms' performances were then compared when trained with increasi

atasets. Support Vector Machines (SVM) did not increase its performance when augm

set size; surprisingly it seems to even worsen (Fig 5a). Feed-Forward Neural N

N) exhibits the greater variability, for every size of the training set the worst value is 

oximately the same and is the result of sticking on a local minimum as the training l

nate during training. Note that in the experiment on the 800K dataset the algorithm 

 in any local minima (Fig 5a). As a result, the mean test accuracy suffered and explain

 in performance for the last dataset. Random Forest (RF) displayed almost no variabil

erformance benefited as a result of increasing dataset size.  Jo
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Finally, Convolutional Neural Networks (CNN) got the highest mean test accuracy

t when training on 400K pings and more (Fig 5a). It is furthermore more stable to tra

lays less variability than FFNN while always having the best maximum test accuracy s

ept for Support Vector Machines (SVM), we observe that other learning algorithm

. With Feed-Forward Neural Network (FFNN) having the greatest variability in its

 is because FFNN is often stuck in local minima when learning starts. Random Fore

 steadily increases its test accuracy when the dataset is scaled. The Convolutional 

orks (CNN), which never stuck in local minima, makes the highest gain. 

mproving generalization accuracy with a cross domain dataset  

 Learning evaluation on the training set 

ning accuracies showed little difference when training on ST-100K and ST-300K; th

layed a slightly better evolution after epoch ~25 (after 50 epochs respectively, 92%

; Fig 6a). With ST-550t, a net increase in training accuracy appeared after epoch

hed 93% at the end of the training. When training on CDT-550K, the training ac

eased slowly until epoch ~8, but overtook the other training experiments after ~15 

finally reached 95% (Fig 6a). The training losses displayed similar (but sym

encies, reaching final losses of 0.17, 0.16, 0.15, and 0.12, respectively, for trainin

000, 300,000, and 550,000 pings from the 2011 dataset, and 550,000 cross-domain

 6c).  Jo
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 Learning evaluation on the validation set 

ontrast to the continuous increase in training accuracy, in the case of simple traini

ation accuracy displayed a higher variance, with a flat tendency among epoch

ability was smaller, however, for larger training datasets (Fig 6b). The average ac

hed 87%, 91%, and 93%, respectively, for datasets ST-100K, ST-300K, and ST-5

h 50. Note also that the validation accuracy obtained when training on ST-100K dec

 the epoch (Fig. 6b), which denoted a degree of over fitting. The effect of using a

ain dataset for training was more evident from the validation performances. Inde

racy dropped to low values (0.1%) around epoch ~10, but then rapidly reached higher

 those of the simple training set experiments after epoch 18, and then displayed a 

ard tendency, reaching a value of 96% at the end of the training process. Validation

layed the same change in variability among training experiments. The validation los

le training were 0.25, 0.17, and 0.11, and the final value for cross-domain training w

 6d). In summary, training on a cross-validation dataset yielded unstable perform

ng the first ~15 epochs, however, after epoch 30, it outperformed training being don

le datasets.  

. Generalization Performances 

 generalization performance was evaluated by applying the CNN to predict ping clas

nseen test set extracted either from the 2011 dataset or from the 2015 dataset (Fig 7). 

 test set, the CNN trained with the ST-100K, ST-300K, ST-550K, and CDT-550K t

correctly classified 90%, 92%, 93%, and 95% of the pings, respectively. On the 20

they correctly classified 87%, 92%, 93%, and 96% of the pings, respectively. The
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ed on only 100,000 pings from 2011 (ST-100K) over fitted, as its performance was be

training data than on unseen data. The ST-300K training set led to a similar performa

est sets. The ST-550K training set led to the same accuracy on the training set and 

 test set. Unexpectedly, better accuracy was obtained when evaluating the 2015 test s

he training and 2011 test sets. Finally, training on CDT-550K led to a leap in perfor

 on the training set and the 2011 test set but yielded an even better performance on th

set. 

ISCUSSION 

hine learning algorithms have been widely used in passive acoustics. Indeed, Shami

4) introduced an automated method for target classification in bioacoustics. Yue

7) used support vector machines (SVM) and convolutional neural networks (CN

rwater target classification. Chi et al. (2019) used feed-forward neural networks (FFN

ce ranging. Hu et al. (2018) applied CNN for underwater acoustic signal extraction.

hine learning methods were employed for underwater source localization: Niu et al. 

pared SVM, Random Forests (RF), and FFNN, then, Ferguson et al. (2018) applied C

same task and Wang et al. (2018) compared traditional match field processing (MFP

N and generalized regression neural networks. Finally, deep learning methods we

ied for underwater source localization: for instance, Huang et. al (2018) used FFN

low water environment, moreover, Niu et al. (2019) used deep CNN in the context

. 

Yet, very few authors have applied deep learning algorithms on fisheries (

stics data (see section 1.2; Williams 2016, Denos et al. 2017, Brautaset et al., 20
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nt literature review of ML in acoustics is provided by (Bianco et al. 2019). One prem

 learning is that it could allow us to treat crude data in an end to end fashion (LeCu

).  

Here we investigate ML methods on pre-processed echograms (see section 2.1.1).

echo (Perrot et al. 2018) allows a full chain of processing methods to extract informati

orm echo-integration on echosounder data following an international standard. The 

y contributes to filling this gap and shows the potential of learning algorithms to ser

ul tool for fisheries acoustics expert processing tasks. Below we first discuss the p

rimented here for bottom correction in fisheries acoustic dataset. Then, we ident

aining challenge for this approach. We conclude on the main contribution of the pap

ide perspectives one the potential benefit of using ML in fisheries acoustics.  

Two patterns emerge from our experiments of applying ML to active acoustics dat

of them fairly unexpected. Firstly, as expected in DL, increasing the size of the trainin

st always leads to better performance on the training set but also on each test set. Sec

g a cross-domain dataset for training leads to a leap in accuracy during training, vali

at test time. This emphasizes the sensitivity of the generalization performance 

rsity of the training dataset. 

 

earning algorithm comparison: why CNN stand out 

 performed poorly, indeed this is because we used a linear kernel on a high dime

lem, this was required to allow the SVM to learn on large datasets. Also as SVM 

w to increase the number of parameters used to learn, it has a lower asymptote than th
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 proved to have better performance as soon as the datasets got bigger. Yet, RF is the 

 option and followed the CNN closely even though the accuracy obtained with 1000K

ed to led the CNN accuracy to take off. Another interesting property of RF is th

bit almost no variability when compared among different training versions on the

set. This property allows the modeler to be sure that he got the best possible ach

lt with a RF when training is achieved. The main advantage of neural networks, w

N or CNN, is the ability they gave to the modeler to increase the number of the para

e learning problem. As a result, they are modular and can adapt to many kinds of pro

 main downside of FFNN was its variability from training to training. Indeed the read

rve that the worst result obtained for each dataset is closely the same around 87% (Fi

east for one run over the 5 we did, the FFNN achieved almost no learning. This can 

n the network is stuck in a local minimum and cannot get outside of it during train

rast, during training, the CNN has never fallen in a local minimum (Fig 5.b). This is b

convolutional layers compressed the original data in a lower-dimensional representati

rther passed to a fully connected neural network. As a result, the important featu

marised by the convolutional layers (Goodfellow et al. 2016, Lecun et al. 2015). A

mization is made in a lower-dimensional space. Convolution has shown great prom

e understanding. The above comparison suggests that 1-dimensional convolution

e adapted class of learning algorithm to process active echosounder data. Finally

bits the best performance with training datasets of sizes 400K, up to 1000K. Niu

7) found comparable performance for each model: SVM, RF, and FFNN in unde

ce localization framed as a classification problem. Our results differed from those of

(2017) as we found a clear advantage of using neural networks and more spec

Jo
ur

na
l P

re
-p

ro
of
Page 4 of 44 



 

conv  small 

data was on 

simu bigger 

data results 

on b  et al. 

(201 by Niu 

et a raining 

exam

 

4.2 C  

The t faster 

give rom as 

well ly and 

inde om the 

task e label 

distr

 et al. 

2008 correct 

imb n of a 

new d label 

a sa ere are 

appr ervised 

learn  could 

Journal Pre-proof
olutional neural networks. This difference can be explained as they used a relatively

set for training (1,380 samples for training, 120 examples for testing), also their work 

lated passive acoustic data. In contrast, our work was done on a real-world and 

set (200,000 examples to 1,000,000 examples) of active acoustic data. Getting better 

igger datasets with Deep Learning is discussed in Goodfellow et al. (2016) and Sun

7). Furthermore practical applications were found in underwater source localization 

l. (2019) who used a 50 layers residual network to learn on tens of millions of t

ples. 

ross domain training as a way to tackle imbalances and irregularities in datasets

 specific problem we tacked is the task of helping the expert to label a new datase

n past labeled data. An important assumption in ML is that the data we want to learn f

 as the future unseen data must come from the same distribution and be identical

pendently distributed (Goodfellow et al. 2016). This is the first challenge that rose fr

 at hand. This assumption does not hold in our case, as discussed in section 2.1.3 for th

ibution and as illustrated in Fig 2 for the noise distribution.  

Methods that deal with unbalanced datasets exist (Shimodaira 2000; Crammer

). However, these techniques need to know the distribution of the target dataset to 

alances during training. So, they do not apply in our case because the label distributio

 dataset is unknown before the expert has labeled it. One could say that the expert coul

mple of the new dataset to get an estimation of the target label data distribution. Th

oaches in the ML literature that deal exactly with this problem for instance semi-sup

ing (Chapelle et al. 2006) and active learning (Settles 2010). While these approaches
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nvisioned in future work, they need to take into account the specificity of fisheries ac

. Indeed the labeling needs to occur for several pings following each other because the

s to get context from the ping in the same area to accurately label the bottom line. In a

abeling process is not based on the review of individual pings but on the review of chu

s. This contrasts with traditional computer vision tasks, where the labeling of each im

pendent of each other. In that sense, traditional active learning methods could be us

ied to a chunk of data, or to individual pings with the goal to review every ping in a

hborhood. Similarly, semi-supervised learning methods require training a mode

esentative sample of labeled data, augmented with unlabeled data. The rationale is to 

cture of unlabeled data to learn useful features of the model that can be refined on the 

set during training. This condition could be met if the expert selects a representative

ing and labels their neighborhood. In this paper, we took the simplest possible sett

l a randomly selected chunk of 100,000 pings from the new dataset. As this is relative

o in practice. Indeed, this chunk of data represents ~5% of the total number of

hermore, we quantified if this chunk of pings could benefit the model at training t

itoring its performance on a validation set made of this chunk of data (Fig 6). Fina

uated the model trained in each setting, on two large test sets made of respectively all 

 from the 2011 and the 2015 pool. We observe that using a cross-domain dataset im

performance on each test set (Fig 7), suggesting that novel features introduced by th

set add to the complexity of the cross-domain training set as opposed to the simple t

Indeed, even the accuracy on the training set improved. The optimization procedure 

ing seems to be less stable in the first few epochs, this is probably due to a differe

n by the algorithm when updating its weights.  
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Also, note that while the current system got 96% accuracy (Table III) on the 2015 t

erformance could be enhanced by training on a larger database composed of dive

eys. Indeed, we have shown that training with an increasingly bigger training set siz

etter results with local test sets (Fig 3; Fig 5). In addition, we have shown the poten

ing datasets (Fig 7). This is in line with the results of Sun et al. (2017), more data is 

ome for deep learning models. 

hallenges of Machine Learning methods with Fisheries Acoustics Data 

ough the 2011 and 2015 datasets were collected in the same area, i.e., the northwest A

inental shelf, using the same vessel, there was a great divergence in the error distribu

initial bottom line estimation, which was subsequently corrected by experts. There we

ularities in the noise distribution of the data between the 2011 and 2015 echograms (

ed, it is often the case that datasets collected from different sea surveys present di

butes even if they were collected in the same geographical area. This may be d

ple, to different weather conditions encountered during the two sea surveys (wind a

ation). Indeed, the bottom reflection signal can be altered by air bubbles (generated by

king), as well as by the ship's roll and pitch. Bottom line correction also depends 

ogical resources targeted. For example, the expert corrects the bottom line more ca

n the echointegration concerns resources close to the bottom line, as opposed to 

ies occurring in the water column, since a precise bottom estimation is less crucial 

r. As a result, even during post-processing by the expert for bottom correction, we ca

 of the echogram being corrected with less accuracy. Errors can be caused by the detec

ogical resources in contact with the bottom (e.g., planktonic layer or fish school) (Fig 
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ange in the transducer depth settings by an operator on board the vessel (Fig 8.b)

rent settings of the echosounder during the data collection may yield a differen

ibution. These differences between different datasets may explain the surprising re

r performances on the 2011 test set than on the training set in the case CDT-550K (

ever, it does not clearly explain why the CNN trained with a CDT-550K performed b

sifying the 2015 test set than classifying the 2011 test set (Fig 5).  

One hypothesis that may explain this phenomenon is that the 2011 dataset benefite

uch greater degree of human correction than the 2015 dataset. Indeed, in proportion

s have been corrected in the 2011 dataset than in the 2015 dataset as discussed in 

. Consequently, we learned on a dataset with a higher likelihood of including bad la

ther words, we trained on a dataset harder to learn. Yet, as stated in his survey 

ods in remote sensing (Ball et al. 2017), the question of how the DL algorithm inges

rogeneous data sources is still open. Our interpretation, though, is that since the loss fu

ot convex, the minimization problem admits multiple local minima, thus in

rogeneous data may influence the weights update trajectory during training. And a

rse training set leads to better minima.  

 

imitations due to the labeling process 

 other obvious limitation is relative to the data labeling process. We discriminated o

d on a threshold that we found when computing the numerical difference betwe

om line calculated by the onboard procedure and the expert post-processing corrected 

 (referred to as “clean bottom”). However, in some cases this difference was not 

gram noise that could be detected by an algorithm (as shown in Fig 8.a). For exam
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d occur if the transducer was moved up or down (on the onboard setting or conc

ng the sea campaign, as a result the bottom given by the procedure is under the real b

 if the bottom line appears from the echogram structure (Fig 8.b). The issue is tha

grams are labeled as needing expert correction while nothing should have generated a

ottom localization, since the error comes from an external reason (here a change 

sducer depth settings during the sea campaign). Thus, this kind of labeling in the t

set limits the quality of the learning process. 

Finally, we have reported several factors that could influence the quality of the t

set and limit the classification performance that can be achieved with a trained algori

rent dataset. Indeed, the occurrence of cases where the bottom correction errors do no

 the echogram structure alone might prevent an optimal classification by the trained C

erspective and Future Works 

see two main dimensions in which this work can be extended: (1) by improvi

iency and the quality of the methodology, (2) by working toward an operational tool 

eries acoustics community. 

A more careful annotation of the data would yield better results in terms of accura

pretability of how the model learns. In this respect, changing the data labeling procedu

g significant improvements. For example, instead of using a criterion based on the diff

e distance between the bottom and the clean bottom, one could compare the amo

gy in the echogram (in mean volume backscattering strength (Sv in dB)) at the res

hs of the bottom and the clean bottom. In the same way, it might be interesting to use a
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ecutive pings, except when there is a particular bottom relief. Also, a multi-

edure for labeling each ping could be considered if the computing power availa

ing allows it. Future studies will need to experiment with more datasets from 

raphic areas to further study the benefits of generalization from learning with m

sets. In particular, this would allow further study on the effects of data irregulariti

ibution differences in the learning process. A good starting point toward that goal wo

se active learning or semi-supervised learning methodologies (Chapelle et al. 2006; 

).  

We advocate that working upfront on a unified data collection procedure would ce

ce errors due to data irregularities and also reduce the variability coming from di

rts concerning the labeling process. Using machine learning to standardize the la

ess across geographical regions would be useful to enable more meaningful applicat

downstream modeling task of fish density estimation. A step toward that direction wo

reate a common pool of labeled fisheries acoustics data and to train a deep convol

al network on it. This would result in the best performance achievable because as w

n, the quantity and the diversity of the dataset play a key role to improve the performa

models. The trained model could then be used to standardize the labeling of new sea s

cted globally. One of the benefits of having a uniform labeling process across geogr

ons is to allow for comparative studies of new computational methods in fisheries acou

 

NCLUSIONS 

 goal of this work was to develop a system designed to help a human expert to corr

om line from echogram data. Our main contribution to the study of fisheries acoust
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 to establish that CNN are able to extract useful features from different underwater

stic data sources. To address inherent imbalances in data distribution, as w

ularities, a good practice is to learn with a cross-domain training set. The model train

sed to help the fisheries acoustics expert to find pings that are likely to require correc

bottom line with a high accuracy (>95%). However, our results suggest that much

sification accuracy can be reached using larger and more diverse datasets for training

pproach could easily be implemented using dedicated GPUs. Finally, this work demon

potential of CNN to learn features from fisheries acoustics data. This suggests that DL

sed furthermore to standardize the labeling process across regions and open the r

esting areas of research based on large historical acoustic datasets in which other 

 as fish schools have been labeled (e.g., Scalabrin and Massé 1993; MacLennan et. al

onis et al. 2016) to better discriminate between fish schools and sound scattering

goul et al. 2020). Particularly demersal fish schools near the bottom as well as 

es.  

NOWLEDGMENTS 

are grateful to the AWA Project (“Ecosystem Approach to the management of fisher

ine environment (EAMME) in West African waters”) funded by the German F

istry of Education and Research (BMBF) and the French Research Institute for Develo

) (Grant 01DG12073E) implemented by the Sub-Regional Fisheries Commission (S

Preface Project funded by the European Commission’s Seventh Framework Prog

7–2013) under Grant Agreement No. 603521, EU TriAtlas project (Grant Agreeme

78) and the FAO/Nansen Project for data collection. We are grateful to Adrien Berne

ce) who performed the manual clean-bottom corrections for both surveys, to Dr Jen

Jo
ur

na
l P

re
-p

ro
of
Page 11 of 44 



 

Krak sea off 

nort r early 

inter eful to 

Thé

 

REF

 Davis, 
achine 
 
ing in 
pplied 

erman 

 C.-A., 
of the 

, Arnt-
quency 
Marine 

ries 7. 

uestel, 
e open 
–241. 
et, M., 
ng fish 
Marine 

e MIT 

Journal Pre-proof
stad of the Norwegian Institute of Marine Research (IMR) who led the surveys at 

hwest Africa, and to Gildas Roudaut and Jérémie Habasque (IRD, France) for thei

est in this approach and expertise in fisheries acoustics labeling. We are also grat

ophile Bayet (IRD)  for constructive discussions and comments. 

ERENCES 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
A., Dean, J., Devin, M. and Ghemawat, S., 2016. Tensorflow: Large-scale m
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Ball, J.E., Anderson, D.T., Chan, C.S., 2017. Comprehensive survey of deep learn
remote sensing: theories, tools, and challenges for the community. Journal of A
Remote Sensing 11, 042609. 

Bartholomä, A., 2006. Acoustic bottom detection and seabed classification in the G
Bight, southern North Sea. Geo-Marine Letters 26, 177. 

Bianco, M.J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M.A., Gannot, S., Deledalle,
2019. Machine learning in acoustics: Theory and applications. The Journal 
Acoustical Society of America 146, 3590–3628.  

Brautaset, Olav, Anders Ueland Waldeland, Espen Johnsen, Ketil Malde, Line Eikvil
Børre Salberg, and Nils Olav Handegard. "Acoustic classification in multifre
echosounder data using deep convolutional neural networks." ICES Journal of 
Science (2020). 

Brehmer, P., 2006. Fisheries Acoustics: Theory and Practice, 2nd edn. Fish and Fishe
https://doi.org/10.1111/j.1467-2979.2006.00220.x 

Brehmer, P., Vercelli, C., Gerlotto, F., Sanguinède, F., Pichot, Y., Guennégan, Y., B
D., 2006. Multibeam sonar detection of suspended mussel culture grounds in th
sea: Direct observation methods for management purposes. Aquaculture 252, 234

Brehmer, P., Sancho, G., Trygonis, V., Itano, D., Dalen, J., Fuchs, A., Faraj, A., Taqu
2019. Towards an autonomous pelagic observatory: experiences from monitori
communities around drifting FADs. Thalassas: An International Journal of 
Sciences 35, 177-189. 

Chapelle, O., Schlkopf, B., Zien, A., 2010. Semi-Supervised Learning, 1st ed. Th

Jo
ur

na
l P

re
-p

ro
of
Page 12 of 44 

Press. 



 

a feed-
 of the 

rnal of 

on and 

matics 

net: A 
 vision 

rwater 
2017 - 

et, A., 
sound-
elagic 

ltipath 
ational 
 2386–

1991. 
iety of 

 press 

Y fish 
t-beam 

ython, 

Journal Pre-proof
Chi, J., Li, X., Wang, H., Gao, D., Gerstoft, P., 2019. Sound source ranging using 
forward neural network trained with fitting-based early stopping. The Journal
Acoustical Society of America 146, EL258–EL264. 

Crammer, K., Kearns, M., Wortman, J., 2008. Learning from multiple sources. Jou
Machine Learning Research 9, 1757–1774. 

Cruz, J.A., Wishart, D.S., 2006. Applications of machine learning in cancer predicti
prognosis. Cancer informatics 2, 117693510600200030. 

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathe
of control, signals and systems 2, 303–314.  

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009, June. Image
large-scale hierarchical image database. In 2009 IEEE conference on computer
and pattern recognition (pp. 248-255). Ieee. 

Denos, K., Ravaut, M., Fagette, A., Lim, H., 2017. Deep learning applied to unde
mine warfare, in: OCEANS 2017 - Aberdeen. Presented at the OCEANS 
Aberdeen, pp. 1–7. https://doi.org/10.1109/OCEANSE.2017.8084910 

Diogoul, N., Brehmer, P., Perrot, Y., Tiedemann, M., Thiam, A., El Ayoubi, S., Moug
Migayrou, C., Sadio, O., Sarré, A., 2020. Fine-scale vertical structure of 
scattering layers over an east border upwelling system and its relationship to p
habitat characteristics, Ocean Science 16, 65–81.  

Ferguson, E.L., Williams, S.B., Jin, C.T., 2018. Sound source localization in a mu
environment using convolutional neural networks, in: 2018 IEEE Intern
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.
2390. 

Foote, K.G., Knudsen, H.P., Korneliussen, R.J., Nordbo/, P.E., Ro/ang, K., 
Postprocessing system for echo sounder data. The Journal of the Acoustical Soc
America 90, 37–47. 

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep learning. MIT
Cambridge. 

Griffin, G., Holub, A. and Perona, P., 2007. Caltech-256 object category dataset. 
Guillard, J., Balay, P., Colon, M., Brehmer, P., 2010. Survey boat effect on YO

schools in a pre-alpine lake: evidence from multibeam sonar and spli
echosounder data. Ecology of freshwater fish 19, 373–380. 

GPyOpt. 2016 A Bayesian Optimization framework in P
http://github.com/SheffieldML/GPyOpt 

Jo
ur

na
l P

re
-p

ro
of
Page 13 of 44 



 

vector 

ds for 
ce and 

 neural 
iety of 

ing by 

reprint 

neural 

cus on 

 series. 

nd and 

 on the 
–210. 

 target 

 ocean 

 using 
a 142, 

ed: the 

londel, 
t-learn: 

Journal Pre-proof
Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2003. A practical guide to support 
classification. Taipei. 

Hu, G., Wang, K., Peng, Y., Qiu, M., Shi, J., Liu, L., 2018. Deep Learning Metho
Underwater Target Feature Extraction and Recognition. Computational intelligen
neuroscience. 

Huang, Z., Xu, J., Gong, Z., Wang, H., Yan, Y., 2018. Source localization using deep
networks in a shallow water environment. The Journal of the Acoustical Soc
America 143, 2922–2932. 

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network train
reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv p
arXiv:1412.6980. 

Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S., 2017. Self-normalizing 
networks, in: Advances in Neural Information Processing Systems. pp. 971–980. 

Korneliussen, R.J., 2004. The Bergen echo integrator post-processing system, with fo
recent improvements. Fisheries Research 68, 159–169. 

LeCun, Y., Bengio, Y., 1995. Convolutional networks for images, speech, and time
The handbook of brain theory and neural networks 3361, 1995. 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436. 
MacLennan, D.N., 1986. Time varied gain functions for pulsed sonars. Journal of Sou

Vibration 110, 511–522. 
MacLennan, D.N., Copland, P.J., Armstrong, E., Simmonds, E.J., 2004. Experiments

discrimination of fish and seabed echoes. ICES Journal of Marine Science 61, 201
McClatchie, S., Thorne, R.E., Grimes, P. and Hanchet, S., 2000. Ground truth and

identification for fisheries acoustics. Fisheries Research, 47(2-3), pp.173-191. 
Niu, H., Gong, Z., Ozanich, E., Gerstoft, P., Wang, H., Li, Z., 2019. Deep learning for

acoustic source localization using one sensor. arXiv preprint arXiv:1903.12319. 
Niu, H., Reeves, E., Gerstoft, P., 2017. Source localization in an ocean waveguide

supervised machine learning. The Journal of the Acoustical Society of Americ
1176–1188. 

Ona, E., Mitson, R.B., 1996. Acoustic sampling and signal processing near the seab
deadzone revisited. ICES Journal of Marine Science 53, 677–690. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., B
M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., 2011. Sciki

Jo
ur

na
l P

re
-p

ro
of
Page 14 of 44 



 

.2825-

urges-
oustics 

, 2010. 
-1322. 
f main 
lves of 

tion of 

rra, F., 
achine 
ustical 

ing the 
. 
 Wiley 

ult.htm 

d truth 
mation 

achine 
 2951–

essing 
. 

ropout: 
achine 

Journal Pre-proof
Machine learning in Python. the Journal of machine Learning research, 12, pp
2830. 

Perrot, Y., Brehmer, P., Habasque, J., Roudaut, G., Behagle, N., Sarré, A., Lebo
Dhaussy, A., 2018. Matecho: An Open-Source Tool for Processing Fisheries Ac
Data. Acoustics Australia 46(2), 241-248. 

 
Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L. and Moy, L.

Learning from crowds. Journal of Machine Learning Research, 11(Apr), pp.1297
Sarré, A., Krakstad, J.-O., Brehmer, P., Mbye, E.M., 2018. Spatial distribution o

clupeid species in relation to acoustic assessment surveys in the continental she
Senegal and The Gambia. Aquatic Living Resources 31, 9. 

Scalabrin, C., Massé, J., 1993. Acoustic detection of the spatial and temporal distribu
fish shoals in the Bay of Biscay. Aquatic Living Resources 6, 269–283. 

Settles, B., 2010. Active learning literature survey. 
Shamir, L., Yerby, C., Simpson, R., von Benda-Beckmann, A.M., Tyack, P., Sama

Miller, P., Wallin, J., 2014. Classification of large acoustic datasets using m
learning and crowdsourcing: Application to whale calls. The Journal of the Aco
Society of America 135, 953–962. 

Shimodaira, H., 2000. Improving predictive inference under covariate shift by weight
log-likelihood function. Journal of statistical planning and inference 90, 227–244

Simmonds, J., MacLennan, D.N., 2008. Fisheries acoustics: theory and practice. John
& Sons. 

Simrad EK60. Reference manual, https://www.simrad.net/ek60_ref_english/defa
[accessed 29 April 2020]. 

Smyth, P., Fayyad, U.M., Burl, M.C., Perona, P. and Baldi, P., 1995. Inferring groun
from subjective labelling of venus images. In Advances in neural infor
processing systems (pp. 1085-1092). 

Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of m
learning algorithms, in: Advances in Neural Information Processing Systems. pp.
2959. 

Socha, D.G., Watkins, J.L., Brierley, A.S., 1996. A visualization-based post-proc
system for analysis of acoustic data. ICES Journal of Marine Science 53, 335–338

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. D
a simple way to prevent neural networks from overfitting. The Journal of M

Jo
ur

na
l P

re
-p

ro
of
Page 15 of 44 

Learning Research 15, 1929–1958. 



 

veness 
nce on 

ibution 
9–49. 
de los 
mation 
12, in: 
4. 
ralized 
a 143, 

agery 
nce on 
nce on 
–2502. 

rwater 
ational 
tlantis 

 
 

 

Journal Pre-proof
Sun, C., Shrivastava, A., Singh, S., Gupta, A., 2017. Revisiting unreasonable effecti
of data in deep learning era, in: Proceedings of the IEEE International Confere
Computer Vision. pp. 843–852. 

Trygonis, V., Georgakarakos, S., Dagorn, L., Brehmer, P., 2016. Spatiotemporal distr
of fish schools around drifting fish aggregating devices. Fisheries Research 177, 3

Villalobos, H., Martínez, M.O.N., Santos-Molina, J.P., González-Máynez, V.E., 
Ángeles Martínez-Zavala, M., Hermand, J.-P., Brehmer, P., 2013. Acoustic esti
of Pacific sardine biomass in the Gulf of California during the spring 2008-20
2013 IEEE/OES Acoustics in Underwater Geosciences Symposium. IEEE, pp. 1–

Wang, Y., Peng, H., 2018. Underwater acoustic source localization using gene
regression neural network. The Journal of the Acoustical Society of Americ
2321–2331. 

Williams, D.P., 2016. Underwater target classification in synthetic aperture sonar im
using deep convolutional neural networks, in: 2016 23rd International Confere
Pattern Recognition (ICPR). Presented at the 2016 23rd International Confere
Pattern Recognition (ICPR), pp. 2497
https://doi.org/10.1109/ICPR.2016.7900011 

Yue, H., Zhang, L., Wang, D., Wang, Y., Lu, Z., 2017. The Classification of Unde
Acoustic Targets Based on Deep Learning Methods, in: 2017 2nd Intern
Conference on Control, Automation and Artificial Intelligence (CAAI 2017). A
Press. 

 

 

Jo
ur

na
l P

re
-p

ro
of
Page 16 of 44 



 

 
 

Fig annual 
asse classes 
appe he part 
of th iring a 
stro

Journal Pre-proof
FIGURES 

 
1. (Color online) Survey design carried out off northwest Africa during acoustic 
ssment surveys at sea in 2011 and 2015 (Research Vessel Dr. Fridtjof Nansen). The 
ar in the following order: in green, the part of the echogram with no bottom; in blue, t
e echogram requiring only a weak correction from the expert; in red, the pings requ

ng correction from the fisheries acoustic experts.  
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2. (Color online) Echogram extracted from the acoustic sea survey used in the study. 
ple in which the automatic procedure for bottom detection (green line) has failed 

 2000. (b) Random samples from the 2011 and (c) 2015 echograms, with the same pi
cell number; showing differences with respect to the settings for NaNs (“not a nu

ng blue color) below the bottom. Unit: see color bar in panel (a).  
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3. Sampling methodology. Subfigure (a) summarizes the data sampling strategy. Su
hows the training and test set sizes as described in experiment 2.2.1. Subfigure (c) sho
ng proposed for experiment 2.2.3. The blue color corresponds to data from 2011 a
ge color corresponds to data from 2015. In b) and c), the longer boxes correspond
ing dataset. In b) the small boxes are used as a test set and in (c) as a validation set.  
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4. (Color online) Illustration of the hyperparameters selection with Bayesian optim
edure for Random Forests (RF), Support Vector Machines (SVM), Feed-Forward 
orks (FFNN) and Convolutional Neural Networks (CNN).  
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5. (a) (Color online) Mean accuracy got for Random Forests (RF), Support Vector Ma
M), Feed-Forward Neural Networks (FFNN) and Convolutional Neural Networks 
e varying the training dataset size from 200 000 to 1 000 000 pings from the 2011 sea 
set. (b) Test accuracy summary statistics of each learning algorithm after 5 repetitions
ing process.  
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6. (Color online) Performance at each iteration (epoch) of the model during traini
ation on: simple training (ST) and cross-domain training (CDT) for 100,000, 300,00

000 pings. a) training accuracy, b) validation accuracy, c) training losses and d) val
es. Validation accuracy and losses were obtained during training on a single 
ation set from the 2015 sea survey dataset.  
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7. (Color online) Evaluation of model accuracy on training dataset (solid line), 20
set (red circled line) and 2015 test dataset (green circled line) when increasing the t
set size from 100,000 pings to 550,000 pings. See training datasets details in section 2.
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8. (Color online) (a) Example of echogram in which automatic bottom detection (re
d due to presence of a planktonic layer directly above the sea floor (soft yellow). The

 is the bottom line after correction by the expert. (b) Example of echogram in 
matic bottom correction (red line) failed due to the transducer depth being moved
ng the sea campaign showing a constant offset shift. 
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TABLES 

: summary of the variables present in each 2011 and 2015 sea survey datasets dimensi
ed labels. The main variables used to process the data and furthermore to set up the m
 model are described. Sv mean volume backscattering strength (in dB). 

Depth Echogram Bottom CleanBotto

taset 
ons: 
ws, Nb. 
s] 

[2 567, 1] [2 567, 2 000 000] [1, 2 000 000] [1, 2 000 00

taset 
ons: 
ws, Nb 
s] 

[2 581, 1] [2 581, 2 661 003] [1, 2 661003] [1, 2661003

Meter (m) Sv in dB Meter (m) Meter (m) 

tal/ 
 vectors 

Vertical 
vector: every 
cell 
correspond to 
a value in 
meter 

Matrix: every column 
is a given ping, and 
every row a value in 
dB corresponding to a 
depth 

Horizontal Vector: 
every column gives 
the bottom depth 
found by the 
automatic procedure 

Horizontal 
every 
gives the 
depth corre
the expert 
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le II: 2011 and 2015 sea survey dataset after removing pings without bottom a
oving the first cells of each dataset so that they share the same number of rows. 

Echogram Label 

 formatted dataset: 
 rows, No columns] 

[2 550, 1 851 950] [1, 1 851 950] 

 formatted dataset: 
 rows, No columns] 

[2 550, 2 321 967] [1, 232 196 7] 
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le III: Accuracies evaluated by each model on the 2011 sea survey dataset and the 2
et. It seems that adding a subset of the 2015 data within the training set helps the mod
 better performance on both test set . In bold the upper and lower accuracies.  

l Accuracies 
) 

Training set Test set - 2011  Test set - 2015  

 100K 92 91 87 

 300K 92 92 92 

 550K 93 93 93 

 - 550K 95 95 96 
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le IV: Hyperparameters search space and value found using a Python Bayesian 
mization library (GyOpt). 

dom Forest 

erparameter Search space Value 

ber of tree range [10, 10000] 187 

. samples leaf  [20, 50] 24 

port Vector Machines 

a [0.0001, 0.1] 0.077 

-Forward Neural Network 

ber of neuron: fully connected layer 1 [5, 600] 75 

ber of neuron: fully connected layer 2 [5, 320] 105 

ber of neuron: fully connected layer 3 [5, 120] 95 

pout rate: fully connected layer 3 [0, 1] 0.6 

volutional Neural Network 

el 1 [5, 60] 5 

el 2 [5, 60] 59 

el 3 [5, 60] 19 

ber of neuron: fully connected layer 1 [5, 600] 260 

ber of neuron: fully connected layer 2 [5, 320] 319 

ber of neuron: fully connected layer 3 [5, 120] 101 

pout rate: fully connected layer 3 [0, 1] 0.9 
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● Non-uniform expert labeling of complex data is a common issue, typically 

illustrated in fisheries acoustics and noisy raw datasets

● A common labeling process is a first step toward comparable computational 

methods in fisheries acoustics

●  A method to automate and standardize the labeling process in fisheries 

acoustics with machine learning is presented

● Convolution neural networks are identified as good features extractor and can 

benefit from non stationary fisheries acoustics datasets.
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