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Abstract :   
 
This paper aims at collating and reviewing all data collected using the ESCA (Ecological Status of 
Coralligenous Assemblages) index from 2009 to 2018 during different local applications, in order to 
evaluate at large spatial scale its effectiveness and temporal variability. To this scope, the large-scale 
response of ESCA to anthropogenic disturbance was tested comparing ESCA values calculated at 42 
sites of the Western Mediterranean Sea with the anthropization index. Moreover, the sensitivity of ESCA 
to punctual human disturbance and the robustness of the index across the natural space and time 
variability were evaluated. The large spatial scale study showed significant correlation between ESCA 
and the anthropization index, while very low correlation was detected when descriptors of ESCA (i.e., 
sensitivity levels, α-diversity, and β-diversity) were considered separately. The three impact evaluation 
studies highlighted significantly lower values of the ESCA index in disturbed conditions than in the control 
ones. The coastal monitoring study confirmed the robustness of the index which showed a high ecological 
quality of coralligenous reefs in reference conditions compared to more anthropized sites, and this pattern 
was maintained throughout the ten years study period. Application of the ESCA index to different 
situations tested positively its sensibility to different levels and type of human disturbance and its stability 
with respect to regional spatio-temporal variability. This confirm the reliability of the ESCA index already 
tested on the local and annual scale, thus broadening its range of application and validating it on a wider 
space–time scale. 
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Highlights 

► Data of ESCA index from 2009 to 2018 were collated and reviewed. ► ESCA values of 42 sites were 
compared with an anthropization index. ► ESCA detected differences among sites subjected to different 
levels of pressure. ► ESCA discriminated disturbed and control sites in three impact evaluation studies. 
► ESCA was stable respect to the regional spatio-temporal variability. 
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1.Introduction 47 

European legislation promotes the conservation of ecological systems and the development of 48 

management strategies for the sustainable use of natural resources. In particular, the Water 49 

Framework Directive (EC, 2000) and the Marine Strategy Framework Directive (EC, 2008) include 50 

among their goals the maintenance and improvement of the ecological status of marine coastal 51 

ecosystems to prevent environmental deterioration.  52 

In this context, many biotic indices have been developed and used to assess the ecological status of 53 

the major marine coastal ecosystems (Birk et al., 2012). Coralligenous reefs are considered relevant 54 

habitats to be used as an indicator of biodiversity maintenance, and they are included among the 55 

“special habitat types” of the Marine Strategy Framework Directive. Thus, their ecological status 56 

should be assessed through appropriate monitoring plans (Bavestrello et al., 2016).  57 

Coralligenous reefs are one of the most important coastal ecosystems of the Mediterranean Sea in 58 

terms of distribution, biodiversity, productivity, and their role in the CO2 cycle (Martin et al., 2014; 59 

Casas-Güell et al., 2015). They are characterized by a basal layer mostly formed by calcareous red 60 

algae belonging to the Corallinales and Peyssonneliales. These bioconstructions develop over a 61 

large range of depths (Cánovas-Molina et al., 2016b; Ferrigno et al., 2017) and exhibit high 62 

structural and functional complexity (Ballesteros, 2006). The two most common geomorphotypes of 63 

coralligenous reefs are cliffs (i.e. vertical or near-vertical walls from a steep littoral rock face) and 64 

banks (isolated outcrops surrounded by sand or biodetritic sediments) (Ballesteros, 2006), which 65 

can develop at different depths depending on environmental conditions. However, cliffs usually 66 

characterize shallower coastal rocky bottoms, whereas banks mainly occur on deeper continental 67 

shelves (Ballesteros, 2006; Cánovas-Molina et al., 2016b). 68 

Coralligenous reefs are particularly sensitive to human disturbance (Balata et al., 2005; Piazzi et al., 69 

2011; Gatti et al., 2015b; Canessa et al., 2017). In particular, the shallower reefs are highly exposed 70 

to those human disturbances that have the most serious impact, which are concentrated along 71 



coastal areas (Aguado-Gimenez and Ruiz-Fernandez, 2012; Piazzi et al., 2012; Ferrigno et al., 72 

2017, 2018). 73 

Shallow reefs (within 50 m depth) can be effectively surveyed by SCUBA diving, thus obtaining 74 

direct information about descriptors that cannot be evaluated or measured through other 75 

instrumental methods, such as acoustic devices of remotely operated vehicles (Gatti et al., 2012, 76 

2015a; Piazzi et al., 2018b). In contrast, unmanned vehicles are suitable for surveys of deep 77 

coralligenous reefs (Cánovas-Molina et al., 2016a; UNEP, 2017; Ferrigno et al., 2018; Enrichetti et 78 

al., 2019). Since biological monitoring techniques and ecological indices are generally habitat-79 

specific, assessment of the ecological status of marine coastal environments should be carried out 80 

by applying multiple approaches depending on the habitat types occurring in the investigated area 81 

(Borja et al., 2010). 82 

Recently, several methods have been proposed to evaluate the ecological quality of both shallow 83 

and deep coralligenous reefs (Kipson et al., 2011; Deter et al., 2012; Gatti et al., 2015a; Teixidó, et 84 

al., 2013; Zapata-Ramírez et al., 2013; Ferrigno et al., 2017; Montefalcone et al., 2017; Sartoretto et 85 

al., 2017; Enrichetti et al., 2019). The ESCA index (Ecological Status of Coralligenous 86 

Assemblages; Cecchi et al., 2014; Piazzi et al., 2017b) evaluates the ecological quality of shallow 87 

coralligenous reefs through a community approach; it was initially proposed for macroalgal 88 

assemblages (Cecchi et al., 2014) and later implemented with the inclusion of sessile invertebrates 89 

(Piazzi et al., 2017b). The ESCA index was tested on gradients of anthropogenic pressure (Piazzi et 90 

al., 2015, 2017a, 2017b) and applied at local scale in many different conditions and sites during 91 

monitoring surveys and impact evaluation studies (Penna et al., 2017; Piazzi et al., 2018a, 2019). In 92 

the ten years since its first adoption in the field the data collected cover a wide geographical area of 93 

the North-Western Mediterranean Sea. 94 

This paper aims to collate and review all the data collected using the ESCA index for different local 95 

applications from 2009 to 2018, in order to evaluate at large spatial scale its effectiveness and 96 

temporal variability. For this purpose, three important aspects of the index were tested: i) the large-97 



scale response of ESCA to anthropogenic disturbance; ii) the sensitivity of ESCA to specific human 98 

disturbances; and iii) the robustness of the index across natural space and temporal variability. 99 

 100 

2.Material and methods 101 

2.1.Sampling methods  102 

In each study site, three areas of 4m², 10 meters apart, were randomly selected on vertical rocky 103 

bottoms, at about 35 m depth. In each area, 10 photographic samples of 0.2 m
2
 were collected. 104 

Photographic samples were analysed using ImageJ software (Cecchi et al., 2014) to evaluate the 105 

percentage cover of the main taxa or morphological groups (Bianchi et al., 2004; Parravicini et al., 106 

2009; Balata et al., 2011). Organisms easily detected by photographic samples were identified to the 107 

lowest possible taxonomic level, while those not easily recognizable were identified according to 108 

morphological groups (Piazzi et al., 2015, 2017b). Three assemblage descriptors were used 109 

according to Cecchi et al. (2014): i) “sensitivity level” (SL), based on the cover of different 110 

sensitive taxa; ii) diversity of assemblages expressed as “α-diversity”; and iii) heterogeneity of 111 

assemblages, expressed as “β-diversity”. To calculate the SL of study sites, each taxon was 112 

associated with a sensitivity value (from 1 to 10, with minimum values corresponding to the most 113 

tolerant organisms and maximum values to the most sensitive ones, Table S1) and with one of eight 114 

classes of abundance (1: 0 < % < 0.01; 2: 0.01 < % < 0.1; 3: 0.1 < % < 1; 4: 1 < % < 5; 5: 115 

5 < % < 25; 6: 25 < % < 50; 7: 50 < % < 75; 8: 75 < % < 100) according to Piazzi et al. (2017b). 116 

The SL of each photographic sample was calculated as the sum of the values obtained by 117 

multiplying the sensitivity value of each taxon/group values by its class of abundance. The SL of 118 

each study site was calculated as the sum of the SL values of all samples. α-diversity was defined as 119 

the mean number of taxa/groups calculated for the 30 photographic samples. β-diversity was 120 

evaluated as the mean distance of all photographic samples from centroids calculated in the 121 

PERMDISP analysis (Primer 6 + PERMANOVA; Anderson et al., 2006). ESCA was expressed as 122 

Ecological Quality Ratio (EQR), calculated as the mean of the three EQRS obtained for the 123 



assemblage descriptors: EQR = ((EQRSL + EQRα + EQRβ) × 3
-1

). Individual EQRs were calculated 124 

as the ratios between the values of SL, α-diversity and β-diversity, respectively, and the values 125 

obtained for the same descriptor in the Reference Conditions (RC) (i.e. 550, 15 and 20 respectively 126 

calculated for Montecristo Island, Tuscan Archipelago National Park). Montecristo Island was 127 

chosen as RC for the considered geographic region because it is a protected nature reserve subjected 128 

to very stringent protection restrictions which reduce the human impact almost to zero. For this 129 

reason, the ecological status of Montecristo coralligenous assemblages is suitable to represent 130 

“true” RC, in accordance with the requirements of European Directives (Cecchi et al., 2014). The 131 

reference values of the three index metrics were the highest values obtained during four years 132 

monitoring studies carried out in the natural reserve. The ecological quality of coralligenous reefs 133 

was then classified according to the following five classes (Piazzi et al., 2015): i) high (EQR ≥ 0.8); 134 

ii) good (0.6 ≤ EQR < 0.8); iii) moderate (0.4 ≤ EQR < 0.6); iv) poor (0.2 ≤ EQR < 0.4); and v) bad 135 

(EQR < 0.2). 136 

 137 

2.2.Large-scale response of ESCA to anthropogenic disturbance  138 

Coralligenous reefs were sampled at 42 sites of the NW Mediterranean Sea (Figure 1). In order to 139 

measure the degree of human disturbances affecting each study site, the anthropization index was 140 

computed following an approach similar to that used by Gobert et al. (2009). The index was defined 141 

considering the main anthropogenic activities that may affect negatively coralligenous reefs in the 142 

investigated sites (disturbance factors or drivers), urbanization, ports, industry, aquaculture, 143 

agriculture, sources of terrigenous sediment, diving activities, artisanal fishing and anchoring (Table 144 

1), and the resulting pressures (polluting discharges, biological invasions, hypersedimentation and 145 

mechanical aggression) (EC, 2003). Each disturbance factor was classified from 0 (no or very low 146 

pressure) to 2 (high pressure), according to its presence and entity and distance of the investigated 147 

sites from the source of disturbance (Piazzi et al., 2015, 2017b). For each site, the anthropization 148 

index, ranging from 0 to 16, is the sum of the values of each single disturbance factor. 149 



A linear regression was performed in order to test the relationships between ESCA and its three 150 

descriptors (i.e., SL, α-diversity, and β-diversity) with the anthropization index. The degree of 151 

correlation was calculated and reported as the value of square correlation coefficient (determination 152 

coefficient, R
2
). Significance of regression was tested by means of the Fisher-Snedecor test 153 

performed by the Statistica 10 software. 154 

 155 

2.3.The sensitivity of ESCA to punctual human disturbance   156 

The ESCA index was employed in three independent impact evaluation studies to assess the effects 157 

of three different environmental conditions directly or indirectly related to punctual human 158 

disturbance. In each study, the disturbed site was compared with two reference sites with similar 159 

morphological characteristics and exposition, in agreement with an ACI design (After-Control-160 

Impact; Underwood, 1993, Chapman et al., 1995). The disturbance factors subjected to the impact 161 

assessment were: 1) the mucilage occurred in the Marine Protected Area of Capo Carbonara (SE 162 

Sardinia, Italy) in 2017 (Piazzi et al., 2018a); 2) the underwater works to remove a shipwreck at 163 

Giglio Island (Tuscan Archipelago, Italy) (Penna et al., 2017), and 3) the fish-farmig activities at 164 

Gorgona Island (Tuscan Archipelago, Italy) (De Biasi et al., 2016; Piazzi et al., 2019). ESCA values 165 

obtained in the disturbed and the control sites in the three impact studies were analysed together 166 

through an asymmetrical PERMANOVA: a 2-way model was used with the factor Condition 167 

(disturbed vs control) as fixed and the factor Site (3 levels) as random nested in Condition, with 168 

three replicated areas in each site. The mean square of the factor Condition was partitioned into 169 

disturbed vs control and among control sites (Terlizzi et al., 2005). 170 

 171 

2.4.The robustness of the index across the natural space and time variability 172 

The ESCA index was applied in coastal monitoring studies, from 2009 to 2018 in 3 sites 173 

(Montecristo, Livorno, and Argentario) of Tuscany (Italy, NW Mediterranean Sea). Each site was 174 

sampled every three years, for a total of four monitoring times (T1-T4) within a ten-years period. 175 



The ecological quality of coralligenous reefs in each site was compared through a 2-way 176 

PERMANOVA analysis, with the factors Year (4 levels, fixed) and Site (3 levels, random and 177 

orthogonal to Year). The Euclidean distance was calculated before analysis and PERMDISP 178 

analysis was used to check for homogeneity of variance (Anderson, 2001). 179 

 180 

3.Results 181 

3.1.Large-scale response of ESCA to anthropogenic disturbance  182 

Values of ESCA varied from 0.46 at S. Agostino to 0.98 at the reference site of Montecristo (Fig. 183 

2), while values of the anthropization index ranged from 0 (at Montecristo) to 13 (at S. Agostino 184 

and Civitavecchia) (Table 1 and Fig. 2). The high quality sites were characterized by different 185 

assemblages, as some of them were dominated by invertebrates, mostly erect anthozoans and 186 

bryozoans (French sites, Giannutri, Giglio, Tavolara), while other sites were dominated by 187 

macroalgae, such as Fucales, Udoteaceae or erect Rhodophyta (Asinara, Catalano, Capraia and 188 

Pianosa). The linear regression showed a linear association and a significant negative correlation 189 

(F < 0.001) between ESCA and the anthropization index (Fig. 3). The linear regressions between 190 

the anthropization index and the three descriptors of ESCA (i.e., SL, α-diversity, and β-diversity) 191 

showed lower values of the squared correlation coefficient compared to that of ESCA (Fig. 3). 192 

 193 

3.2.The sensitivity of ESCA to punctual human disturbance  194 

The three impact evaluation studies showed a moderate ecological quality of coralligenous reefs in 195 

all the disturbed sites and high or good qualities of coralligenous reefs in the control sites (Fig. 4). 196 

The number of taxa/groups per sample was 7.7±1.5 (mean±SE, n=3) in the disturbed sites and 197 

10.4±0.3 (mean±SE, n=6) in the control sites. The main differences between conditions were 198 

mostly related to a higher abundance of erect bryozoans, Halimeda tuna, and erect Rhodophyta at 199 

the control sites and a higher abundance of algal turf at the disturbed sites. ESCA significantly 200 



differed between disturbed and control condition, while differences among controls were not 201 

significant (Table 2). Variability at the site level was also significant. 202 

 203 

3.3.The robustness of the index across the natural space and time variability 204 

ESCA indicated a high ecological quality of the coralligenous reefs at Montecristo, a good quality at 205 

Argentario and a moderate quality at Livorno. This pattern was maintained throughout the ten years 206 

study period (Fig. 5). PERMANOVA showed a significant difference among sites but not among the 207 

sampling times; the interaction Site x Year was not significant either (Table 3). 208 

 209 

4.Discussion 210 

The results of the large spatial scale study showed the effectiveness of the ESCA index to detect 211 

differences among sites subjected to different levels of human disturbance. ESCA was also able to 212 

discriminate between disturbed and control sites in all the three impact evaluation studies, 213 

regardless of the kind of disturbance. Finally, the results of the coastal monitoring studies confirm 214 

the stability of the index with respect to regional spatio-temporal variability.  215 

The pressures response test carried out on the 42 sites demonstrated the higher consistency between 216 

ESCA and the anthropization index when compared to the use of single descriptors of the index 217 

individually (i.e., SL, α-diversity, and β-diversity), confirming the effectiveness of synthetic tools 218 

compared to single descriptors (Simboura et al., 2005; Borja and Dauer, 2008; Piazzi et al., 2017a). 219 

The integrated use of multiple bioindicators with complementary strengths is recommended in order 220 

to minimize the variability of ecosystems’ response to different stressors (Martinez-Crego et al., 221 

2010; Borja et al., 2009a, 2009b). At the same time, the test also highlighted the effectiveness of the 222 

index in detecting different levels of anthropogenic disturbance at large scale as well as at smaller 223 

scale, since the sites investigated covered a wide area of the western Mediterranean.  224 

The ability of ESCA to determine the ecological quality of coralligenous reefs under different 225 

environmental conditions (including reference sites) confirms the value of the index in impact 226 



evaluation studies (Penna et al., 2017; Piazzi et al., 2018a, 2019) and its sensitivity to human 227 

disturbance of different origins. This aspect is particularly important as ecological indices 228 

supporting management actions should be able to distinguish among different forms of human 229 

impact in order to appropriately address corrective or restoration actions. Moreover, the application 230 

of the index throughout a ten-year period in Tuscany showed similar values among the sampling 231 

periods, thus suggesting the index is stable across time in the absence of regular disturbances. The 232 

robustness of an index is based on the assertion that it must not be influenced by patterns of natural 233 

spatial and temporal variability of assemblages but only by changes related to alteration in the 234 

ecological quality of the environment (Borja and Dauer, 2008; Martinez-Crego et al., 2010). 235 

Coralligenous assemblages may vary at different spatial scales (Casas-Güell et al., 2015, 2016; 236 

Doxa et al., 2016; Piazzi et al., 2016) and different assemblages may characterize sites with similar 237 

ecological quality (Casas-Güell et al., 2015, 2016). At the same depth, structural changes may be 238 

related to natural environmental drivers, such as hydrodynamic conditions, substrate mineralogy 239 

and morphology, biogeographical gradients (Virgilio et al., 2006; Falace et al., 2015; Fava et al., 240 

2016; Ferrigno et al., 2017; Canessa et al., 2020), and biotic interaction among sessile organisms 241 

(Ponti et al., 2014, 2018). The ESCA index is independent of the species composition of 242 

assemblages and considers that different organisms may have similar sensitivity to disturbance; 243 

high ecological quality, for example, may be indifferently obtained by assemblages dominated by 244 

erect anthozoans, bryozoans, Fucales, Udoteaceae, or erect Rhodophyta (Piazzi et al., 2017b). 245 

ESCA can thus be employed beyond biogeographical or local patterns, at least in the Western 246 

Mediterranean Sea. 247 

ESCA should be tested in other Mediterranean areas, such as the Adriatic Sea or the southern and 248 

eastern Mediterranean basins, where characteristics of coralligenous assemblages might be different 249 

from those used to develop the index (Çinar et al., 2014; Falace et al., 2015; Sini et al., 2019). Most 250 

of the organisms found in the high quality coralligenous assemblages in the western Mediterranean 251 

Sea (Linares et al., 2008; Casoli et al., 2017; Piazzi et al., 2018a) are absent from other areas, such 252 



as the northern Adriatic Sea, where coralligenous assemblages are dominated by ascidians or 253 

sponges, although also in high quality conditions (Ponti et al., 2011). The definition of different 254 

reference values, as well as site-specific scales of sensitivity level, is likely to be necessary to apply 255 

the index in other Mediterranean areas.  256 

 257 

5.Conclusions 258 

The objective of management is to preserve sensitive coastal habitats in good environmental and 259 

ecological status or return them to this status (Borja, 2005). Indices are a scientific response that 260 

helps to satisfy management needs for accurate and reliable information about the condition of 261 

biological ecosystem elements (Borja et al., 2009b) and their validation in space and time represents 262 

a key step in their development (Borja and Dauer, 2008; Borja et al., 2009b). The results of this 263 

study confirm the reliability of the ESCA index, which had already been tested on a local and 264 

annual scale, thus broadening its range of application and validating it on a wider space-time scale. 265 

Ten years of studies allowed a validation dataset to be built that covers a wide spatial scale, from 266 

southern France to central Italy (Piazzi et al., 2017a), and the entire range of conditions (from 267 

highly degraded to non-degraded or pristine situations), and environmental alterations of different 268 

origins were also considered. The dataset also includes data from ten years of monitoring carried 269 

out at a regional scale, which demonstrated the stability of the index across time. ESCA has 270 

responded positively to the validation tests, proving to be an effective and sensitive tool that is also 271 

robust in space and time, thus facilitating communication with environmental managers.  272 
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Figure legends 484 

Figure 1. Map of the 42 sites in the NW Mediterranean where the ESCA index was applied. 485 

Numbers refer to the sites listed in Table 1. 486 

Figure 2. Values of the anthropization index (black line) and ESCA (bars) in each of the 42 sites. 487 

White bars correspond to a moderate ecological quality, grey bars to a good ecological quality, and 488 

back bars to a high ecological quality. 489 

Figure 3. Linear regressions between the anthropization index and the ESCA index, the α-diversity, 490 

the β-diversity, and the sensitivity level. 491 

Figure 4. Mean values (+ S.E.) of ESCA detected in three different impact evaluation studies. 492 

D = disturbed sites, C = control sites; me = mucilage event, uw = underwater works to remove a 493 

shipwreck, ap = aquaculture plant. White bars correspond to moderate ecological quality, grey bars 494 

to good ecological quality, and back bars to high ecological quality.  495 

Figure 5. Values of ESCA in the three sites of Tuscany during the four monitoring times (T1-T4) 496 

between 2009 and 2018. Colors of the bars corresponds to sites investigated (as reported in the 497 

figure label), as well as to the coralligenous ecological quality: white correspond to moderate 498 

ecological quality, grey to good ecological quality, and back to high ecological quality. 499 
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Table 1. Anthropization index in each of the 42 study sites. The numbers beside each site refer to 535 
their geographical location as showed in figure 1. 536 
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28 yes Montecristo  0 0 0 0 0 0 0 0 0 0 

27 yes Pianosa  0 0 0 0 0 0 1 0 0 1 

21 yes Gorgona 0 0 0 1 0 0 0 1 0 2 

39 yes Tavolara 0 0 0 0 0 0 2 0 0 2 

36 yes Asinara North 0 0 0 0 0 0 1 1 0 2 

37 yes Asinara South 0 0 0 0 0 0 1 1 0 2 

42 yes Capo Carbonara 0 0 0 0 0 0 2 1 0 3 

23 yes Capraia  0 0 0 0 0 0 2 0 1 3 

32 yes Giannutri  0 0 0 0 0 0 2 0 1 3 

40 yes Catalano 0 0 0 0 0 0 0 2 1 3 

31 no Giglio  0 0 0 0 0 0 2 1 1 4 

18 yes Portofino 0 0 0 0 0 2 2 0 0 4 

4 no Ile du Planier 0 0 0 0 0 0 2 0 2 4 

6 no Moyade 0 0 0 0 0 0 2 0 2 4 

8 no Impérial milieu 0 0 0 0 0 0 2 0 2 4 

9 no Morgiou 0 0 0 0 0 1 2 1 0 4 

13 no Pierre du Levant 0 0 0 0 0 0 1 2 1 4 

3 no Tiboulen du Frioul 0 0 0 0 0 1 1 1 1 4 

15 no Les Deux Frères 0 0 0 0 0 1 1 1 1 4 

25 no Elba-North 0 0 0 0 1 0 2 2 0 5 

26 no Elba-South 0 0 0 0 1 0 2 2 0 5 

12 no Les Rosiers 0 0 0 0 0 0 2 2 1 5 

11 no Bec de l’Aigle  0 1 0 0 0 1 1 2 1 6 

2 no Large Niolon 0 0 0 0 0 2 1 2 1 6 

5 no Cap Caveau 0 0 0 0 0 1 2 1 2 6 

7 no Ile Plane  2 0 0 0 0 2 1 0 1 6 

38 no Costa Paradiso 1 0 0 0 0 0 1 2 2 6 

31 no Argentario 0 0 0 0 1 2 1 1 1 6 

17 no Formigue 0 0 0 0 0 1 1 2 2 6 

41 no Torre delle Stelle 1 0 0 0 0 0 2 2 2 7 

22 no Vada  0 0 1 0 1 1 1 2 1 7 

29 no Formiche 0 0 0 0 1 2 2 1 1 7 

19 no Meloria  1 1 0 0 1 1 1 2 1 8 

16 no Large Oursinière 2 1 0 0 0 2 1 2 1 9 

1 no Méjean 0 1 0 0 0 2 2 2 2 9 

14 no Sêche des Pêcheurs West   2 0 0 0 0 2 2 2 1 9 

10 no Figuerolle 2 0 0 0 0 2 2 2 2 10 

20 no Livorno 1 1 1 0 0 2 2 2 2 11 

24 no Piombino  1 2 1 1 1 1 1 2 1 11 

35 no Santa Marinella 2 1 1 0 1 2 1 2 2 12 

33 no S. Agostino 1 1 2 1 1 2 1 2 2 13 

34 no Civitavecchia 2 2 2 0 0 2 1 2 2 13 
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Table 2. PERMANOVA analysis on ESCA in the three different impact evaluation studies. 538 
Significant values are in bold. 539 

Source df MS Pseudo-F P(perm) 

Condition = C 2 0.205 27.65 0.031 

impact vs controls 1 0.408 88.31 0.002 

among controls 1 0.003 0.41 0.611 

Site (C) 6 0.007 7.29 0.002 

impact vs controls 3 0.004 46.21 0.001 

among controls 4 0.007 8.05 0.005 

Residual 18 0.001   

impact vs controls 6 0.001   

among controls 12 0.001   

 540 

541 



Table 3. PERMANOVA analysis on ESCA in the three sites of Tuscany monitored between 2009 542 
and 2018. Significant values are in bold. 543 

Source df MS Pseudo-F P(perm) 

Site = S 2 0.5494 1373.7 0.001 

Year = Y 3 0.0006 1.7 0.184 

S×Y 6 0.0004 1.1 0.385 

Residual 24 0.0004   

 544 
 545 
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