FN Archimer Export Format PT J TI Decadal fCO(2) trends in global ocean margins and adjacent boundary current-influenced areas BT AF WANG, Hongjie HU, Xinping CAI, Wei-Jun STERBA-BOATWRIGHT, Blair AS 1:1;2:1;3:2;4:3; FF 1:;2:;3:;4:; C1 Texas A&M Univ Corpus Christi, Dept Phys & Environm Sci, Corpus Christi, TX 78412 USA. Univ Delaware, Sch Marine Sci & Policy, Newark, DE USA. Texas A&M Univ Corpus Christi, Dept Math & Stat, Corpus Christi, TX USA. C2 UNIV TEXAS A&M, USA UNIV DELAWARE, USA UNIV TEXAS A&M, USA IF 4.339 TC 21 UR https://archimer.ifremer.fr/doc/00662/77393/78999.pdf https://archimer.ifremer.fr/doc/00662/77393/79000.docx https://archimer.ifremer.fr/doc/00662/77393/79001.r LA English DT Article CR OISO - OCÉAN INDIEN SERVICE D'OBSERVATION AB Determination of the rate of change of sea surface CO2 fugacity (fCO(2)) is important, as the fCO(2) gradient between the atmosphere and the ocean determines the direction of CO2 flux and hence the fate of this greenhouse gas. Using a newly available, community-based global CO2 database (Surface Ocean CO2 Atlas Version 3 coastal data set) and a newly developed statistical method, we report that the global ocean margins (within 400km offshore, 30 degrees S-70 degrees N) fCO(2) temporal trends on decadal time scales (1.931.59atmyr(-1)) closely follow the atmospheric fCO(2) increase rate (1.900.06atmyr(-1)) in the Northern Hemisphere but are lower (1.350.55atmyr(-1)) in the Southern Hemisphere, reflecting dominant atmospheric forcing in conjunction with different warming rates in the two hemispheres. In addition to the atmospheric fCO(2) forcing, a direct warming effect contributes more to fCO(2) increase in the western boundary current-influenced areas, while intensified upwelling contributes more to fCO(2) increase in eastern boundary current-influenced areas. PY 2017 PD SEP SO Geophysical Research Letters SN 0094-8276 PU Amer Geophysical Union VL 44 IS 17 UT 000411702400034 BP 8962 EP 8970 DI 10.1002/2017GL074724 ID 77393 ER EF