Planck 2018 results: V. CMB power spectra and likelihoods

Type Article
Date 2020-09
Language English
Author(s) Aghanim N.54, Akrami Y.15, 56, 58, Ashdown M.5, 64, Aumont J.94, Baccigalupi C.77, Ballardini M.21, 41, Banday A. J.8, 94, Barreiro R. B.60, Bartolo N.28, 61, Basak S.84, Benabed K.55, 87, Bernard J. -P.8, 94, Bersanelli M.31, 46, Bielewicz P.75, 77, Bock J. J.10, 62, Bond J. R.7, Borrill J.12, 92, Bouchet F. R.55, 87, Boulanger F.54, 87, 89, Bucher M.2, 6, Burigana C.29, 45, 48, Butler R. C.41, Calabrese E.81, Cardoso J. -F.55, 87, Carron J.23, Casaponsa B.60, Challinor A.11, 57, 64, Chiang H. C.6, 25, Colombo L. P. L.31, Combet C.67, Crill B. P.10, 62, Cuttaia F.41, de Bernardis P.30, de Rosa A.41, de Zotti G.42, Delabrouille J.2, Delouis Jean MarcORCID66, Di Valentino E.63, Diego J. M.60, Dore O.10, 62, Douspis M.54, Ducout A.65, Dupac X.34, Dusini S.61, Efstathiou G.57, 64, Elsner F.72, Ensslin T. A.72, Eriksen H. K.58, Fantaye Y.3, 19, Fernandez-Cobos R.60, Finelli F.41, 48, Frailis M.43, Fraisse A. A.25, Franceschi E.41, Frolov A.86, Galeotta S.43, Galli S.55, 87, Ganga K.2, Genova-Santos R. T.16, 59, Gerbino M.37, Ghosh T.9, 80, Giraud-Heraud Y.2, Gonzalez-Nuevo J.17, Gorski K. M.62, 95, Gratton S.57, 64, Gruppuso A.41, 48, Gudmundsson J. E.25, 93, Hamann J.85, Handley W.5, 64, Hansen F. K.58, Herranz D.60, Hivon E.55, 87, Huang Z.82, Jaffe A. H.53, Jones W. C.25, Keihanen E.24, Keskitalo R.12, Kiiveri K.24, 39, Kim J.72, Kisner T. S.70, Krachmalnicoff N.77, Kunz M.3, 14, 54, Kurki-Suonio H.24, 39, Lagache G.4, Lamarre J. -M.89, Lasenby A.5, 64, Lattanzi M.29, 49, Lawrence C. R.62, Le Jeune M.2, Levrier F.89, Lewis A.23, Liguori M.28, 61, Lilje P. B.58, Lilley M.55, 87, Lindholm V.24, 39, Lopez-Caniego M.34, Lubin Pm27, Ma Y. -Z.74, 76, 79, Macias-Perez J. F.67, Maggio G.43, Maino D.31, 46, 50, Mandolesi N.29, 41, Mangilli A.8, Marcos-Caballero A.60, Maris M.43, Martin Pg7, Martinez-Gonzalez E.60, Matarrese S.28, 36, 61, Mauri N.48, McEwen J. D.73, Meinhold P. R.27, Melchiorri A.30, 51, Mennella A.31, 46, Migliaccio M.33, 52, Millea M.26, 55, 88, Miville-Deschenes M. -A.1, 54, Molinari D.29, 41, 49, Moneti A.55, 87, Montier L.8, 94, Morgante G.41, Moss A.83, Natoli P.29, 49, 91, Norgaard-Nielsen H. U.13, Pagano L.29, 49, 54, Paoletti D.41, 48, Partridge B.38, Patanchon G.2, Peiris H. V.22, Perrotta F.77, Pettorino V.1, Piacentini F.30, Polenta G.91, Puget J. -L.54, 55, Rachen J. P.18, Reinecke M.72, Remazeilles M.63, Renzi A.61, Rocha G.10, 62, Rosset C.2, Roudier G.2, 62, 89, Rubino-Martin J. A.16, 59, Ruiz-Granados B.16, 59, Salvati L.40, 44, Sandri M.41, Savelainen M.24, 39, 71, Scott D.20, Shellard E. P. S.11, Sirignano C.28, 61, Sirri G.48, Spencer L. D.81, Sunyaev R.72, 90, Suur-Uski A. -S.24, 39, Tauber J. A.35, Tavagnacco D.32, 43, Tenti M.47, Toffolatti L.17, 41, Tomasi M.31, 46, Trombetti T.45, 49, Valiviita J.24, 39, Van Tent B.68, 69, Vielva P.60, Villa F.41, Vittorio N.33, Wandelt B. D.55, 87, Wehus I. K.58, Zacchei A.43, Zonca A.78
Affiliation(s) 1 : Univ Paris Diderot, Univ Paris Saclay, Sorbonne Paris Cite, AIM,CEA,CNRS, F-91191 Gif Sur Yvette, France.
2 : Univ Paris Diderot, AstroParticule & Cosmol, CNRS, IN2P3,CEA Irfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
3 : African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa.
4 : Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France.
5 : Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England.
6 : Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
7 : Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada.
8 : CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France.
9 : CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
10 : CALTECH, Pasadena, CA 91125 USA.
11 : Univ Cambridge, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.
12 : Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA.
13 : Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark.
14 : Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland.
15 : PSL Res Univ, Dept Phys, Ecole Normale Super, CNRS, 24 rue Lhomond, F-75005 Paris, France.
16 : Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain.
17 : Univ Oviedo, Dept Fis, C Federico Garcia Lorca 18, Oviedo, Spain.
18 : Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands.
19 : Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa.
20 : Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada.
21 : Univ Western Cape, Dept Phys & Astron, ZA-7535 Cape Town, South Africa.
22 : UCL, Dept Phys & Astron, London WC1E 6BT, England.
23 : Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
24 : Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland.
25 : Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
26 : Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA.
27 : Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
28 : Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
29 : Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy.
30 : Univ Roma La Sapienza, Dipartimento Fis, Ple Moro 2, Rome, Italy.
31 : Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy.
32 : Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy.
33 : Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy.
34 : European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain.
35 : European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands.
36 : INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy.
37 : Argonne Natl Lab, HEP Div, Lemont, IL 60439 USA.
38 : Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA.
39 : Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland.
40 : IFPU Inst Fundamental Phys Universe, Via Beirut 2, I-34014 Trieste, Italy.
41 : INAF OAS Bologna, Ist Nazl Astrofis, Osservatorio Astrofis & Sci Spazio Bologna, Area Ric,CNR, Via Gobetti 101, I-40129 Bologna, Italy.
42 : INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy.
43 : INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy.
44 : INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34143 Trieste, Italy.
45 : INAF, Ist Radioastron, Via Piero Gobetti 101, I-40129 Bologna, Italy.
46 : INAF, IASF Milano, Via E Bassini 15, Milan, Italy.
47 : INFN, CNAF, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
48 : INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy.
49 : INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy.
50 : INFN, Sez Milano, Via Celoria 16, Milan, Italy.
51 : Univ Roma Sapienza, INFN, Sez Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy.
52 : Univ Roma Tor Vergata, Sez Roma 2, INFN, Via Ric Sci 1, Rome, Italy.
53 : Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
54 : Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.
55 : CNRS, UMR7095, Inst Astrophys Paris, 98Bis Blvd Arago, F-75014 Paris, France.
56 : Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands.
57 : Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
58 : Univ Oslo, Inst Theoret Astrophys, Oslo, Norway.
59 : Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain.
60 : Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander, Spain.
61 : Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy.
62 : CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
63 : Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England.
64 : Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England.
65 : Univ Tokyo, Kavli Inst Phys & Math Universe, Kavli IPMU, WPI,UTIAS, Chiba 2778583, Japan.
66 : Univ Brest, CNRS, IFREMER, IRD,LOPS, Brest, France.
67 : Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France.
68 : Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France.
69 : CNRS, Batiment 210, F-91405 Orsay, France.
70 : Lawrence Berkeley Natl Lab, Berkeley, CA USA.
71 : Aalto Univ, Dept Appl Phys, Low Temp Lab, Espoo 00076, Finland.
72 : Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany.
73 : Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England.
74 : Univ KwaZulu Natal, NAOC UKZN Computat Astrophys Ctr NUCAC, ZA-4000 Durban, South Africa.
75 : Natl Ctr Nucl Res, Ul L Pasteura 7, PL-02093 Warsaw, Poland.
76 : Purple Mt Observ, 8 Yuan Hua Rd, Nanjing 210034, Peoples R China.
77 : SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy.
78 : Univ Calif San Diego, San Diego Supercomp Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA.
79 : Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa.
80 : HBNI, Natl Inst Sci Educ & Res, Sch Phys Sci, Jatni 752050, Odissa, India.
81 : Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales.
82 : Sun Yat Sen Univ, Sch Phys & Astron, 2 Daxue Rd, Tangjia, Zhuhai, Peoples R China.
83 : Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
84 : Indian Inst Sci Educ & Res Thiruvananthapuram, Sch Phys, Maruthamala PO, Thiruvananthapuram 695551, Kerala, India.
85 : Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia.
86 : Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada.
87 : Sorbonne Univ, CNRS, UMR 7095, Inst Astrophys Paris, 98Bis Bd Arago, F-75014 Paris, France.
88 : Sorbonne Univ, Inst Lagrange Paris ILP, 98Bis Blvd Arago, F-75014 Paris, France.
89 : Univ PSL, Ecole Normale Super, Sorbonne Univ, Observ Paris,CNRS,LERMA, F-75005 Paris, France.
90 : Russian Acad Sci, Space Res Inst IKI, Prof Soyuznaya Str 84-32, Moscow 117997, Russia.
91 : Agenzia Spaziale Italiana, Space Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy.
92 : Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
93 : Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden.
94 : Univ Toulouse, UPS, OMP, IRAP, F-31028 Toulouse 4, France.
95 : Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland.
Source Astronomy & Astrophysics (0004-6361) (Edp Sciences S A), 2020-09 , Vol. 641 , N. A5 , P. 92p.
DOI 10.1051/0004-6361/201936386
WOS© Times Cited 112
Note Section Cosmology (including clusters of galaxies)
Keyword(s) cosmic background radiation, cosmology: observations, cosmological parameters, methods: data analysis
Abstract

We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (l< 30) and high (l >= 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the Lambda CDM reionization optical-depth parameter tau to better than 15% (in combination with the TT low-l data and the high-l temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with tau. We also update the weaker constraint on tau from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the Lambda CDM constraints on the parameters theta(MC), omega(c), omega(b), and H-0 by more than 30%, and n(s) by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 sigma level on the Lambda CDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 sigma levels we achieved in 2015 for the temperature data alone on Lambda CDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit Lambda CDM parameters for the l< 800 and l> 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in Lambda CDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

Full Text
File Pages Size Access
Publisher's official version 92 7 MB Open access
Top of the page

How to cite 

Aghanim N., Akrami Y., Ashdown M., Aumont J., Baccigalupi C., Ballardini M., Banday A. J., Barreiro R. B., Bartolo N., Basak S., Benabed K., Bernard J. -P., Bersanelli M., Bielewicz P., Bock J. J., Bond J. R., Borrill J., Bouchet F. R., Boulanger F., Bucher M., Burigana C., Butler R. C., Calabrese E., Cardoso J. -F., Carron J., Casaponsa B., Challinor A., Chiang H. C., Colombo L. P. L., Combet C., Crill B. P., Cuttaia F., de Bernardis P., de Rosa A., de Zotti G., Delabrouille J., Delouis Jean Marc, Di Valentino E., Diego J. M., Dore O., Douspis M., Ducout A., Dupac X., Dusini S., Efstathiou G., Elsner F., Ensslin T. A., Eriksen H. K., Fantaye Y., Fernandez-Cobos R., Finelli F., Frailis M., Fraisse A. A., Franceschi E., Frolov A., Galeotta S., Galli S., Ganga K., Genova-Santos R. T., Gerbino M., Ghosh T., Giraud-Heraud Y., Gonzalez-Nuevo J., Gorski K. M., Gratton S., Gruppuso A., Gudmundsson J. E., Hamann J., Handley W., Hansen F. K., Herranz D., Hivon E., Huang Z., Jaffe A. H., Jones W. C., Keihanen E., Keskitalo R., Kiiveri K., Kim J., Kisner T. S., Krachmalnicoff N., Kunz M., Kurki-Suonio H., Lagache G., Lamarre J. -M., Lasenby A., Lattanzi M., Lawrence C. R., Le Jeune M., Levrier F., Lewis A., Liguori M., Lilje P. B., Lilley M., Lindholm V., Lopez-Caniego M., Lubin Pm, Ma Y. -Z., Macias-Perez J. F., Maggio G., Maino D., Mandolesi N., Mangilli A., Marcos-Caballero A., Maris M., Martin Pg, Martinez-Gonzalez E., Matarrese S., Mauri N., McEwen J. D., Meinhold P. R., Melchiorri A., Mennella A., Migliaccio M., Millea M., Miville-Deschenes M. -A., Molinari D., Moneti A., Montier L., Morgante G., Moss A., Natoli P., Norgaard-Nielsen H. U., Pagano L., Paoletti D., Partridge B., Patanchon G., Peiris H. V., Perrotta F., Pettorino V., Piacentini F., Polenta G., Puget J. -L., Rachen J. P., Reinecke M., Remazeilles M., Renzi A., Rocha G., Rosset C., Roudier G., Rubino-Martin J. A., Ruiz-Granados B., Salvati L., Sandri M., Savelainen M., Scott D., Shellard E. P. S., Sirignano C., Sirri G., Spencer L. D., Sunyaev R., Suur-Uski A. -S., Tauber J. A., Tavagnacco D., Tenti M., Toffolatti L., Tomasi M., Trombetti T., Valiviita J., Van Tent B., Vielva P., Villa F., Vittorio N., Wandelt B. D., Wehus I. K., Zacchei A., Zonca A. (2020). Planck 2018 results: V. CMB power spectra and likelihoods. Astronomy & Astrophysics, 641(A5), 92p. Publisher's official version : https://doi.org/10.1051/0004-6361/201936386 , Open Access version : https://archimer.ifremer.fr/doc/00654/76634/