

Journal of Geophysical Research: Oceans

Supporting Information for

A persistent deep anticyclonic vortex in the Rockall Trough sustained by anticyclonic vortices shed from the slope current and wintertime convection

Angelina Smilenova1'2, Jonathan Gula3, Mathieu Le Corre3, Loïc Houpert4, Yves Reecht5

¹ Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway (NUIG), University Road, Galway, Ireland, H91 TK33

²Oceanographic Services, Rinville, Co. Galway, Marine Institute, Ireland, H91 R673

³Univ. Brest, CNRS, IRD, Ifremer, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, Brest, France

⁴National Oceanography Centre (NOC), European Way, Southampton, England, UK, SO14 3ZH

⁵ Institute of Marine Research/Havforskningsinstituttet, Postboks 1870 Nordnes, NO-5817 Bergen

Contents of this file

Figures S1 to S6 Tables S1 to S4

Additional Supporting Information (Files uploaded separately)

Caption for Movie S1

Introduction

Included are all supporting figures and tables.

Fig. S1. In-situ derived absolute salinity (AS) g kg) and conservative temperature (CT) anomalies (C), left and right panels respectively, in January 2012. In both panels dark grey lines represent isopycnals, computed using potential density ($\sigma\theta$) (kg m-³), referenced to 0 dbar, with numbers along isopycnals representing the isopycnal values. Light grey dashed lines representative of deep stations locations, i.e., vertical profiles, with stations' numbers displayed on top of the panels. Property anomalies calculated relative to respective data points mean values for the overall period of ship-board data availability (2006-2013).

Fig. S2. Conservative Temperature (CT) and (right) Absolute salinity (AS) along the RT transect line (Fig. 1) from a, b) WOA18 (2005-2017), c, d) ISAS15 (2002-2015), e, f) SODA reanalysis (2010-2011), g, h) model (2010-2011) and i, j) CTD (winters 2006-2013).

Fig. S3. Mean eddy available potential energy (EAPE) and currents at 1000 m depth from a) the model and b) the Argo database using the method of Roullet et al. (2014).

Fig. S4. Longitude-pressure in-situ-derived 2006, 2009, 2010 and 2013 mean a) absolute salinity (AS) (g kg⁻¹) and b) conservative temperature CT (°C). Light grey dashed lines in all plots are representative of stations locations, *i.e.*, vertical profiles, with deep stations numbered on top of all panels. Dark grey lines show potential density (σ_0) (kg m⁻³), referenced to 0 dbar.

Fig. S5. Model-derived relative vorticity, ζ/f , at 1000 m depth for selected October 2006 - December 2006 dates, with a 5-day time-step, starting on 22^{sd} of October, 2006, finishing on 16^{th} of December, 2006, with a) 22^{sd} of Oct, b) 27^{th} of Oct, c) 1^{st} of Nov, d) 6^{th} of Nov, e) 11^{th} of Nov, f) 16^{th} of Nov, g) 21^{st} of Nov, h) 26^{th} of Nov, i) 1^{st} of Dec, j) 6^{th} of Dec, k) 11^{th} of Dec, l) 16^{th} of Dec. Light grey lines show bathymetry (500 m level-step). Vorticity filament separation, near 52 °N and near 53.5 °N, and generation of small-scale vortices along the Porcupine slope is evident. The newly formed vortices travel further into the trough, feeding the Rockall Trough anticyclone. Some of the small, newly generated vortices exhibit westward propagation, some reaching the western slopes of the Rockall Bank, and some making their way into the marginal subpolar northeast NA. Circled black A and B letters denote candidate 'prime spots' for negative potential vorticity filaments separation due to bottom topography - slope current. Range of ζ/f restricted between -0.3 and 0.3 to help visualising vorticity generation and filament separation along the Porcupine slope. Letter annotations as in Fig. 1.

Fig. S6. Model-derived snapshots sequence of normalized with respect to f relative vorticity, ζ/f , at 1000 m depth for selected July 2009 – August 2009 dates, with a 5-day time-step, starting on 5^a of July, 2009, finishing on 29^a of August, 2009, with a) 5^a of Jul, b) 10^a of Jul, c) 15^a of Jul, d) 20^a of Jul, e) 25^a of Jul, f) 30^a of Jul, g) 4^a of Aug, h) 9^a of Aug, i) 14^a of Aug, j) 19^a of Aug, k) 24^a of Aug, l) 29^a of Aug. Light grey lines show bathymetry (500 m level-step). Vorticity filament separation, near 52 °N and near 53.5 °N, and generation of small-scale vortices along the Porcupine slope is evident. The newly formed vortices travel further into the trough, feeding the Rockall Trough anticyclone. Some of the small, newly generated vortices exhibit westward propagation, some reaching the western slopes of the Rockall Bank, and some making their way into the marginal subpolar northeast NA. Circled black A and B letters denote candidate 'prime spots' for negative potential vorticity filaments separation due to bottom topography - slope current. Range of ζ/f restricted between -0.3 and 0.3 to help visualising vorticity generation and filament separation along the Porcupine slope. Letter annotations as in Fig. 1.

Year	MI Cruise ID	ICES reference ID Start Date		End Date	
2006	CE0602	200645011	26-01-006	02-02-2006	
2007	CE0702	200745002	24-01-2007	02-02-2007	
2008	-	-	-	-	
2009	CE0903	200945001	05-02-2009	15-02-2009	
2010	CE10002	201045001	05-02-2010	17-02-2010	
2011	CE11001	201145001	03-01-2011	12-01-2011	
2012	CE12001	201245001	03-01-2012	12-01-2012	
2013	CE13001	201345001	05-01-2013	20-01-2013	

Table S1. Details of ship-board surveys, conducted by Marine Institute (MI) Ireland during 2006-20013 wintertime period, along 54 °N-56 °N transect line.

	Depth (m) of missing temperature and salinity data							
tion #	*all noted missing temperature values correspond to missing salinity values as well; values in red are additional missing salinity values							
Stat	2006	2007	2009	2010	2011	2012	2013	
1					1, 2, 3, 4	1, 2, 784		
2	4, 9, 10, 12, 13, <mark>912</mark>	1,2	1, 2	1	1, 2, 840, 841, 854	1, 886	1	
3		1,2	1, 2, 3	1	1, 2, 3, 988, 1022, 1140	1, 811, 812, 882		
4	815, 874, 1002	1, 2, 3, 4, 5	1, 2, 453, 454	1	1, 2, 3, 896, 903, 904, 1004	1, 2, 769, 927	1, 2	
5	1, 2, 3, 4, 5,	1, 2, 3, 4, 5, 6	1, 2		1, 2, 3, 4	1, 2	1, 2, 3	
6	817				1, 2, 3	1, 2, 775, 784, 798, 800, 804, 805, 810, 812, 816, 817, 820, 825, 858, 950, 981, 985, 1024, 1025, 1059, 1070, 1079, 1086, 1087, 1088, 1092, 1093, 1101, 1128, 1185, 1186, 1269, 1270	1, 2, 3, 4	
7	1025	1, 2, 3, 4, 5		1	1, 2, 3, 4, 5, 6	1, 2, 1031	1, 2, 3, 4, 5, 1067	
8	1, 2, 3		1, 2	1	1, 2, 3	1, 976	1, 2	
9	1198,1 199	1, 2, 3, 4, 5, 6		1	1, 2, 3, 4	1, 7	Not sampled	
10	1057		1, 2		1, 2, 3	Not sampled	Not sampled	
11		1			1, 2, 3	Not sampled		
12					1, 2, 3, 4, 5, 6, 7	Not sampled	1, 2, 3	
13	917		Not sample d			1, 2, 816, 819, 955	Not sampled	

Table S2. Summary of temperature and conductivity data gaps in the vertical, where conductivity missing data, representative of salinity data gaps at depth, shown in red; note no survey in 2008.

Property	2007		2011		
anomaly	Overall anticyclone's anomaly	Anomaly within core centre	Overall anticyclone's anomaly	Anomaly within core centre	
Absolute	0.12	0.17	0.11	0.16	
salinity (AS)	(± 0.03)	(993 m)	(± 0.02)	(909 m)	
[g kg ⁻¹]					
Conservative	1.26	2.16	1.31	2.02	
temperature (CT)	(± 0.53)	(1067 m)	(± 0.46)	(1129 m)	
[°C]					
Potential	-0.09	-0.20	-0.10	-0.21	
density (σ_{θ})	(± 0.06)	(1091 m)	(± 0.06)	(1093 m)	
[kg m ⁻³]					
Potential	-1.33 x 10-12	-9.65 x 10-11	-4.47 x 10-12	-1.11 x 10-10	
Vorticity (PV)	(± 2.10 x 10 ⁻¹¹)	(1010 m)	(± 2.40 x 10 ⁻¹¹)	(1033 m)	
$[m^{-1} s^{-1}]$					

Table S3. In-situ derived anomalies of absolute salinity (AS), conservative temperature (CT) and potential vorticity ($PV(Q_{w}) = fN^2/g$) values in January 2007 and January 2011, ± 1 standard deviations values enclosed in brackets. Presented are also maximum positive AS, CT and negative stretching PV values, found within the anticyclone's core regions, embedded within the 600-1550 m and 650-1550 m depth ranges in 2007 and 2011 respectively.

Water mass/Limits	Conservative temperature [°C]		Absolute salinity [g kg ⁻¹]		Potential density [g m ⁻³]	
	Lower	Upper	Lower	Upper	Lower	Upper
ENACW	11.00	12.000	35.510	35.760	27.020	27.200
SAIW	5.020	8.450	35.115	35.260	27.250	27.650
MOW	7.900	9.400	35.560	35.650	27.410	27.600
LSW	3.000	3.900	35.065	35.075	27.730	27.810
AABW	2.550	2.750	35.106	35.120	27.870	27.887
LDW	2.100	2.250	35.075	35.095	27.880	27.900

Table S4. Boundary conditions (ranges) of conservative temperature (CT) (°C), absolute salinity (AS) (g kg⁻¹) and potential density (σ_0) (kg m⁻³) of water masses, considered for the mixing triangle approach (subsection 2.3.2). All ranges defined in local context, based on CTD-derived T/S diagram for all 2006-2013 wintertime CTD data, collected along ~53-54/55 °N (Fig. 5a).

Movie S1. ASJGMLCLHYR_JGR_Oceans_2019JC015905_ms01