FN Archimer Export Format PT J TI Effects of pH and Nutrients (Nitrogen) on Growth and Toxin Profile of the Ciguatera-Causing Dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) BT AF Longo, Sébastien SIBAT, Manoella Taiana Darius, Hélène HESS, Philipp Chinain, Mireille AS 1:1;2:2;3:1;4:2;5:1; FF 1:;2:PDG-ODE-DYNECO-PHYC;3:;4:PDG-ODE-DYNECO-PHYC;5:; C1 Laboratory of Marine Biotoxins, Institut Louis Malardé-UMR241 EIO (IFREMER, ILM, IRD, UPF), 98713 Papeete, Tahiti, French Polynesia Phycotoxins Laboratory, IFREMER, Rue de I’lle d’Yeu, 44311 Nantes C2 INST LOUIS MALARDE, FRANCE IFREMER, FRANCE SI NANTES SE PDG-ODE-DYNECO-PHYC UM EIO IN WOS Ifremer UPR WOS Cotutelle UMR DOAJ copubli-france IF 2.13 TC 15 UR https://archimer.ifremer.fr/doc/00662/77382/78981.pdf https://archimer.ifremer.fr/doc/00662/77382/78982.pdf LA English DT Article DE ;Gambierdiscus polynesiensis;French Polynesia;ciguatera;ciguatoxins;LC-MS;MS;toxin profile;nitrate;urea;culture medium acidification AB Ciguatera poisoning is a foodborne disease caused by the consumption of seafood contaminated with ciguatoxins (CTXs) produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. Ciguatera outbreaks are expected to increase worldwide with global change, in particular as a function of its main drivers, including changes in sea surface temperature, acidification, and coastal eutrophication. In French Polynesia, G. polynesiensis is regarded as the dominant source of CTXs entering the food web. The effects of pH (8.4, 8.2, and 7.9), Nitrogen:Phosphorus ratios (24N:1P vs. 48N:1P), and nitrogen source (nitrates vs. urea) on growth rate, biomass, CTX levels, and profiles were examined in four clones of G. polynesiensis at different culture age (D10, D21, and D30). Results highlight a decrease in growth rate and cellular biomass at low pH when urea is used as a N source. No significant effect of pH, N:P ratio, and N source on the overall CTX content was observed. Up to ten distinct analogs of Pacific ciguatoxins (P-CTXs) could be detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in clone NHA4 grown in urea, at D21. Amounts of more oxidized P-CTX analogs also increased under the lowest pH condition. These data provide interesting leads for the custom production of CTX standards. PY 2020 PD DEC SO Toxins SN 2072-6651 PU MDPI VL 12 IS 12 UT 000602428800001 DI 10.3390/toxins12120767 ID 77382 ER EF