FN Archimer Export Format PT J TI Impact of a medicane on the oceanic surface layer from a coupled, kilometre-scale simulation BT AF Bouin, Marie-Noëlle Lebeaupin Brossier, Cindy AS 1:1,2;2:1; FF 1:;2:; C1 CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29840 Brest, France C2 CNRM (METEO FRANCE), FRANCE CNRS, FRANCE UM LOPS IN WOS Cotutelle UMR DOAJ copubli-france IF 3.416 TC 10 UR https://archimer.ifremer.fr/doc/00655/76700/77857.pdf https://archimer.ifremer.fr/doc/00655/76700/77858.pdf LA English DT Article AB A kilometre-scale coupled ocean–atmosphere numerical simulation is used to study the impact of the 7 November 2014 medicane on the oceanic upper layer. The processes at play are elucidated through analyses of the tendency terms for temperature and salinity in the oceanic mixed layer. While comparable by its maximum wind speed to a Category 1 tropical cyclone, the medicane results in a substantially weaker cooling. As in weak to moderate tropical cyclones, the dominant contribution to the surface cooling is the surface heat fluxes with secondary effects from the turbulent mixing and lateral advection. Upper-layer salinity decreases due to heavy precipitation that overcompensates the salinizing effect of evaporation and turbulent mixing. The upper-layer evolution is marked by several features believed to be typical of Mediterranean cyclones. First, strong, convective rain occurring at the beginning of the event builds a marked salinity barrier layer. As a consequence, the action of surface forcing is favoured and the turbulent mixing dampened with a net increase in the surface cooling as a result. Second, due to colder surface temperature and weaker stratification, a cyclonic eddy is marked by a weaker cooling opposite to what is usually observed in tropical cyclones. Third, the strong dynamics of the Strait of Sicily enhance the role of the lateral advection in the cooling and warming processes of the mixed layer. PY 2020 PD SEP SO Ocean Science SN 1812-0784 PU Copernicus GmbH VL 16 IS 5 UT 000575405300001 BP 1125 EP 1142 DI 10.5194/os-16-1125-2020 ID 76700 ER EF