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Abstract. The Southern Ocean accounts for 40% of oceanic CO2 uptake, but the estimates are bound by large uncertainties due

to a paucity in observations. Gap filling empirical methods have been used to good effect to approximate pCO2 from satellite

observable variables in other parts of the ocean, but many of these methods are not in agreement in the Southern Ocean. In

this study we propose two additional methods that perform well in the Southern Ocean: Support Vector Regression (SVR) and

Random Forest Regression (RFR). The methods are used to estimate ∆pCO2 in the Southern Ocean, achieving similar results5

to the SOM-FFN method by Landschützer et al. (2014). The RFR as able to achieve better RMSE (12.26 µatm) compared the

SVR (16.04 µatm) and SOM-FFN (12.97 µatm). To assess the efficacy of the methods and the limits of the training dataset

(SOCAT v3), SVR and RFR are applied in a modelled environment. Again the RFR method outperformed the SVR by a

substantial margin. However, both methods achieved higher out-of-sample than in-sample errors, indicating that the SOCAT

v3 dataset is not yet fully representative of the Southern Ocean. The SVR was able to generalise better to the training dataset10

than the RFR with lower ratio between the out-of-sample and in-sample errors, but not enough to compensate for its poorer

performance. The ensemble of the estimates show that interannual variability of the Southern Ocean CO2 sink is dominated by

the Polar Frontal Zone, while the Sub-Antarctic Zone is the dominant sink.

1 Introduction

The global oceans have played an important role in mitigating the effects of climate change by taking up 25% of anthropogenic15

CO2 emissions annually (Khatiwala et al., 2013; Le Quéré et al., 2016). The Southern Ocean has played a disproportionate role

in this uptake, accounting for 40% of the oceanic anthropogenic CO2 uptake (Khatiwala et al., 2013; Frolicher et al., 2015).

Yet, despite the region’s importance, first order CO2 flux estimates are bound by large uncertainties due to sparse observations

in the Southern Ocean (Lenton et al., 2006; Monteiro et al., 2010; Lenton et al., 2012; Takahashi et al., 2012; Bakker et al.,

2016). These uncertainties limit our capacity to resolve variability and trends of CO2.20

Viable alternative methods to estimate net CO2 flux are atmospheric CO2 inversions, ocean biogeochemical process models

and empirical models (Rödenbeck et al., 2015). As shown by Le Quéré et al. (2007), atmospheric CO2 inversions are useful

tools to estimate the net CO2 fluxes, but fail to offer further understanding with spatially integrated air-sea flux estimates (Fay

and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanistic understanding, but fail
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to represent seasonality of CO2 fluxes in the Southern Ocean (Lenton et al., 2013; Mongwe et al., 2016). Empirical modelling

offers an opportunity to bridge the gap between sparse data in the Southern Ocean and correct parameterisation of future earth

systems models.

Empirical models maximise the utility of existing surface ocean CO2 observations (pCO2) by interpolating these with satel-

lite proxy data. Access to in-situ pCO2 data, via platforms such as SOCAT (Surface Ocean CO2 Atlas), has been crucial to5

the success of empirical methods (Rödenbeck et al., 2015; Bakker et al., 2016). This, in conjunction with the increasing use

of machine learning, has seen a proliferation in the number and diversity of methods in the literature. Rödenbeck et al. (2015)

compared a suite of fourteen methods using a regional framework provided by Fay and McKinley (2014). The authors found

that methods agreed in regions were data coverage was adequate, but for data sparse regions, such as the Southern Ocean,

interannual CO2 trends of various empirical methods were not coherent.10

The primary reason for the varied results in Rödenbeck et al. (2015) is thought to be the way in which the algorithms

deal with sparse data in the Southern Ocean. These methods were typically variants of multiple linear regression (MLR) or

artificial neural networks (ANN), with regression being applied in regional windows or clusters based on climatologies of

satellite measurable variables. The SOM-FFN approach by Landschützer et al. (2014) exemplifies the combination of non-

linear clustering coupled with regression. In a later work, Landschützer et al. (2015) used the SOM-FFN approach along with15

several other methods to show that Southern Ocean CO2 uptake strengthened after 2000. However, the lack of measurements

in the Southern Ocean meant that these methods could not be effectively tested with an independent dataset (Rödenbeck et al.,

2015).

In the early 2000s, the North Atlantic experienced similar data paucity. Friedrich and Oschlies (2009) approached this

problem by using process model output to evaluate the efficacy of an artificial neural network as well as finding the optimal20

proxy variables for estimating pCO2. This idealised environment was also used to estimate the effect of including/excluding

certain proxy variables where it was found that filling remote sensing gaps in temperature and chlorophyll-a with climatology

improved the estimates. In the intercomparison study by Rödenbeck et al. (2015) proxies typically include, but are not limited

to: sea surface temperature (SST), chlorophyll-a (Chl-a), mixed layer depth (MLD) and sea surface salinity (SSS).

In this study, we introduce and compare two empirical methods new to this ocean CO2 application: Support Vector Regres-25

sion (SVR) and Random Forest Regression (RFR). SVR is a method based on the theory of statistical learning, making the

method robust to over-fitting by statistically determining the complexity of a problem rather than a heuristic approach as re-

quired in setting up an ANNs hidden layer structure (Vapnik, 1999; Smola et al., 2004). RFR uses an ensemble of decision trees

to create robust estimates, often without requiring data pre-processing making it an effective “off the shelf” method (Louppe,

2014).30

We use SVR and RFR to estimate CO2 fluxes in the Southern Ocean to try to better resolve the seasonal cycle from 1998 to

2014. These methods are trained with SOCAT v3 data collocated with satellite proxies. We compare these results with those of

Landschützer et al. (2014). In the next part we aim to better understand the limitations of these methods within the framework

of the SOCAT v3 data. SVR and RFR are implemented in a simulated environment with a realistic sampling strategy to assess
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Figure 1. The three Southern Ocean biomes as defined by Fay and McKinley (2014). The common names for the biomes are shown in the

key, with the abbreviations shown in the round brackets. The abbreviation in the square brackets show the abbreviations as given by Fay and

McKinley (2014).

if there are biases to this sparse data. This approach allows us to test the impact of including various proxy variables as done

by Friedrich and Oschlies (2009). Thereafter the methods are applied to observational data for actual estimates of pCO2.

2 Data and Methods

This study is presented in two parts. The first applies SVR and RFR to the SOCAT v3 dataset and compares these outputs with

those of the SOM-FFN by Landschützer et al. (2014). These estimates will be referred to as the observational estimates. Here5

the domain is limited to the three Southern Ocean (SO) domains of Fay and McKinley (2014) that are shown in Figure 1. These

biomes are used to assess the performance of each of the methods, as done in Rödenbeck et al. (2015). Fay and McKinley

(2014) use a different nomenclature, which roughly corresponds to frontal zones. We rename the Sub-Tropical Seasonally

Stratified biome (STSS) as the Sub-Antarctic Zone (SAZ); the Sub-Polar Seasonally Stratified biome (SPSS) becomes the

Polar Frontal Zone (PFZ) and the ice biome (ICE) is the Antarctic Zone (AZ) (Mongwe et al., 2016).10
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Table 1. Information on data products used in this study. The temporal and spatial resolutions are for the raw data (before gridding). Dashes

show that times are either not applicable or that the dataset is continually updated. Note that the start and end year show full years only. Links

to download the data are given in the additional materials. The asterisk (*) indicates that variables are the output of a data assimilative model.

Group / Product Variables
Date Range Resolution

Reference
Start End Time Space

SOCAT v3 fCO2sea 1970 2014 1 mon 1° (Bakker et al., 2016)

CDIAC xCO2atm 1970 2014 – – (CDIAC, 2016)

Globcolour Chlorophyll 1998 – 1 day 0.25° (Maritorena and Siegel, 2005)

GHRSST Sea Surface Temperature 1981 – 1 day 0.25° (Reynolds et al., 2007)

ECCO2 (cube92)
*Mixed Layer Depth 1992 2015 1 day 0.25° (Menemenlis et al., 2008)

*Salinity

The second part aims to better understand the limitations of these methods with the given dataset by implementing the

methods to ocean biogeochemical model output. This will be referred to as the simulation experiment. Here the domain of the

study is south of 34°S – the biomes Fay and McKinley (2014) are defined by oceanographic and biological parameters and

would thus be different in the model.

2.1 Gridded Data5

The data sources are shown in 1. These gridded data refer primarily to remotely sensed data, with the exception of MLD and

SSS. These latter variables are output from ECCO2, an assimilative model specific to the Southern Ocean. For the sake of

brevity, these variables will be included under the description of “gridded observations”.

All data are gridded to monthly x 1° using iris and xarray packages in Python (Hoyer et al., 2016; Met Office). Gridded

pCO2 (SOCAT v3) is used to train the algorithms (Bakker et al., 2016). Surface station measurements (flask and tower) of10

atmospheric xCO2 are interpolated to a regular grid using support vector regression (Masarie et al., 2014). Mean sea level

pressure (NCEP2) is used in the conversion from xCO2 to pCO2 (Kanamitsu et al., 2002).

Cloud coverage and low light at high latitudes during winter result in missing Chl-a data. Cloud gaps are filled with the

climatology of Chl-a (from 1998 to 2014) and missing low light data are filled with a value of 0.1 ± 0.03 mg m−3 (uniformly

distributed random noise).15

2.2 Model Data

The prognostic coupled physics – biogeochemical model used in this study is a regional NEMO-PISCES configuration,

BIOPERIANT05-GAA95b. This model is an updated version of PERIANT05 used by Dufour et al. (2012), where BIOPERIANT05-

GAA95b includes biogeochemistry with PISCES-v2. The model has a peri-Antarctic domain with an open northern boundary

at 30°S. The horizontal resolution of the configuration is 0.5° cos(latitude) with 46 vertical levels. The northern boundary is20
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forced by a global 0.5° model, ORCA05 as presented in Biastoch et al. (2008). Output was saved as five-day averages. The

simulation was run from 1992 to 2009. The data is resampled to 1.0° spatial resolution and monthly temporal resolution data

to match observations.

2.3 Data transformation and derived variables

There are several transformations that are applied to data for both model output and gridded observations. The log10 transfor-5

mations of MLD and filled chlorophyll (Chl-aclim) are taken to return a normal distribution.

Several of the studies in Rödenbeck et al. (2015) included latitude, longitude and/or time as proxies of ∆pCO2. However,

many of the methods that are regional or cluster the data before regression did not include coordinates. In this study, we use

a single large domain with no clustering or regional subsets. This then raises the question of whether including coordinates

would improve estimates or not. Including the coordinates may create a model where the training location is too narrow.10

Seasonality of the data is preserved by transforming the day of the year (j) and is included in both SVR and RFR analyses:

t=


 cos(j · 2π

365 )

sin(j · 2π
365 )


 (1)

Transformed coordinate vectors were passed to only SVR using n-vector transformations of latitude (λ) and longitude (µ)

(Gade, 2010; Sasse et al., 2013), with n containing:

A,B,C =




sin(λ)

sin(µ) · cos(λ)

−cos(µ) · cos(λ)


 (2)15

Co-located fCO2 (y) and proxy data (X) were used to create training arrays (x). The final input for SVR were the following

proxies (with 12 columns): log10(Chl-aclim), SST, fCO2(atm), ADT, log10(MLD), ICE, SSS, cos(j), sin(j) and n-vectors [A,

B, C]. SVR requires each column of the proxies to be z-scored; i.e. normalized to the mean (µ) and standard deviation (σ) of

each column (x−µσ ).

2.4 Empirical methods and implementation20

Data is split randomly into a training and independent test dataset with a ratio 0.7 : 0.3. The independent dataset is used to

give a test error of the trained algorithm. The statistical learning package, Scikit-Learn, in Python is used for all regression and

cross-validation methods (Pedregosa et al., 2011). The details on each cross-validation method are outlined in the subsections

below.

2.4.1 Support vector regression25

The formulation of SVR is such that the cost function minimizes the number of points on or outside the allowable error margins

(ε) as shown in 2a. A few slack variables (ξ) are allowed, within the limits of a slack parameter (C), which is set by the user.

5
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Figure 2. A simple example demonstrating the principle of (a) support vector regression and (b) random forest regression. The dashed grey

line is the true function f(x) = 0.4x3 with the blue dots representing a random sample taken from this function f(x)+σ, where σ is normally

distributed noise. The black line in each figure, h(x), show the estimate of the true function. The orange dots in (a) show the samples from

the random subset chosen as support vectors from which h(x) is estimated. The orange lines in (b) show 200 decision tree estimates, gi(x),

which are averaged to create the ensemble, h(x).

The points on or outside these margins are the support vectors and are used to construct the hypothesis function, h(x). This

elegant approach is made versatile by mapping X onto a higher dimensional feature space using an interchangeable kernel.

In this study we used a Gaussian kernel (or radial basis function – RBF), which allows for potentially infinite complexity,

determined by the number of support vectors (Vapnik, 1999). The assignment of the number of support vectors is analogous

to defining the architecture of an ANN. The RBF kernel introduces an additional hyper-parameter (γ) that defines the width5

of the Gaussian. Selection of the SVR hyper-parameters (ε, C, γ) is done using a two-stage coarse–fine grid search approach

using K-fold cross validation with k = 8.

2.4.2 Random Forest Regression

A random forest (RF) is an ensemble of decision trees, which means that the average estimate of n trees is taken (Breiman,

2001) (Figure 2b). Random forests reduce the high variance of decision trees by bagging (bootstrap aggregating) in which the10

training dataset is sampled with replacement resulting in a ∼ 63% chance of being chosen at least once for a particular tree
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Table 2. The scores for each of the empirical methods trained with SOCAT v3 data. The domain for these scores is the Southern Ocean as

defined by Fay and McKinley (2014).

METHOD RMSE MAE r2

SVR 16.04 10.55 0.6

RFR 12.26 7.43 0.77

SOM-FFN 12.97 8.56 0.7

(Louppe, 2014). A random forest typically performs better when number of trees (t) is large, but increasing the number of

trees has diminishing returns in terms of performance vs. computation. Additional robustness is given to RFs by randomizing

and/or limiting the number of variables (m) given to the nodes in each tree when splitting the data (hence random) (Louppe,

2014). The complexity of a RF can be adjusted by limiting the minimum number of leaves at a terminal branch (l), where a

fully-grown tree would allow l to be one; tree depth can also be limited to reduce the complexity and has a similar effect to5

limiting l.

A useful feature of bagging is that it intrinsically provides a cross-validation dataset (a.k.a. out-of-bag samples) that is not

part of the training procedure (for a specific set of trees). The advantage of this approach over K-fold cross-validation is that

the full dataset can be used in the training procedure, as opposed to splitting the dataset for cross-validation. The out-of-bag

error is used to select the hyper-parameters (t, m, l) for the RF.10

2.5 CO2 fluxes

Air-sea CO2 fluxes are calculated from:

FCO2 =K0 · kw ·∆pCO2 · (1− [ice]) (3)

The gas transfer velocity (kw) is calculated using a quadratic dependency of wind speed with the coefficients of Nightingale

et al. (2000). Wind speed is calculated from the u and v vectors of CCMP v2 (Atlas et al., 2011). Coefficients from Weiss15

(1974) are used to calculate K0 and ∆pCO2 is estimated by the empirical models. The effect of sea-ice cover on CO2 fluxes

is treated linearly; the fraction of sea ice cover ([ice]) is converted to fraction of open water by subtracting one as shown in

Equation (3).

These results are analyzed regionally with the three Southern Ocean biomes defined by Fay and McKinley (2014) (Figure 1).

We compare our estimates of CO2 fluxes with those of Landschützer et al. (2014) who used a two-step neural network method20

abbreviated to SOM-FFN (self-organizing map – feed forward neural network).

7
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Figure 3. Seasonal averages for ∆pCO2 from 1998 to 2014 for SVR, SOM and FRF. The mean winter (JJA) ∆pCO2 is shown in the top

row (a, b, c) and the mean summer (DJF) ∆pCO2 is shown in the bottom row (d, e, f). The thin black lines denote the SAZ, PFZ and AZ

from outside inward. Note that the ∆pCO2 has been normalized to sea ice cover where ∆pCO2 is multiplied by (1− [ice]).

3 Results

3.1 Observational CO2 data results

The RMSE, MAE and r2 scores for each method applied to the data shown in Table 1 are shown in Table 2. The RFR score is

taken from the out-of-bag error, while the independent test set scores are used for SVR and SOM-FFN. RFR achieves the best

scores, with an RMSE of 12.26 atm. This is slightly better than the RMSE of the SOM-FFN (12.97 atm). The SVR performs5

poorly with an RMSE of 16.04 atm.

The seasonal averages (winter = JJA, summer = DJF) for ∆pCO2 estimated by SVR, SOM-FFN and RFR for the entire

Southern Ocean region are shown in Figure 3. These show that there is, in general, good agreement in the spatial distribution

between the methods. In winter (Figure 3a-c), there is outgassing south of the Polar Front as previously found (Metzl et al.,

2006). This is true also for the AZ, but sea ice cover suppresses the effect. The estimates of ∆pCO2 have thus been scaled to10

sea ice concentration (∆pCO2× (1− [ice])) as also done for fluxes in Equation 3.

To the north of the Polar Front, in the SAZ, the ocean is a sink of CO2 (Figure 3). The surface ∆pCO2 is more zonally

symmetric in winter when compared to summer. The zonal asymmetry in summer is driven, in part, by a strong reduction of

∆pCO2 driven by biological production the Southern Ocean (Metzl et al., 2006; Lenton et al., 2012). There are three regions in

8
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Figure 4. Time-series of ∆pCO2 estimates for the three Southern Ocean biomes as defined by Fay and McKinley (2014): SAZ, PFZ and

MIZ. The y-axis gridlines represent the same scale for figures (a) through (c). The SOM-FFN estimates are only available until 2011 as it is

trained with SOCAT v2, while the SVR and RFR are trained with SOCAT v3. Note that ∆pCO2 is not normalised to sea ice concentration

in this figure.

the SAZ where ∆pCO2 reduction is strongest and consistent between methods: east of South America (Malvinas Confluence),

southeast of Africa (Agulhas retroflection) and between Australia and New Zealand (Tasman Sea). The reduction of ∆pCO2

in the PFZ is strongest in the Atlantic sector downstream of the South Sandwich and South Georgia Islands and in the Indian

sector downstream of the Kerguelen Plateau (Figure 3d-f). In both cases, SAZ and PFZ, these regions are consistent with

regions of high biomass (Thomalla et al., 2011; Carranza and Gille, 2015).5

There are clear differences in the spatial variability between methods. The most marked difference in winter is that the SVR

estimates the PFZ as a stronger source of CO2 to the atmosphere compared to the SOM-FFN and RFR approaches (Figure

3a-c). In summer, the largest difference occurs in the eastern Atlantic sector of the SAZ where the SOM-FFN estimates higher

∆pCO2 compared to SVR and RFR (Figure 3d-f).

The time-series (1998 – 2014) for ∆pCO2 for each of the Southern Ocean biomes as defined by Fay and McKinley (2014)10

are shown in Figure 4. In general there is good coherence between the three methods with agreement in the timing of the

9
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Table 3. The performance metrics of SVR and RFR in estimating ∆pCO2 in a model simulation (BIOPERIANT05) using SOCATv3 cruise

tracks as “sampling” locations. Both the in- and out-of-sample errors are shown. This is done with and without coordinate proxies. The

metrics are: RMSE = root mean squared error, MAE = mean absolute error, r-squared.

ERROR MODEL INPUT RMSE MAE r2

IN

SVR
No coords 8.2 5.98 0.87

Coords 6.26 4.75 0.92

RFR
No coords 6.27 3.78 0.93

Coords 4.7 2.72 0.95

OUT

SVR
No coords 8.7 6.51 0.67

Coords 7.89 5.99 0.72

RFR
No coords 7.87 5.58 0.73

Coords 6.33 4.5 0.82

seasonal cycle and the strengthening sink over the period 2002 – 2012 (Landschützer et al., 2015). However, the differences

pointed out in the seasonally averaged maps are also present in the time-series representation.

In the SAZ, the largest difference is between the SOM-FFN and the other two methods. This is limited to the end of summer

in the first half of the time-series. Comparatively, estimates of winter ∆pCO2 agree, with the exception of the last four years

when SVR winter estimates increase relative to RFR. The overestimation of winter ∆pCO2 by the SVR is also observed in the5

PFZ, but for the majority of the time series. The SAZ and PFZ also show variability in the magnitude of a seasonal shoulder in

late summer, where increasing ∆pCO2 is briefly delayed by a short sharp decrease resulting in a saw-tooth pattern. This effect

is the strongest for the SVR and weakest for the RFR. The seasonal amplitudes of ∆pCO2 in the AZ are far larger than for

both the SAZ and PFZ. However, this large differential may not be realized as an outgassing CO2 flux, particularly in winter,

due to ice cover.10

3.2 Simulation experiment results

The results from the simulation experiments are summarized in Table 3. RFR consistently performs better than the SVR

approach. This is consistent for both in- and out-of-sample errors, where in-sample errors represent only the SOCAT dataset

and the out-of-sample errors represent the entire domain. The in-sample error is representative of the error that would be

reported in the application of the data to observed data. Note that the in-sample error for the RFR methods is estimated using15

the out-of-bag errors. The out-of-sample error is considerably larger for each respective method, indicating that reported error

estimates for the Southern Ocean could be underestimated. These in sample and out of sample errors are illustrated in Figure

5(a) and (b) respectively.

The results also show that including time and space coordinates as proxies of ∆pCO2 improves the estimates. This is shown

in Figure 4 where the estimates trained with coordinates (dashed-lines) achieve lower RMSE scores relative to the estimates20

trained without coordinates (solid lines). Importantly, this is true for both in- and out-of-sample errors. The RMSE of the RFR

10
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Figure 5. (a) In sample errors and (b) out of sample errors. Two SVR models are shown, one with the same variables as the SVR and another

without space and time coordinates. The RFR outperforms the SVR, but the RFR without coordinates does not perform as well as the SVR.

Clearly, adding the coordinates improves estimates.

without coordinates is the same as the SVR with the inclusion of coordinates, again highlighting the superior accuracy of the

RFR. These results suggest that estimates would benefit from the inclusion of coordinates.

4 Discussion

4.1 Methodological differences in observational estimates

The differences observed in the estimates of ∆pCO2 are driven by differences in the algorithms as well as the implementation5

of these methods. One of the most marked differences is the weaker sink estimated by the SOM-FFN method in the SAZ

(Figure 4). This difference can be traced to the eastern Atlantic SAZ (Figure 3e), where the SOM-FFN has higher estimates

of ∆pCO2. The lack of this feature in the SVR and RFR estimates suggests that this is a function of the initial clustering step

in the SOM-FFN. This clustering step separates the global pCO2 dataset into distinct clusters defined by oceanographic and

biological properties rather than region (Landschützer et al., 2014). Thus a cluster in the subtropical South Atlantic could be10

grouped to the same cluster as the tropical South Atlantic. The SOM-FFN is implemented in a global domain, meaning that

the algorithm could be mapping the relationship between CO2 and its proxies from more tropical waters.

Another difference is the tendency for the SVR to overestimate ∆pCO2 compared to the RFR and SOM-FFN approaches.

We attribute this to the SVR’s sensitivity to outliers. In context of the SOCAT v3 dataset, the algorithm may treat the sparse

winter data as outliers. This means that the higher estimates of ∆pCO2 in winter could be extrapolated, leading to the relatively15

elevated winter estimates.

Conversely the RFR estimates of ∆pCO2 are often lower than the SOM-FFN and SVR estimates. This may be due to the

method’s resilience against outliers. This is primarily due to the bagging approach, where individual decision trees are trained

with a subset of data that is sampled with replacement, thus the chance of sampling sparse winter data is lower. Moreover, the

estimates will be more conservative due to the methods inability to estimate beyond the training data (as shown in Figure 2b).20
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The differences between the methods shown in Figure 4 could be a good case for an ensemble approach, where the strengths

of one model compensate for the weakness of another.

4.2 Performance and caveats of methods in simulation experiment

In both the simulation and observations, the RFR achieved the lowest RMSE for in- and out-of-sample scores. We postulate that

RFR is able to outperform both SVR and SOM-FFN due its ability to model data that contains a higher degree of non-linearity.5

The high degree of non-linearity stems from the discrete decision boundaries associated with decision trees, the building blocks

of RFR. Such non-linearity increases the risk of over fitting to the noise specific to the training dataset. However, over fitting is

minimized by using a large number of trees in a random forest, which, combined with bagging, results in good generalization

(Louppe, 2014). However, if the training dataset is not representative of the entire domain, generalization techniques such as

bagging will not be able to reduce the over fitting.10

In contrast to RFR, the non-linearity of SVR is fixed by the selection of a constant width of the Gaussian kernel for the

entire domain, thus applying the assumption of constant variability to the domain (both temporally and spatially). This can

be overcome by clustering regions of similar variability, as was done in the two-step SOM-FFN approach by Landschützer

et al. (2015). In fact the similarity between FFN and SVR (Vapnik, 1999), could lead to similar results if a clustering technique

was applied to the latter. However, this introduces the additional complexity of dealing with ∆pCO2 discontinuities of cluster15

boundaries.

The non-linearity of the RFR allows the implementation without coordinates to marginally outperform the SVR implemented

with coordinates (Table 3). Though the inclusion of coordinates improves the RFR and, to a lesser extent, SVR error estimates.

This indicates that SST, Chl-a, MLD and SSS are able to represent CO2 relatively well, but the relationship between these

variables changes by region and period. The inclusion of coordinates decomposes the problem to specific regions or periods as20

clustering approaches achieve. This implies that the available proxy variables are not able to capture the variability of ∆pCO2.

For example, there may be differences in the relationship between CO2 and SSS in the western Atlantic compared to the

eastern Indian sector. A prior clustering step, or the addition of coordinate proxies would account for these differences.

While the RFR method achieved the lowest RMSE scores, it is not without limitations. The RFR method, unlike SVR, is

not able to extrapolate estimates of CO2 beyond the bounds of the observations (Louppe, 2014). This is due to the structure25

of decision trees, where estimates are based purely input and cannot extrapolate beyond the minimum and maximum observed

∆pCO2. This means that the RFR estimates are more conservative than SVR and SOM-FFN, which are able to extrapolate.

Moreover, the relative paucity of winter data combined with the bagging approach exacerbates the relative underestimates of

winter ∆pCO2. In bagging sampling with replacement would result in far more frequent selection of summer data than winter

data. More winter data is needed to improve this imbalance.30

4.3 Limitations of SOCAT v3

A key finding of the simulation experiment is that out-of-sample RMSEs are larger than in-sample RMSEs, implying that error

estimates for observational ∆pCO2 would also be underestimated. This is due to the paucity of measurements in the Southern
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Ocean, meaning that SOCAT v3 is not yet representative of the full Southern Ocean domain, despite significant increases in

the number of samples (Bakker et al., 2016). Tuning the algorithms to generalize to the dataset is crucial to avoid over fitting

to the noise of the training subset. However, in this case, more strategic measurements are needed to make SOCAT more

representative of the Southern Ocean.

The ratio of in-sample and out-of-sample errors for SVR and RFR can be used to gain insight about the ability of the5

respective methods to generalize to the training dataset. This ratio (Eout

Ein
) is 1.26 for SVR and 1.35 for RFR, showing the SVR

has the ability to generalize better to the training dataset, but this needs to be viewed in context of the methods’ RMSE scores.

These ratios can be applied to the in-sample errors in the observational estimates of ∆pCO2. This results in a theoretical out-

of-sample RMSE of 20.21 µatm for SVR and 16.76 µatm for RFR for the estimates calculated from SOCAT v3. There may

be variations of RFR, such as Extremely Randomized Trees (Geurts et al., 2006), that are perhaps better at generalizing to a10

sparse dataset, but investigating this requires additional work.

In summary, the correct implementation of machine learning algorithms should minimize over fitting to the training dataset.

However, in the case of the Southern Ocean sector of the SOCAT v3 dataset, the data is not yet representative of CO2 for the

entire domain. This means that there will be biases in estimates that generalization techniques are not able to resolve for which

more representative data is required.15

4.4 Trends of ensemble estimates

While methodological differences exist, the trends of ∆pCO2 and air-sea CO2 flux (as shown in Figure 4) are mostly in

agreement. Moreover, the algorithmic differences that each method exhibit lend themselves to an ensemble approach. This

approach allows for more robust estimates of pCO2 and air-sea CO2 fluxes (FCO2). For instance, the conservative estimates of

the RFR could be offset by the relative overestimation by the SVR.20

The trends of the ensemble of FCO2 for the SAZ, PFZ and AZ are shown in Figure 6. These are in agreement with the

trends explained in Landschützer et al. (2015): a slight weakening of the sink from 1998 into the early 2000s (as also found

by Le Quéré et al. 2007) followed by a reinvigoration of CO2 uptake through to the end of the time series in 2014. The PFZ

dominates this interannual variability of FCO2 with a strong reduction in outgassing between 2002 and 2010. The relatively

large seasonal amplitude of ∆pCO2 observed in the AZ is damped by weaker winds and winter ice cover resulting in relatively25

weak fluxes (compared the PFZ). Compared to the PFZ and AZ, the SAZ is a strong and consistent sink (with mean uptake

of -0.042, -0.025 and -0.55 PgC yr−1 respectively) that strengthens slightly throughout the period, but the seasonal signal and

amplitude are dominated by intra-seasonal modes as was found in observations (Monteiro et al., 2015). To understand the

driving mechanisms behind these trends, an in depth study needs to be undertaken.

5 Conclusions30

In this study two empirical methods (SVR and RFR) are presented as alternative (and perhaps complimentary) methods to

estimating ∆pCO2 from satellite proxies by tuning the methods to best predict ship-based measurements. These algorithms are
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Figure 6. Ensemble air-sea CO2 fluxes for each region as defined by Fay and McKinley (2014). Flux is calculated as shown in Equation 3.

The SAZ = Sub-Antarctic Zone, PFZ = Polar Frontal Zone, and AZ = Antarctic Zone.

established in other fields, but have not been applied for the estimation of surface ocean ∆pCO2 to overcome the limitations of

the existing paucity of in situ observations, particularly in the Southern Ocean. The seasonal bias in observations is particularly

evident during winter.

Both methods, with coordinate proxies, were applied to observational data and compared with the SOM-FFN method by

Landschützer et al. (2014). There is good agreement between the trends of each of the methods, though an absolute assessment5

of the results to an independent dataset was not possible due to the paucity of data. Methodological differences were apparent

over and above the dominant trend. The SVR is more likely to produce overestimates of winter ∆pCO2 compared to the other

two approaches. Conversely, the RFR produced lower estimates of CO2 in winter. The ensemble fluxes showed that the SAZ

region as responsible for the majority of CO2 uptake over the period (1998 – 2014), while the PFZ dominated interannual

variability. Ice cover in the AZ muted the large seasonal amplitude of ∆pCO2.10

To test the efficacy of these methods, they were first applied in an idealized model environment that simulates the distribution

of the current ship based measurements of CO2, that is the SOCAT v3 dataset. The results showed that RFR is better able to

estimate ∆pCO2 from the SOCAT v3 data. The experiment also confirmed that both SVR and RFR estimates are improved by

including transformations of time and space coordinates as proxies of CO2. It is shown that the SOCAT v3 dataset is not yet

completely representative of the Southern Ocean. The in-sample error estimates were smaller than the out-of-sample estimates,15

but this varied according to each method’s ability to generalize to the data. This shows that reported errors of empirical ∆pCO2

estimates in the Southern Ocean are likely underestimated. More representative data will thus have to be collected to reduce

the uncertainty of the mean annual flux to the < 10% threshold (Lenton et al., 2006). This may already be an achievable goal

with biogeochemical Argo floats able to estimate pCO2 from pH sensors (Williams et al., 2017).

Data availability. Data will be hosted at ftp://anonymous@socco.chpc.ac.za/Gregor2017_JAMES20
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