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S1 Introduction

In the main text, we review how hidden Markov models (HMMs) are used to uncover ecological

dynamics that operate at the individual, population, community, and ecosystem levels. The

breadth of application of HMMs in ecology shows that their general structure can reflect

ecological processes or how we understand and summarise ecological processes. Nevertheless,
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formulating an HMM that faithfully represents the ecological dynamics under study, fitting

this HMM to real data, and checking that the HMM is a good model to use are non-trivial

steps in any analysis. In this supplementary tutorial, we introduce the main steps in an HMM

analysis, highlighting the decisions and assumptions to be considered along the way.

As demonstrated in the main text, each application of an HMM is particular to the problem

under study. Here we illustrate how to tailor an HMM to a given study, thereby showcasing

the inferential tools available for HMMs. We consider a single application, introduced in the

main text: a time series of the vectorial sum of the dynamic body acceleration (VDBA) of

a striated caracara (Phalcoboenus australis) measured every second over one hour (Fahlbusch

and Harrington, 2019). VDBA is a measure of the overall activity of an animal: it is the length

of the three-dimensional vector defined by the dynamic accelerations in all three coordinate

directions (Qasem et al., 2012). Figure 1 shows the VDBA time series considered here.
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Figure 1: Vectorial dynamic body acceleration Xt, t = 1, . . . , 3600, for a striated caracara
(Phalcoboenus australis) measured over one hour at 1 Hz (Fahlbusch and Harrington, 2019).

We consider the full analysis cycle, comprising the formulation of an HMM, the estima-

tion of its parameters, the selection between different candidate models, checking how well

the model fits the data, inferring the latent states, and interpreting the final results. The

supplemental R (R Core Team, 2019) script caracaraExample.R can be used to completely
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reproduce and further explore this illustrative example using the package momentuHMM (Mc-

Clintock and Michelot, 2018).

S2 Building the HMM

The observations are realisations of the sequential process X1, . . . , XT , often a time series,

which we call the observation process (or state-dependent process). HMMs comprise two

parts: a model for the observation process and a model for the state process underlying the

observation process. Each part has associated assumptions which induce both the simplicity

that HMMs are favoured for and the limitations that may inhibit their ability to faithfully

characterise either process.

S2.1 State process

The state process S1, . . . , ST is modelled as a Markov chain over a set of N states, i.e. St ∈

{1, . . . , N} for t = 1, . . . , T . The key assumption involved here is that the state process is

Markovian: the probability of which state occurs next in time is known conditional on the

current state, irrespective of the states that occurred in the past. As a consequence, the

way the process evolves over time is completely determined by the N × N state transition

probability matrix, which comprises the probabilities of switching from any state i at time t

to any state j at time t + 1, for i, j = 1, . . . , N . The Markov property also implies that the

time spent in each state has a geometric distribution. Clearly, this is a strong assumption on

the memory of the ecological process and so it is important to remember this specification in

light of interpreting results.

Specifying the state process involves selecting the number of states as well as any poten-

tial pre-determined structure in the transition probability matrix. To make either of these

decisions, one must first consider what latent ecological process drives the observations and
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whether such a process, or a simplified version of it, can be described by a Markov chain

taking finitely many states. The idea behind specifying the model for the state process is to

create a structure that is likely to capture the pattern in the underlying ecological dynamics

that the observations evince, with the caveat that beyond any pre-defined structure the state

characteristics are driven solely by data and may, in the end, not necessarily conform with

our original intentions for them.

For the VDBA example, we must rely on our understanding of the movement of the study

species. It is common to consider the activity level of an animal to vary across different

behavioural modes (see Section 3.1.3 in the main text). The model states are thus intended

to correspond with these behaviours. Whereas in some applications of HMMs the choice of

the number of states can be obvious, such as in the Cormack-Jolly-Seber model with the two

states “alive” and “dead” (see Section 3.1.1 in the main text), there are also such where it is

not clear a priori how many states there are. This is indeed the case in the caracara example

considered here. In cases such as these the choice of N should be guided by expert knowledge

on the subject matter. In the given VDBA example, the research biologists who collected

the data expected N = 4 states, corresponding to resting behaviour, minimal activity such as

preening, moderate activity such as walking or digging, and flight, to most adequately reflect

the variation in activity. In general, selecting the maximum number of states to consider is a

trade-off between computational feasibility, ecological knowledge of the system, and fit to the

data. Pohle et al. (2017) provide a step-by-step guide to selecting the number of states for

an HMM and discuss why relying solely on statistical model selection methods, such as the

Akaike information criterion (AIC) or the Bayesian information criterion (BIC), may not be

desirable.

Along with the number of states, we specify that it is possible for the animal to switch

from any one behaviour to any other and so the transition probability matrix has unknown
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parameters for all entries:

Γ =

St+1 = 1 St+1 = 2 St+1 = 3 St+1 = 4


γ1,1 γ1,2 γ1,3 γ1,4 St = 1

γ2,1 γ2,2 γ2,3 γ2,4 St = 2

γ3,1 γ3,2 γ3,3 γ3,4 St = 3

γ4,1 γ4,2 γ4,3 γ4,4 St = 4

.

Further to this, we specify the distribution of the states at time t = 1, hence the probabilities

δi = Pr(S1 = i) of the animal inhabiting any state i, i = 1, . . . , N , at the start of the sequence,

to be the stationary distribution of the Markov chain (see Zucchini et al., 2016, p. 17).

This is the most general transition probability matrix to consider. In other contexts, it

can be appropriate to limit transitions between states. For example, in Cormack-Jolly-Seber

models the states are intended to represent “alive” and “dead”, so it is necessary to forbid

transitions from the “dead” to “alive” state by enforcing a zero value in the corresponding

entry of Γ. Additional structure, such as temporal heterogeneity in the transition probability

matrix (Γt), can also be incorporated through the use of explanatory covariates (e.g. Morales

et al., 2004; Li and Bolker, 2017). This is usually accomplished using a multinomal-logit link

function:

γt,i,j =
exp

(
β0,i,j +

∑K
k=1 zk,tβk,i,j

)
∑N

l=1 exp
(
β0,i,l +

∑K
k=1 zk,tβk,i,l

) ,
where γt,i,j is the time-dependent transition probability from state i at time t to state j at

time t + 1, β0,i,j is an intercept term, zk,t is the value of the kth covariate at time t, and

βk,i,j is a slope term for the kth covariate. Because
∑N

j=1 γt,i,j = 1, it is customary to set

αi,j = βk,i,j = 0 for i = j and k = 1, . . . , K to avoid overparameterisation when estimating

these parameters (see Section S3). This extension is not implemented in the given example,

but see White and Burnham (1999), MacKenzie et al. (2002), and Patterson et al. (2009) for
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common examples of link functions in HMMs.

S2.2 Observation process

Conditional on the state process, each observation arises as a sample from a distribution

— selected from N possible distributions according to the current underlying state — that

is unrelated to previous states or observations. This assumption of the observations being

conditionally independent of each other, given the states, is again a strong assumption and

essentially forces all the serial dependence in the observations to be described by the state

process alone, leaving the state-dependent distributions to capture the commonality between

observations within each state, independent of time. In particular, for any period of time

that the state process remains within a single state, the observations within that period are

assumed to be independent of each other, which will not always be realistic.

HMMs are extremely flexible with respect to observation type: observations can be discrete

or continuous, multivariate, and have distributions with parameters that depend on covariates

via suitable link functions (e.g. see Table 2 in McClintock and Michelot, 2018). As with the

state process, the observation process can include additional pre-defined structure that reflects

the system of interest. For example, in Cormack-Jolly-Seber models any individuals in the

“dead” state cannot be detected, and the state-dependent distribution for the “dead” state is

therefore pre-defined as a Bernoulli distribution with a success probability of zero (see Section

3.1.1 in the main text).

In the striated caracara example, VDBA is a positive and continuous quantity. It therefore

seems adequate to use for example Weibull or gamma state-dependent distributions in this

case. Below we show the results obtained assuming VDBA at time t (Xt) to be gamma-

distributed within each state:

Xt | St = i ∼ Gamma (κi, ρi) ,
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where κi and ρi are the shape and scale parameters, respectively, of the state-dependent

gamma distribution for i ∈ {1, 2, 3, 4}, with corresponding mean µi = κiρi and variance

σ2
i = κiρ

2
i . We have imposed no additional structure for the VDBA observations, and all of

the state-dependent parameters are therefore to be freely estimated and entirely data-driven.

S3 Parameter estimation

S3.1 Overview

Once a model formulation has been identified, the next step is to estimate the model’s param-

eters, summarised in the parameter vector θ, based on the observation sequence (x1, . . . , xT ).

There are three main strategies for estimating the parameters of an HMM:

• maximum likelihood by direct numerical maximisation of the likelihood;

• maximum likelihood by the expectation-maximisation (EM) algorithm;

• Bayesian inference using Markov chain Monte Carlo (MCMC).

Accessible reviews on the theoretical and practical differences between maximum likelihood

and Bayesian analysis methods include Ellison (2004), Newman et al. (2014, Chapter 4), and

Patterson et al. (2017). Although not intended specifically for ecologists, Rabiner (1989)

provides a very accessible introduction to fitting HMMs using the EM algorithm. Within each

of these approaches, the existence of efficient recursive schemes for evaluating the likelihood

of an HMM is a key asset. We therefore proceed by providing detailed information on how

the likelihood is evaluated.

S3.2 Likelihood evaluation using the forward algorithm

Using the model assumptions — i.e. the Markov property for the state process S1, S2, . . . , ST ,

and conditional independence of the observations X1, X2, . . . , XT , given the states — the
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likelihood of an N–state HMM can be obtained as

L(θ | x1, . . . , xT ) = fθ(x1, . . . , xT )

=
N∑

s1=1

. . .
N∑

sT=1

fθ(x1, . . . , xT |s1, . . . , sT )fθ(s1, . . . , sT )

=
N∑

s1=1

. . .

N∑
sT=1

δs1

T∏
t=1

fθ(xt|st)
T∏
t=2

γst−1,st .

The first step uses the law of total probability, while the second is an immediate consequence

of the model’s dependence structure. The state-dependent densities (or probabilities, for

discrete data) fθ(xt|st) depend on the distributional assumption made for the state-dependent

(observation) process. In the VDBA example continued from above, with our assumptions

made these would be densities of the gamma distribution, with one set of shape and scale

parameters for each of the N possible states.

In this form, the likelihood involves NT summands, rendering its evaluation infeasible even

for a moderate number of observations, T . This has led some users to believe that standard

(numerical) likelihood maximisation is not feasible for HMMs. This is generally not true, as

there is in fact a much more efficient way to calculcate the likelihood, namely the forward

algorithm, which exploits the model’s dependence structure to avoid the above brute force

summation over all possible state sequences. To explain the inner workings of the forward

algorithm, we define the forward variables at time t as

αt(j) = fθ(x1, ..., xt, st = j), j = 1, . . . , N,

which can be summarised in a vector as αt =
(
αt(1), . . . , αt(N)

)
. A close look at αt(j) reveals

that this quantity comprises information on both the likelihood of all observations up to time
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t, since

f(x1, ..., xt) =
N∑
j=1

f(x1, ..., xt, st = j) =
N∑
j=1

αt(j),

as well as on the conditional probability of state j being active at time t, given all observations

up to time t, since

Pr(St = j | x1, . . . , xt) =
f(x1, ..., xt, st = j)

f(x1, ..., xt)
=

αt(j)∑N
k=1 αt(k)

.

The forward algorithm now traverses along the time series, updating αt step-by-step (and

hence the likelihood, while retaining information on the probabilities of being in the different

states). More specifically, from the dependence assumptions it follows that

αt(j) =
N∑
i=1

αt−1(i)γijfθ(xt | st = j).

In matrix notation, this becomes

αt = αt−1ΓP(xt),

where P(xt) = diag
(
fθ(xt | st = 1), . . . , fθ(xt | st = N)

)
. Together with the initial calculation

α1 = δP(x1), this is the forward algorithm. Note that the exact specification of three model-

defining components, δ (initial state distribution), Γ (state transition probability matrix),

and P(xt) (state-dependent observation distributions), depends on the model formulation

considered — as shown in the many detailed examples provided in the main text as well as

the specific example of the VDBA series described above.

The forward algorithm can be applied in order to first calculate α1, then α2, etc., until

one arrives at αT , the sum of all elements of which obviously yields the likelihood. Thus,

L(θ | x1, . . . , xT ) = δP(x1)ΓP(x2) · · ·ΓP(xT−1)ΓP(xT )1 , (1)
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where 1 is a column vector of ones. The computational complexity of evaluating Eq. (1) is

O(TN2), meaning it is linear in the number of observations, T , such that likelihood evaluation

is typically feasible even for sequences comprising millions of observations. The existence of

such recursive techniques for fast evaluation of the likelihood is a key reason for the popularity

of HMMs. It is worth pointing out that this step-by-step recursive calculation is possible due

to the dependence assumptions made at the process.

S3.3 Model fitting

Of the three common approaches to fitting an HMM — numerical likelihood maximisation,

EM algorithm, and MCMC — we used numerical likelihood maximisation for the VDBA data.

For example with N = 4 states, we obtain estimates for the initial distribution, transition

probability matrix, and state-dependent distributions (Figure 2):

S1 = 1 S1 = 2 S1 = 3 S1 = 4[ ]
δ̂ = 0.30 0.28 0.28 0.14

Γ̂ =

St+1 = 1 St+1 = 2 St+1 = 3 St+1 = 4


0.90 0.09 0.00 0.00 St = 1

0.1 0.73 0.16 0.01 St = 2

0.00 0.17 0.79 0.04 St = 3

0.00 0.00 0.10 0.90 St = 4

St = 1 St = 2 St = 3 St = 4[ ]
µ̂ = 0.007 0.013 0.032 0.227
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St = 1 St = 2 St = 3 St = 4[ ]
σ̂ = 0.001 0.004 0.014 0.132
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Figure 2: Estimated gamma state-dependent distributions within a four-state HMM for a
striated caracara.

The relatively low computational cost involved in evaluating the likelihood renders numer-

ical maximisation feasible in most cases. For example, fitting the HMM above with N = 4

states to the VDBA sequence comprising 3600 observations took 45 seconds in R on an octa-

core i7 CPU, at 3.4 GHz and with 8 GB RAM — analysing sequences comprising millions

of observations is also generally feasible (depending on model complexity). The computation
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time can often further substantially be reduced by implementing the forward algorithm in

C++, as is done in momentuHMM, where the same model only requires about 10 seconds to

fit. Technical issues arising in the numerical maximisation, such as parameter constraints and

numerical underflow, are fairly straightforward to deal with (Zucchini et al., 2016, pp. 50-54).

For complex models, local maxima of the likelihood function can become problematic (e.g.

Myung, 2003). In this respect, it is generally advisable to try many different initial parameter

vectors in the numerical optimisation, with initial values based on random draws, grid searches,

or other methods (e.g. Brooks and Morgan, 1994; Biernacki et al., 2003; Schleer, 2015). With

increasing model complexity, the issue of local maxima can be exacerbated to the extent that

models can be practically non-identifiable due to effectively flat likelihood surfaces (e.g. Raue

et al., 2009; Cole, 2019; Auger-Méthé et al., 2020).

The EM algorithm and MCMC approach to fitting HMMs are equally feasible approaches

that can exploit the recursive schemes available for HMMs, such as the forward algorithm. In

some cases, the EM algorithm can lead to a maximisation problem that is easier to solve than

numerical maximisation of the likelihood, but EM can be more cumbersome to implement. The

MCMC approach easily takes the HMM model into a Bayesian framework. However, MCMC

samplers that include both the parameter vector (θ) and the latent states (S1, . . . , ST ) are

inherently slow; sampling from the parameter vector only while using the forward algorithm

to marginalise over states will often be preferable (Turek et al., 2016; Yackulic et al., 2020).

From a computational point of view, none of these methods is vastly superior to the

others, but the appropriateness and efficiency of any given model fitting algorithm will be

case dependent. There is no “free lunch” when it comes to model fitting, and no algorithm

is guaranteed to converge to the global maximum (in case of maximum likelihood) or the

posterior distribution (in case of MCMC sampling). Optimisation routines may require very

long periods of time to locate the global maximum, and MCMC approaches may similarly

have poor mixing and very slow convergence rates.
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S4 Model selection & model checking

The task of selecting a particular HMM formulation from a suite of candidate models —

which may differ, for example, in the number of underlying states, the family of distributions

used for the state-dependent process, or the set of covariates that affect the state transition

probabilities — is effectively analogous to any other model selection, say in regression analysis.

As a consequence, general recommendations applicable also to such more established modelling

classes directly transfer to the class of HMMs. In particular, model selection and checking can

be approached in three steps:

1. consider both exploratory data analysis but also any relevant theory in order to keep

the number of candidate models small (not just for computational reasons, but also to

minimise the risk of a selection bias; cf. Zucchini, 2000);

2. use model selection criteria for guidance, but do not solely rely on such criteria (see

Pohle et al., 2017, for a more detailed discussion of model selection in HMMs);

3. instead, carefully inspect the goodness-of-fit of any promising model to investigate if all

patterns in the data pertinent to the study aim are sufficiently well captured by the

model (and if not, to identify which components of the model may need to be modified).

S4.1 Model selection

For Step 1, in the VDBA example we initially restrict models to four or fewer states based

on expert knowledge of the species’ behaviour, and further on the observation that it is un-

likely that any sensible behaviour classification would lead to five or more genuinely different

behavioural modes in a one-hour period. Given this restriction, we can use model selection

criteria (Step 2) such as the AIC or the BIC to select between models with up to four states.

In this case, both the AIC and the BIC are minimised by the model with N = 4 states.
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In general, when state characteristics are completely data-driven rather than pre-defined

(e.g. Leos-Barajas et al., 2017), there is a tendency for HMMs with more states than seem

biologically reasonable to be supported by standard model selection criteria such as AIC or

BIC. The reason for this is that any additional state can, to some extent, compensate for any

lack of structure or flexibility in the model formulation (cf. Pohle et al., 2017). In general,

the judgements taken in Step 1 will often need to be relied upon to justify restricting the

complexity of the model in spite of a poorer fit to the data.

S4.2 Model checking

Step 3 concerns model checking. Unfortunately, this important step is not as straightforward

as for example in a regression analysis. The main formal approach to model checking in

HMMs considers so-called pseudo-residuals, defined as

rt = Φ−1(FXt(Xt)), t = 1, . . . , T,

where Φ is the cumulative distribution function of the standard normal distribution (such that

Φ−1 is the corresponding quantile function) and

FXt(x) = Pr(Xt ≤ x |X1 = x1, . . . Xt−1 = xt−1, Xt+1 = xt+1, . . . XT = xT )

is the conditional cumulative distribution function of Xt, given all other observations, under

the fitted model. The conditional distribution FXt(x) can be obtained using a combination of

the forward and the backward variables, respectively (for details, see Zucchini et al., 2016, pp.

82-83). For continuous variables it can be shown that if the model is correct, such that FXt is

indeed the conditional cumulative distribution function of Xt given all other observations, then

FXt(Xt) ∼ Uniform[0, 1], such that rt ∼ N(0, 1). Thus, any deviation of the pseudo-residuals rt
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from normality indicates a potential lack of fit, which should be further investigated. While the

rt are not uncorrelated even for the correctly specified model, they should show much reduced

correlation compared to the original sequence of observations. The main idea underlying

these pseudo-residuals is that the distribution of each Xt within an HMM ought to be seen

in the context of neighbouring observations in the sequence, which renders it non-trivial to

assess which observations are extreme relative to the model. The transformation above, which

is more generally known as the probability integral transform, yields a common scale, the

standard normal distribution, for all observations, making it easier to identify observations

that are extreme relative to the fitted model, and more generally any lack of fit.

For the VDBA example and the model with N = 4 states, Figure 3 shows the QQ-plot

for the pseudo-residuals. They show deviation from normality in the tails of the distribution,

indicating some lack of fit. In particular, the pattern in the residuals indicates that fewer

observations of low accelerations were observed than one would expect under the fitted model.

Nevertheless, the deviation is relatively minor and not necessarily a cause for concern, unless

the focus of the analysis is specifically on these very small VDBA values and the associated

behaviours.

Calculation and interpretation of the pseudo-residuals is somewhat tedious, as both the

forward and the backward variables are required, and numerical underflow issues may need to

be dealt with. Software packages that specialise in HMMs can be used to perform these calcu-

lations (see Section 4.1 in main text), but it can also be appealing to consider less technically

involved approaches. An informal but often very useful approach to model checking consists

of simulating observation sequences from the fitted model, then checking if relevant patterns

in the real data are well replicated by the simulated data. The corresponding comparisons

between simulated and real data could focus on summary statistics such as specific quantiles

of the empirical distribution or the values of the sample autocorrelation function (ACF). For

example, in the VDBA example, we simulated 100 datasets under the fitted model with N = 4

15
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Figure 3: QQ-plot for the pseudo-residuals of the VDBA model with four states. Dashed lines
indicate point-wise 95% confidence envelopes.

states. Figure 4 shows the quantile function and ACF estimated from these simulations. Over-

all, we find that the HMM fits the data fairly well, capturing the overall patterns in the data.

However, we can also see the model’s deficiencies: the quantile plot shows a minor lack of fit

for very small observations, and the ACF shows that the correlation between neighbouring

observations is higher than expected under the model, and that correlation at higher lags is

also underestimated. The poorer fit of the ACF may indicate the limitation of the Markov

assumption and the assumed geometric distribution in state dwell times, or alternatively a
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violation of the conditional independence assumption of the observations. However, a misspec-

ified model can also lead to correlation in the residuals even when these assumptions are true.

There are many reasons why any given model might be incapable of explaining correlations

in the data. Corresponding model extensions or alternative formulations could improve the

fit — whether or not the corresponding effort necessary to fit those more complex models is

warranted depends on the likely role of the lack of fit given the study aim.
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Figure 4: Estimated expected (blue) and empirical (black) quantile function (left) and au-
tocorrelation function (right) using 100 simulated datasets from the VDBA model with four
states; 95% quantile bounds are given for the expectations.

S5 State decoding

S5.1 Overview

Once parameters have been estimated and the model checking is complete, one goal may be to

infer the hidden states s1, . . . , sT . This is called “state decoding”. There are two approaches

for decoding: local and global.
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• Local state decoding is when we infer which value of st is most likely for each time point

separately, that is, we seek the locally decoded state

lt = argmax
st

Pr(St = st | x1, . . . , xT ).

Notice that the sequence of locally decoded states l1, . . . , lT ignores the serial dependence

in the states: individually most likely does not mean they are jointly most likely.

• Global state decoding is when we infer which complete sequence of states is the jointly

most likely, that is, we seek

(g1, . . . , gT ) = argmax
(s1,...,sT )

Pr(S1 = s1, . . . , ST = sT | x1, . . . , xT ).

Whether to use locally or globally decoded states depends on the question one is trying to

answer: whether one is interested in what state the Markov chain inhabits at a particular time

or in the most likely sequence of states the chain followed. In practice the results from both

approaches are usually similar. Figure 5 shows the globally decoded states for the VDBA

example. In this case, the locally decoded states agreed with the globally decoded ones over

95% of the time.

S5.2 Computation

Local state decoding involves both the forward probabilities (defined in Section S3.2) and

backward probabilities. Contrasting with the forward probabilities, αt(j) = Pr(x1, . . . , xt, st =

j), the backward probabilities are defined as βt(j) = Pr(xt+1, . . . , xT | st = j). The following

useful relationship holds for any t:

L(θ | x1, . . . , xT ) = αT
t βt,
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Figure 5: Sequence of vectorial dynamic body accelerations Xt, t = 1, . . . , 3600, colour-coded
according to the most likely state sequence as inferred using the Viterbi algorithm.

since αt(j)βt(j) = Pr(x1, . . . , xT , st = j). Local decoding involves maximising the quantity

Pr(St = st | x1, . . . , xT ) with respect to st, for every t. By basic probability laws, it can be

shown that

Pr(St = st | x1, . . . , xT ) =
αt(st)βt(st)

L
. (2)

At any time point t, this expression can be evaluated for st = 1, . . . , N , yielding the locally

decoded state lt as the argument maximising the expression. As with the forward algorithm,

the forward-backward algorithm has computational complexity O(TN2).

Global decoding is a more complex optimisation problem, but remarkably can be solved effi-

ciently using the Viterbi algorithm. Let qt(j) = Pr(s1 = g1, . . . , st−1 = gt−1, st = j, x1, . . . , xT ),

that is, suppose we know the optimal sequence up to time t− 1 and so qt(j) is the joint prob-

ability (with the data) that the state at time t is j. The Viterbi algorithm makes use of the

following recurrence: qt(j) = maxi qt−1(i)γi,jf(xt |st = j). Clearly q1(j) = δjf(x1 | s1 = j)

and so qt can be computed for every t. The globally decoded states can then be determined

by going backwards in time: choose gT = argmaxj qT (j) and then gt = argmaxj qt(j)γj,gt+1 for

t < T . The Viterbi algorithm therefore also has computational complexity O(TN2).

It is worth noting that only local decoding via Eq. (2) provides an uncertainty quantification

19



with respect to the decoded states, i.e. probability statements on which state may have been

active at any time point. Global decoding via the Viterbi algorithm merely provides the hard

decoded most likely state sequence without any probabilistic information on potential state

misclassifications.

S6 Interpretation

We have formulated the HMM, estimated the parameters, selected between candidate models,

checked how well the model fits, inferred the latent states, and now must interpret the final

results. It is important to remember at this stage two things:

• Even though the state process may have been formulated according to certain known

(or hypothesised) properties of an underlying ecological process, the parameters of the

state-dependent distributions and the transition probability matrix are driven by the

data and so may instead lead to states that do not correspond to our original intentions.

Our choice of the number of states, the data streams to include, and the structure of

the HMM components can encourage the model to reflect the ecological dynamics we

are interested in, but this is not formally guaranteed and so results must be interpreted

with caution. HMMs are aids to our understanding of these ecological processes, but

not substitutes for ecological theory.

• The results obtained must be interpreted in light of the assumptions that have been

made. The number of assumed states, the assumed form of the state-dependent distribu-

tions, the Markov assumption, and the conditional independence assumption. Whether

or not these assumptions are well enough respected in any given application must be

questioned during model checking, and any deficiencies taken into account when inter-

preting results. Identifying important issues with an HMM may lead to specifying a

more complex model (e.g. extensions of HMMs as discussed in Section 2.3 of the main
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text), or could lead to restricting research conclusions to robust, but weak statements.

When the assumptions of HMMs and their extensions fail to adequately describe the

underlying ecological dynamics of interest, then other forms of latent variable models

may be more appropriate (see Box 1 in main text).

For the VDBA example, we settled on an HMM with N = 4 states. Considering the estimated

state-dependent parameters in the context of ecological knowledge available for this species, it

is possible for experts to qualitatively associate these states with behavioural modes: “resting”,

“minimal activity” (e.g. preening), “moderate activity” (e.g. walking, digging), and “flying”,

which based on global state decoding were respectively assigned to 31%, 27%, 27%, and 14%

of time steps over a period of one hour. In model checking, we found some relatively minor

issues with both the marginal distribution and the dependence structure. If our interest is

in the broad classification of behaviours and the observations that relate to these behaviours,

these issues may not be important. However, if for example our research question concerns

how long individuals spend in each state, then the model’s failure to capture the full empirical

dependence structure may need to be addressed with more sophisticated HMMs or alternative

modelling frameworks.

Overall, this tutorial briefly demonstrates the workflow when trying to uncover underlying

ecological dynamics with an HMM. Like all modelling, it comes with assumptions and limita-

tions, but HMMs also bring computational efficiency and a structure that has been found to

be applicable to an impressively wide range of ecological applications.
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