
RESEARCH ARTICLE
10.1002/2017JC012838

Biogeochemical sensor performance in the SOCCOM profiling
float array
Kenneth S. Johnson1 , Joshua N. Plant1 , Luke J. Coletti1, Hans W. Jannasch1 ,
Carole M. Sakamoto1 , Stephen C. Riser2, Dana D. Swift2, Nancy L. Williams3 ,
Emmanuel Boss4 , Nils Ha€entjens4 , Lynne D. Talley5 , and Jorge L. Sarmiento6

1Monterey Bay Aquarium Research Institute, Moss Landing, California, USA, 2School of Oceanography, University of
Washington, Seattle, Washington, USA, 3College of Earth, Ocean, and Atmospheric Sciences, Oregon State University,
Corvallis, Oregon, USA, 4School of Marine Sciences, University of Maine, Orono, Maine, USA, 5Scripps Institution of
Oceanography, University of California, San Diego, La Jolla, California, USA, 6Program in Atmospheric and Oceanic
Sciences, Princeton University, Princeton, New Jersey, USA

Abstract The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has
begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of
February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and
adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll
fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inac-
curate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The ini-
tial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory
measurements made on samples collected by a hydrographic cast with a rosette sampler at the float
deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set
whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet
average oxygen data are accurate to 1 6 1%, nitrate to within 0.5 6 0.5 mmol kg21, and pH to 0.005 6 0.007,
where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll
fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon con-
centration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate
to with 35 mg C m23 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll
a concentrations are evaluated.

Plain Language Summary The ocean science community must move toward greater use of
autonomous platforms and sensors if we are to extend our knowledge of the effects of climate driven
change within the ocean. Essential to this shift in observing strategies is an understanding of the perfor-
mance that can be obtained from biogeochemical sensors on platforms deployed for years and the proce-
dures used to process data. This is the subject of the manuscript. We show the performance of oxygen,
nitrate, pH, and bio-optical sensors that have been deployed on robotic profiling floats in the Southern
Ocean for time periods up to 32 months.

1. Introduction

The Southern Ocean is the primary gateway through which the intermediate, deep, and bottom waters of
the ocean interact with the sea surface and thus the atmosphere. As a result, the majority of the oceanic
uptake of anthropogenic carbon and heat occur within its domain [Fr€olicher et al., 2015]. The Southern
Ocean also has a profound influence on nutrient resupply from the abyss to the surface, which regulates
nutrient availability throughout the world ocean [Sarmiento et al., 2004]. Waters of the Southern Ocean are
particularly susceptible to ocean acidification, due to low carbonate ion concentrations, and this may have
profound ecosystem impacts [McNeil and Matear, 2008; Bednar�sek et al., 2012]. Understanding these connec-
tions between the Southern Ocean and the rest of the globe is one of the primary research foci identified
by the Scientific Committee for Antarctic Research [Kennicutt and Chown, 2014].
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However, the Southern Ocean is also one of
the least observed regions of the world
ocean due to its geographic remoteness, its
extreme weather, and a lack of commercial
vessel traffic that might serve as volunteer
observing platforms. In particular, during
austral winter there can be a nearly complete
lack of observations. For example, during the
period 2001–2010 there were no oceano-
graphic stations with nitrate data during sev-
eral months of austral winter (Figure 1). It is
clear that new approaches must be utilized if
biogeochemical cycles in remote regions like
the Southern Ocean are to be observed over
complete annual cycles.

Recent advances in technology have the
potential to transform our ability to observe
and understand the Southern Ocean and its
linkages to the global ocean and atmo-
sphere. Modern chemical and biological sen-

sors can operate for multiple years without human intervention [Johnson et al., 2007; Boss et al., 2008].
Profiling floats equipped with these sensors can return multiyear surface and subsurface records of chemi-
cal and biological properties throughout complete annual cycles [K€ortzinger et al., 2004; Boss et al., 2008;
Johnson et al., 2013, 2016a]. This enables studies of ocean biogeochemical processes, including the signal of
ocean acidification, ocean deoxygenation, net community production, carbon export, and phytoplankton
phenology, in three-dimensional space with a temporal resolution of 5–10 days [Biogeochemical-Argo Plan-
ning Group, 2016; Johnson and Claustre, 2016].

The number of chemical profiles collected by profiling floats has increased rapidly in the past 5 years and
now exceeds the number of ship-based profiles that reach depths greater than 900 m at any location in the
world ocean (Table 1). For example, the Argo database received 6 times more profiles for dissolved oxygen
in the year 2016 than the mean annual number of ship-based profiles that reached a depth of 900 m or
more in 2000–2010. The discrepancy is likely much greater today because the number of float-based pro-
files is increasing rapidly, while the number of ship-based profiles is declining precipitously [Johnson et al.,
2015]. The average number of ship-based profiles for any parameter received from 2005 to 2015 by NODC
declined by tenfold from the values received in the 1980s [Levitus et al., 2013]. Nitrate and pH profiles mea-
sured by profiling floats also exceed the number of stations from ships that were added each year to the
NODC database (Table 1), even though these sensors are in an early stage of development.

The SOCCOM project is in the process of deploying a large network of profiling floats equipped with oxy-
gen, nitrate, pH, and bio-optical sensors in the Southern Ocean. Determining the impacts of climate pro-
cesses on carbon flux is a major goal of SOCCOM. The operation of biogeochemical sensors on profiling

floats enables chemical concentrations to
be observed over complete annual cycles
and through multiple years. In most
studies of the Southern Ocean, annual
chemical cycles must be compiled from cli-
matologies that are produced from scat-
tered measurements over many years. This
obscures many processes such as interan-
nual variability [Lee, 2001; MacCready and
Quay, 2001]. Only in the Drake Passage are
there usually sufficient data to directly
examine interannual variability in chemical
concentrations [Munro et al., 2014] without

Figure 1. Total number of stations with nitrate data in World Ocean Data-
base 2013, south of 458S, by month for the period 2001–2010. Source,
www.nodc.noaa.gov.

Table 1. Average Number of Ship-Based Oceanographic Profiles per Year
From 2000 to 2010 in the World Ocean Database 2013 Which Reach at
Least 900 m for the Parameter Indicated, and the Number of Profiles for
the Year 2016 Collected by Profiling Floats and Found in the Argo Global
Data Assembly Centera

Parameter Ship Profiles per Year Argo Profiles per Year

Oxygen 1,730 11,332
Nitrate 1,231 3,835
pH direct 460 1,862
pH (TA/DIC) 540
Source NODC Argo GDAC

apH may be measured directly or calculated if both total alkalinity and
dissolved inorganic carbon are measured. Both values are shown.
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remapping spatially disparate data sets [Takahashi et al., 2014; Landsch€utzer et al., 2016]. The Southern
Ocean plays an essential role in ocean uptake of carbon dioxide [Fr€olicher et al., 2015]. The observations of
pH allow the partial pressure of CO2 (pCO2) to be estimated over complete annual cycles [Williams et al.,
2017] in a region that has few winter observations [Bakker et al., 2016]. This allows the often competing pro-
cesses of the solubility and biological carbon pumps [Takahashi et al., 2014] to be disentangled and their
roles to be more completely understood.

Observing System Simulation Experiments suggest that 200 profiling floats that are randomly distributed
south of 308S with suitable pH sensors could reduce uncertainty in air-sea CO2 flux to 0.1 PgC yr21, a factor
of 3 or more improvement in current estimates [Majkut et al., 2014]. This estimate of 200 floats has become
the target density for the SOCCOM program. A true random distribution is not possible to attain without an
excessive amount of ship time, and SOCCOM has essentially no dedicated ship time. The program is depen-
dent on existing US and international research cruises to deploy floats. Further, the 200 float array is being
deployed in small annual increments over 6 years and the array will be extremely sparse for much of the
program life. The strategy for float deployments is, therefore, to attempt to sample the major regimes and
water masses of the Southern Ocean as the array is built. This strategy and the means to accomplish it will
be described in an article to appear in the future. To assess sensor accuracy, a profile of water samples was
collected immediately preceding each float deployment. This requirement led to a significant collaboration
with the International GO-SHIP program [Talley et al., 2016] and deployment from GO-SHIP cruises, which
also influenced float deployment locations.

The SOCCOM array is the first basin-scale chemical sensor network that is being operated as an integrated
system. The papers in this special issue highlight the potential of such a network to greatly extend our
understanding of ocean processes. However, autonomous sensor systems also have limitations. Given the
potential of these systems to solve the chronic undersampling that occurs in the Southern Ocean, it is
essential to understand the problems that arise when operating these sensors, the processes for correcting
data for known biases, and the final quality of the data sets produced by these systems. The chemical sen-
sors used in the SOCCOM program typically suffer from two problems. These are inaccurate initial calibra-
tions, which result from sensor instability during storage and transport before deployment, and subsequent
drift or offsets that occur during deployment. Correction for these problems is the main issue in their opera-
tion. Solutions to similar problems have been developed by the Argo program to correct for salinity sensor
drift [Owens and Wong, 2009] and by the GLobal Ocean Data Analysis Project (GLODAP) to produce consis-
tent data sets from a collection of hydrographic cruises [Olsen et al., 2016]. Here we examine the procedures
that are currently employed in the SOCCOM program to correct the deficiencies in biogeochemical sensors
and the properties of the resulting data set. We also consider areas where this process could be improved
in the future and provide several suggestions that may improve float data processing.

2. Materials and Methods

2.1. SOCCOM Floats and Biogeochemical Sensors
The SOCCOM program has deployed two types of profiling floats in all regions of the Southern Ocean
(Figure 2), including areas with seasonal ice cover. Autonomous Profiling Explorers (APEX) floats using the
APF9 controller were assembled at the University of Washington from components purchased from Tele-
dyne/Webb Research. Each of these floats was pressure tested to the full deployment depth before ship-
ping. BGC Navis floats were purchased from Seabird Electronics and used as received after a set of basic
operational checks recommended by the manufacturer. Engineers at institutions participating in SOCCOM
are most familiar with the APEX floats. They have written the computer code that operates the floats and
sensors. They have also developed the pH and nitrate sensors that play a central role in the science pro-
gram. This familiarity has resulted in a high survival rate for the floats and flexibility in the implementation
of the biogeochemical sensors that is not generally available with a fully commercial system. As a result,
most of the SOCCOM floats have been of this type, which ensures maximum data return and a rapid
response to systematic problems as they are identified. However, these specific systems are not generally
made available to the science community outside of SOCCOM. SOCCOM has a programmatic commitment
to ensuring that the technology developed by its engineers becomes widely available. The project is, there-
fore, also working with commercial vendors to ensure that there is an equivalent capability available to the
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community. Most of this effort to date has
been focused on Navis floats because of the
proximity between the manufacturer and
the University of Washington float labora-
tory. As Navis float capability has evolved,
they have been deployed within the SOC-
COM array at locations suitable to assess var-
ious aspects of their performance.

Both types of floats are capable of about 250
profiles. They follow a standard Argo mission
with a profile at 10 day intervals, which
should yield lifetimes around 6.5 years
before the batteries expire. There is a distinct
trade-off between profiling at 10 day inter-
vals and higher frequencies. Ten days pro-
vides only coarse resolution for biological
processes such as a spring bloom and this
could be improved with shorter cycle times.
However, reducing the cycle time has a
direct impact on float life time and the
resulting array size. Cycle times much shorter
than 10 days would exhaust batteries in less
than 6 years. We have opted for a 10 day
cycle time to extend the life of the earliest

SOCCOM floats to the end of the 6 year program. A uniform cycle time is used to ensure adequate sampling
in winter, where little data exists for processes such as air-sea CO2 flux [Williams et al., 2017]. The vertical
sampling resolution for the CTD and chemical sensors is summarized for each float type in Table 2. The
highest vertical resolution of each float type is a reflection of the capabilities of the float controller and CTD
electronics on each platform. On APEX floats, sensor sampling is handled by the float controller and is lim-
ited to about 5 m resolution, and is generally lower to save power. In particular, sampling resolution for
nitrate is limited by power consumption [Johnson et al., 2013] to about 70 samples on a profile from
2000 m. Samples are taken at the highest resolution in the upper 100 m and at increasingly lower resolution
at greater depths. Sensor sampling on Navis floats is handled by the CTD and can proceed at a higher rate,
except for nitrate.

The floats park at 1000 m between profiles, following Argo protocol, and then descend to a maximum
depth between 1400 and 2000 m before returning the surface. Profile measurements are made on this
ascent and transmitted via the Iridium satellite network at the ocean surface before the float descends back
to its park depth. Surface time is less than 15 min. All raw data are available in real time. The quality-
controlled data stream is initialized within a few months after float deployment when sufficient profiles are

available for the adjustment processes
described below. The quality-controlled data
stream is then produced in real time and
corresponds to Argo real-time, adjusted
data. All data enters the Argo database as
well as a database (SOCCOMViz) maintained
by the SOCCOM program.

In addition to the traditional Argo T, S, and P
sensors (SBE 41CP CTD on APEX and SBE
41N on Navis), the floats are equipped with
oxygen, nitrate, and pH chemical sensors,
and chlorophyll fluorescence and 700 nm
optical backscattering sensors, with a few
exceptions. Navis floats also carry a

Figure 2. Red dots show location of active SOCCOM floats in mid-
February 2017. Trajectories are shown as yellow lines. Blue dots are last
location of inactive floats.

Table 2. Vertical Sampling Resolution (m) for APEX and Navis Floats
Used in the SOCCOM Program

Float Type APEX Navis

CTD Z< 1000 2 2
CTD Z> 1000 100 50
Chemistry Z> 1000 100 50
Oxygen Z< 1000 Schedule 2
pH Z< 1000 Schedule 2
Nitrate Z< 1000 Schedule Schedule
Bio-optics Schedule 2
Schedule
Z< 100 5
100< Z< 360 10
360< Z< 400 20
400< Z< 1000 50
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fluorescent dissolved organic matter (FDOM) sensor or an additional backscattering sensor at 532 nm. The
FDOM sensor data are reported using the manufacturer’s calibration and no further adjustments are made.
The FDOM sensors are not considered further in this paper. Three models of oxygen sensors have been
deployed in the SOCCOM program, Aanderaa 3830 and 4330 Optodes and Seabird Electronics SBE 63 Opto-
des. These are all fluorescence lifetime based sensors, which have been used extensively in ocean studies.

The APEX floats are equipped with In Situ Ultraviolet Spectrophotometer (ISUS) optical nitrate sensors that
were built and calibrated at MBARI. The Navis floats carry Submersible Ultraviolet Nitrate Analyzers (SUNA)
optical nitrate sensors that were built and calibrated at Satlantic. Both of these sensors operate on the same
principle and have many of their optical components in common. The major differences are the layout of
the optical cells on each instrument type, and the main ISUS components are internal to the float pressure
housing and do not contribute to float volume, while the entire SUNA is mounted outside the float pressure
hull and interfaced through an underwater cable. We chose to use ISUS on APEX floats because there are
fewer potential failure modes due to an absence of external cables and because the greater volume affects
the maximum depth attainable by an APEX float. SBE chose the SUNA because of easier mechanical integra-
tion. The UV spectral data were transmitted to shore and nitrate concentrations were calculated according
to Argo protocols [Johnson et al., 2016b]. Processing included a pressure coefficient of 22.6%/1000 dbar for
the absorptivity of sea salt. The presence of this effect was suggested by Pasqueron de Fommervault et al.
[2015]. It was subsequently confirmed by laboratory measurements at MBARI. The pressure coefficient was
implemented in the calculation of nitrate as described by Johnson et al. [2016b, equation (7)].

Deep-Sea DuraFET pH sensors were used to determine pH. These contain an Ion Sensitive Field Effect Tran-
sistor proton sensor and a AgCl reference sensor for chloride ion [Johnson et al., 2016a]. The sensors are cali-
brated to report pH on the total proton scale [Dickson et al., 2007] at in situ temperature and pressure. All
pH calibrations follow the procedure described in Johnson et al. [2016a]. The pH sensor is sensitive to light
and it was placed in the flow stream of the CTD with a black housing to shield it from light.

The raw engineering data from each sensor are processed to state variables such as nitrate and oxygen con-
centration following Argo procedures [Schmechtig et al., 2015, 2016; Thierry et al., 2016; Johnson et al.,
2016b]. Additional procedures for quality control and data adjustment are described below.

Bio-optical data were collected on the float using one of two models of bio-optical sensors. The WET Labs
ECO-FLBB AP2 (FLBB hereafter) with a chlorophyll a fluorometer (EXcitation/EMission 470/695 nm) and
backscatter sensor with a 700 nm light source and centroid scattering angle of h 5 1428 is deployed on
APEX floats. The WET Labs MCOMS, which includes a chlorophyll a fluorometer (EX/EM 470/695 nm) and a
backscatter sensor with a 700 nm light source and a scattering angle h 5 1508, and an FDOM fluorometer
(EX/EM 370/460 nm) is deployed on Navis floats. The major difference is the angle of scattering in the back-
direction and the illuminated volume, which is larger in the MCOMS. Everything else discussed here pertains
to both sensors.

Both the APEX and Navis floats that have been deployed to the south of 508 were equipped with ice avoid-
ance software [Wong and Riser, 2011]. These floats are exposed to water temperatures as low as 21.88C. All
of the sensors used here are capable of operating in these conditions. This has allowed the SOCCOM pro-
gram to obtain some of the first annual cycles of biogeochemical data within the seasonal ice zone.

2.2. Hydrographic Data
In general, each float deployment occurred at an oceanographic station where water samples were also col-
lected to measure oxygen, nitrate, and pH (or total alkalinity and dissolved inorganic carbon from which pH
can be calculated) by standard methods [Hood et al., 2010]. Oxygen was determined by Winkler titration
and nitrate by automated analyzer. pH was determined spectrophotometrically with purified dye [Liu et al.,
2011]. Values are reported on the total proton scale. Total alkalinity, and dissolved inorganic carbon analy-
ses followed standard methods, including the use of standard reference materials [Dickson et al., 2007].

Water samples were also collected for pigment analysis and particulate organic carbon (POC). A volume of
1 or 2 L was filtered on glass fiber filters (GFF) for each analysis and then stored in liquid nitrogen. The filters
for high-performance liquid chromatography pigment analysis (HPLC) were analyzed at either the NASA
Goddard Space Flight Center or at CSIRO following the same protocol. Particulate organic carbon was ana-
lyzed at the MSI Laboratory at UCSB. The HPLC analysis follows the protocol of Van Heukelem and Thomas
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[2001] (further described in Hooker et al. [2005]). The total chlorophyll (chl a) reported from HPLC corre-
sponds to the sum of divinyl chlorophyll a, monovinyl chlorophyll a, chlorophyllide a, chlorophyll a allom-
ers, and chlorophyll a epimers.

Pigment and POC samples were limited to depths shallower than 100 m because of a focus on upper ocean
processes and because of a concern for biases at low POC concentrations [Gardner et al., 2003]. The filtered
POC samples were acidified to remove inorganic carbon. A dry blank (unused filter) was collected at the
time of sampling to account for potential contamination between the time the sample was taken and the
time of analysis in the lab. The POC extracted from the dry blank was removed from the POC extracted for
each sample. A ‘‘wet’’ blank filter to account for the effect of dissolved organic carbon (DOC) adsorption was
not taken. For the volume filtered in this work, such blanks typically vary between 20 and 40 mg C m23 and
contribute an unknown positive bias to the results reported here. SOCCOM work commencing in 2017 will
include this blank.

3. Data

All profiling float data used in this paper were downloaded from the SOCCOMViz web site. Two data files
are available for each float. A raw data file that contains measurements processed with the laboratory cali-
brations for each parameter and a file that contains the quality-controlled and adjusted data. This later file
contains the best estimates of each state variable. The processes used to produce this file are discussed
below. The raw files were downloaded at ftp://ftp.mbari.org/pub/SOCCOM/FloatVizData. The quality-
controlled files were obtained at ftp://ftp.mbari.org/pub/SOCCOM/FloatVizData/QC/. The full data set is
archived with a digital object identifier (doi:10.6075/J09021PC), with the caveat that only data in that
archive up to December 2016 were used in this paper. The hydrographic data from the deployment cruises
were downloaded from the Carbon Dioxide Information and Analysis Center (CDIAC) at http://cdiac.ornl.
gov/oceans/SOCCOM/SOCCOM.html. The Carbon and Climate Hydrographic Data Office (CCHDO) at https://
cchdo.ucsd.edu/search under project name SOCCOM. The GLODAPv2 data set was also obtained from
CDIAC at http://cdiac.ornl.gov/oceans/GLODAPv2/.

4. Results

SOCCOM profiling floats have returned several thousand vertical profiles for oxygen, nitrate, pH, and bio-
optics (Table 3). Automated quality control has been applied to each of these profiles, followed by a peri-
odic visual inspection. The automated QC consists primarily of a range check on the raw concentrations
computed from each sensor (Table 3). These accepted minimum and maximum ranges for computed values
follow Argo recommendations, or are tighter. Range checks tighter than Argo recommendations were
applied where it appeared practical due to regional expectations. The visual inspection consists of a com-
parison of individual profiles with the aggregate data set produced by the float and nearby GLODAPv2
[Olsen et al., 2016] or World Ocean Atlas 2013 [Levitus et al., 2013] profiles. Large fractions of each sensor
data pass these checks and are marked with a quality flag corresponding to good (Table 3). Data that do
not pass checks are given a bad quality flag, but remain in the data set. This process may identify occasional
single points that may result from processes such as particles in the optics of the nitrate sensor, intermittent
fouling, as well as entire profiles if a sensor is failing. The nitrate and pH sensors have the lowest percentage
of good data returned, but still near 90%. In both cases, the bulk of the bad data results from failing sensors.
Nitrate sensor failures have primarily occurred due to biofouling, but a solution described below has been
implemented that appears to mitigate this problem. pH sensors fail through three separate mechanisms

Table 3. Total Number of SOCCOM Float Profiles Through December 2016 and the Number Marked Good After Quality Controla

Parameter N Profiles N Good % Success Range Check (min, max)

Oxygen 2832 2831 100 25, 450
Nitrate 2427 2202 91 210, 55
pH 2355 2065 88 7.3, 8.5
Chlorophyll 2166 2165 100 20.1, 50
Backscatter 2166 2165 100 20.01, 0.1

aThe minimum and maximum values for the range check is also shown.
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identified from diagnostic data transmitted along with pH information. Solutions for two of the three failure
mechanisms have been implemented in recent generations of sensors. We hope to see data returns for
both of these systems well above 95% in succeeding years.

The raw data returned by each sensor must then be adjusted to produce improved concentration estimates.
The data adjustment procedure for SOCCOM float sensor data is based on the premise that errors in sensor
gain (multiplicative correction) or offset (additive correction) that are identified at any particular point on a
vertical profile can be applied over the entire profile to obtain an adjusted profile that more closely repre-
sents conditions in the ocean. The corrections are determined using methods that are independent of the
data obtained on the hydrographic profile that accompanies each float deployment. In the following sec-
tions, we discuss the methods used to identify and quantify sensor error. We then assess the accuracy of
the sensor correction process by comparing the initial profiles for each sensor to measurements made by
conventional methods on samples collected at the time floats were deployed. The long-term accuracy of
these approaches is evaluated with crossover analyses to stations from the GLODAPv2 database that were
made at locations near float profiles. These cross over analyses may occur at long times after the initial float
deployment (up to 3 years) and long distances (thousands of km) from the initial station.

4.1. Oxygen
The fluorescence lifetime oxygen sensors have proven to be robust and essentially 100% of the data have
passed our preliminary quality checks (Table 3). However, these sensors are known to suffer from inaccurate
initial calibration [K€ortzinger et al., 2005; D’Asaro and McNeil, 2013; Johnson et al., 2015] and they have a rela-
tively slow response time [Bittig et al., 2014]. Sensor calibration errors were treated entirely as an error in
sensor gain with the corrected oxygen concentration (O2 corr) obtained from the equation

O2 corr5 G 3 O2 raw; (1)

where G is the gain correction and the raw oxygen concentration (O2 raw) was calculated from the calibra-
tion coefficients supplied by the manufacturer. Nearly all of the floats equipped with Aanderaa oxygen sen-
sors were programmed to make measurements in air each time the float surfaced. The gain values for these
sensors were determined from the air oxygen measurements as described by Johnson et al. [2015]. A single
gain value was used for each sensor, with no correction for possible sensor drift. The impacts of this deci-
sion are discussed below. The SBE63 sensors are installed in the pumped flow stream of the CTD and they
are not exposed to air when the float surfaces, so they cannot make air oxygen measurements. The gain
correction for these floats and a few APEX floats whose sensors did not make air oxygen measurements
were, therefore, determined by comparing the surface percent oxygen saturation values with the World
Ocean Atlas climatology, as described by Takeshita et al. [2013].

The initial accuracy of the corrected oxygen concentrations was assessed by comparing the oxygen data on
the first profile with the oxygen concentrations determined by Winkler titrations in samples collected at a
station before the floats were deployed, referred to as the deployment cast. These stations typically occur
18 h before the float surfaces to make its first profile. Deployment casts with Winkler titrations were avail-
able for 41 floats at the time this paper was written. Figure 3 shows the corrected oxygen concentrations
observed on the first float profile versus the Winkler titration values. The slope of a Model II regression is
1.009 and at the midpoint of the data, the float sensor data are offset low of the 1:1 relationship with the
Winkler titration data by 3.7 mmol kg21, or about 1.5% (Table 4). This offset is largely created by a cluster of
data points in regions of the highest vertical oxygen gradients with absolute slopes greater than 0.5 mmol
kg21 m21. The slow sensor response in these high gradients can produce an underestimate of the correct
oxygen concentration and the data fall below the 1:1 line in Figure 3. Removing these data points shifts the
average offset of the sensor data to 1% of the Winkler oxygen value. It is likely that the initial oxygen con-
centrations for the float population as a whole, after correction with the air oxygen gain value, are accurate
to about 1%, with the exception of data within steep gradients. Bittig and K€ortzinger [2017] note that it is
possible to correct the oxygen data for the slow sensor response if the sample times are known. As SOC-
COM floats do record the needed timing information, it should be possible to further improve the initial
accuracy and consistency of the data.

Within the overall population of gain corrected oxygen data, a few floats show systematically greater off-
sets of their results from the Winkler titration values. The air-corrected oxygen sensor data from the first
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six floats that were deployed on the P16S
GO-SHIP cruise are systematically low of the
deployment cast Winkler data by 10 to
15 mmol kg21, which is about 3–5% of the
Winkler reference value. These floats were
equipped with oxygen sensors acquired at
different times and they carried both Aan-
deraa 3830 and 4330 model optodes. There
is no offset for floats deployed after the first
six. Further investigation is required to
understand the source of such offsets. The
conclusions reported here for sensor perfor-
mance must be considered to apply to the
fleet as a whole, rather than individual
floats.

The strong, linear correlation between the
float sensor data and the bottle data confirms
that a correction at a single point, atmo-
spheric oxygen, can be applied to the entire
profile. Neglecting measurements in the
steepest oxygen gradients, the adjusted oxy-
gen measurements appear to be accurate to
within 1%. At this point in the SOCCOM pro-
gram, no changes in oxygen sensor gain over

time have been made. The evidence for small amounts of oxygen sensor drift is discussed in section 4.4.

4.2. Nitrate
Both In Situ Ultraviolet Spectrophotometer (ISUS) and Submersible Ultraviolet Nitrate Analyzers (SUNA) opti-
cal nitrate sensors have been used in SOCCOM. These sensors detect nitrate directly from the UV absorption
spectrum of the nitrate ion [Johnson and Coletti, 2002]. At the time this paper was submitted, 54 nitrate sen-
sors have been deployed and the QC process initialized. Ninety-one percent of the expected data have
been returned (Table 3). Two sensors failed due to electronic malfunctions. In addition, three of the first ten
ISUS sensors suffered a rapid decrease in light throughput. We suspect that the loss of light transmission
resulted from fouling due to the presence of Phaeocystis antarctica. Phaeocystis sp. is known to produce
gelatinous aggregates that may foul sampling gear, including optics [MacKenzie et al., 2002]. The loss of
light transmission was reversed over winter and then recurred during the subsequent spring bloom, indicat-
ing that the process was not failed optics. Organics must have built up on the optics and then been slowly
lost during the winter, low-productivity season. The optical cells of the instruments with decreased light
throughput were in the flow stream of the CTD pump. We subsequently removed the nitrate sensor optics
from the pumped stream of the CTD on the presumption that exposing the optics to seawater and wave
action at the surface would minimize this source of fouling. Since then only 2 of 44 nitrate sensors have lost
optical throughput (4.5%).

Adjustment of the nitrate concentration determined from sensor data is based on the assumption that a
correction determined at any one depth is a constant offset over the entire profile [Johnson et al., 2013].
Comparison of uncorrected nitrate sensor data on the first profile with samples collected from the CTD/

Figure 3. Air oxygen corrected profiling float oxygen concentrations on
profile 1 versus concentrations measured by Winkler titration in samples
collected on the deployment profile. Data were matched by depth. Open
circles are float samples in regions with an absolute oxygen gradient
larger than 0.5 mmol kg21 m21. Dashed line is 1:1 relationship and solid
line is model II regression (Table 4).

Table 4. Model II Regression Parameters for a Comparison of Corrected Sensor Data Flagged As Good Quality to Measurements in
Bottle Samples Collected at the Time of Deploymenta

Parameter Slope 6 1 SD SD Bot.-Flt at Midrange N

Oxygen 1.009 6 0.005 8 (6) 3.7 798
Nitrate 1.009 6 0.004 0.8 20.1 581
pH 1.012 6 0.010 0.015 0.006 429

aUnequal values of N for each parameter result from different discrete sampling rates, lags in availability of sample data, and some
sensor failures. SD value in parentheses results after removing data in high oxygen gradients.
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Rosette sampler show constant offsets over the
entire profile (Figure 4). Such constant offsets
from the deployment profiles can be shown for
all of our instruments.

Our procedure for data adjustment is to use an
estimated nitrate field at 1500 m depth [Williams
et al., 2016] to assess sensor accuracy. The nitrate
concentration below 1000 m has relatively little
spatial variability when compared to surface
waters and little or no seasonal cycle. In the
Southern Ocean, we have estimated nitrate at a
depth of 1500 m (or the deepest depth consis-
tently reached by a float) using the multiple lin-
ear regression (MLR) equation reported in
Williams et al. [2016, Table S4], which is based
on shipboard analyses from recent CLIVAR/GO-
SHIP cruises. This equation uses density anom-
aly, oxygen, salinity, temperature, and pressure
to predict nitrate concentrations in the depth
range from 1000 to 2100 m. Oxygen concentra-
tions were corrected as described above before

use with the MLR. The temperature and salinity are real-time values reported by the float, as delayed
mode corrections for these variables are generally not available in real time and the corrections are small
for this purpose. Float nitrate concentrations were initially adjusted by adding the offset from the MLR at
1500 m to every point on a profile. Drift corrections were then added when it became apparent that the
sensor data at 1500 m on subsequent profiles was systematically changing relative to the 1500 m MLR
estimate for each profile. The number of adjustments was minimized to the smallest number possible,
while still maintaining consistency to within about 0.5 mmol kg21 between sensor data and the MLR equa-
tion. This process is modeled on the procedures used to adjust Argo salinity data [Owens and Wong,
2009]. As an independent check on the correction process, the adjusted nitrate concentrations were also
compared to the predictions of the CANYON neural network based system [Sauzède et al., 2017]. Mis-
matches between the MLR and CANYON estimates were generally less than 1 mmol kg21.

The adjustments for float 5904469/9096 are listed in Table 5. Figure 5 shows the raw and adjusted sensor
data, and the nitrate values computed from the MLR at 1500 m depth. There are four nodes where either
new offsets or drifts are applied to the data. The net correction at each node (DNj) is computed as

DNj5 DNj211 Oj1 Dj21ðTj– Tj21Þ (2)

using the offsets (O), drifts (D), and times (T) at each node, which are listed in Table 5. The net correction at
each node is also listed in the table. The net correction for a profile at cycle i, past node j and before the
next node, is computed relative to the adjustment at node j as

DNi5 DNj1 Dj Ti– Tj
� �

: (3)

The corrections for cycle 1 of float 5904469/9096 are large, likely because the nitrate sensor optics were not
cleaned before deployment. We have since implemented a protocol for cleaning the optics with methanol
before deployment and recent drift rates are more similar to those seen after node 3. These much lower

Figure 4. Raw and QC-corrected sensor nitrate on profile 1 from float
5904395/9254 (WMO number/UW serial number) and nitrate mea-
sured on board ship from a profile at the deployment site. A constant
offset of 2.6 mmol kg21 has been applied to the raw data to produce
the QC data.

Table 5. Nitrate Adjustment Parameters for Float 5904469/9096

Node Cycle Date Gain Offset (mmol/kg) Drift (mmol/kg/yr) Net (mmol/kg)

1 1 11 Dec 14 1 1.9 0 1.90
2 2 21 Dec 14 1 24.8 27 22.90
3 10 14 Mar 15 1 0 21.5 24.48
4 37 18 Dec 15 1 0 20.5 25.63
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drift rates generally fall in the range of 61.5 mmol kg21 y21. They likely result from aging of the UV lamp
and the optics in the sensor.

The adjustment process is driven only by the match to the MLR equation and is relatively independent of
bottle data from the hydrocast that precedes each float deployment, with the caveat that some bottle data
from deployment cruises are in the GLODAPv2 data set used to develop the MLR [Williams et al., 2016]. A
fleet comparison of all of the nitrate sensor data from the first float profile with the station bottle data is
shown in Figure 6. The slope of a regression line fitted to the data is not different from 1 and the offset
of the sensor data from the bottle data is essentially zero (Table 4). The close match between sensor data
and bottle data at all depths validates the approach used to correct the nitrate sensor data at the time the
floats are deployed by adding only a constant offset to the entire profile.

The raw and adjusted nitrate concentrations may occasionally be reported as negative numbers when sur-
face nitrate concentrations are near zero. It is
somewhat traditional in oceanography to set
the negative values to zero, as a negative
concentration is physically impossible. How-
ever, the values returned by a sensor are esti-
mates of concentration and these estimates
may be negative when the real concentra-
tions are near zero [Thompson, 1998]. Setting
the negative, estimated concentrations to
zero, a procedure termed ‘‘left censoring’’ of
the data, has a detrimental impact on statisti-
cal assessments of data near zero concentra-
tion [Newman et al., 1989]. We, therefore,
retain the negative values in data sets that
we report and mark the values with a quality
flag indicating good data as these are valid
estimates of nitrate concentration. The onus
will be on users of the data to decide the
appropriate procedure for utilizing these
estimated values.

4.3. pH
Deep-Sea DuraFET sensors [Johnson et al.,
2016a] were used to measure the in situ pH

Figure 5. Nitrate sensor data at 1500 m depth for float 5904469/9096 and the predicted (MLR) nitrate concentrations. Dashed line shows
the adjustments that are applied to the raw sensor data. Vertical dotted lines are locations of four nodes where changes in the adjustment
parameters in Table 5 are applied.

Figure 6. MLR-corrected nitrate concentrations from profile 1 versus
deployment cast nitrate measured in the laboratory. Data were matched
by depth. Dashed line is 1:1 relationship and solid line is the model II
regression (Table 4).
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value on each float profile. The sensor reference
potential, temperature coefficient, and pressure
coefficient, which are needed to compute the in
situ pH, were determined in the laboratory as
described by Johnson et al. [2016a].

The pH data were corrected for offsets and drifts
over time by a process similar to that used for
nitrate. The MLR equations used to estimate pH
at 1500 m are described in Williams et al. [2016].
The adjustments necessary to match the sensor

pH to the MLR result were made by adding a constant offset to the reference potential of the sensor [John-
son et al., 2016a], rather than to pH, directly. This was done because the available evidence suggests that
sensor drift results from a reference potential change. Given a reference potential change, the shift in com-
puted pH is slightly temperature dependent as the Nernst slope that transforms sensor potential to pH
depends on temperature.

The initial set of sensors deployed for the SOCCOM project in early 2014 suffered from a relatively large
initial drift rate during their first 6 months (Table 6). The sensors in this batch had been calibrated in
Tris buffer in artificial seawater that did not contain bromide. The drift appeared to result because the
AgCl reference sensor was not sufficiently conditioned to natural seawater. Exposure of the reference
sensor to natural seawater shifts the reference potential due to the formation of a AgClXBr1-X solid solu-
tion. The next batch of sensors (2014/2015) was calibrated in seawater from the MBARI test tank, which
is sterilized by ozonation. Unfortunately, one of the side reactions of ozonation is formation of bromate
ion and the bromide levels are somewhat different than natural seawater. Drift rates in this batch of
sensors were lower, but still relatively high. Subsequent batches of sensors were pretreated in a flowing
raw seawater tank for several weeks before calibration of the reference potential and now have pH drift
rates typically less than 0.01 year21.

To compensate for sensor drift, the reference potential of the pH sensors was corrected so that pH at 1500 m
matched the estimates from the MLR equation [Williams et al., 2016]. As for nitrate, a minimum number of
nodes were used to make corrections that keep the sensor data within about 0.005 of the MLR estimate. Fig-
ure 7 shows the fleet comparison of pH sensor data on profile 2 after adjustment of the reference potential
with the bottle data collected at the deployment station. The pH values from bottle samples measured in the

laboratory were converted to in situ condi-
tions using the CO2Sys software [van Heuven
et al., 2011] and an estimate of the alkalinity
[Carter et al., 2016]. The equilibrium constants
from Lueker et al. [2000], Dickson [1990], and
Perez and Fraga [1987] were used in the calcu-
lations. We have chosen to use the pH sensor
data from the second float profile to construct
this plot because of the relatively large initial
drifts caused by the lack of conditioning in
some of the pH sensors. The slope of a model
II regression through the data is again indis-
tinguishable from 1 (Table 4). The scatter
about the regression line is 0.017 in pH and
the mean pH offset is 0.005. Examination of
the residuals shows that the largest values are
all in steep gradients and appear to result
from processes such as internal waves that
create mismatches in water properties at a
given depth over the time between the
hydrographic cast and the second float profile
(up to 10 days).

Table 6. pH Sensor Calibration Media and Drift Rates in First 6
Months for Four Sets of Sensorsa

Year Class Cal. Media Drift/Year

2014 Tris 20.083
2014/15 TT SW 20.017
2015/16 TT SW 20.011
2015/16 SW 0.003

aThe calibration media was either Tris buffer in artificial seawa-
ter with no bromide (Tris), natural seawater from the MBARI test
tank (TT SW), or raw seawater (SW).

Figure 7. MLR-corrected pH from profile 2 versus deployment cast pH
measured in the laboratory. Data were matched by depth. Dashed line is
1:1 relationship and solid line is model II regression (Table 4).
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4.4. Crossover Comparisons to GLODAPv2
The long-term consistency of the chemical sensor data was assessed by comparing the quality controlled
and adjusted sensor results to the GLODAPv2 data set [Olsen et al., 2016] for 56 of the SOCCOM floats which
have undergone the QC process. If a float surfaced within 20 km of a profile in the GLODAPv2 database, the
sensor data were matched to the values in the GLODAPv2 profile by a linear interpolation of the sensor val-
ues on depth. These crossover comparisons were made for all float data from the surface to the maximum
depth reached by the float (Figure 8, left), and only for observations below 300 dbar to minimize seasonal
variability (Figure 8, right). The comparisons between float and GLODAPv2 data were made on the basis of
depth, to avoid problems matching densities in deep mixed layers. No selection was made on the basis of
time, as the GLODAPv2 data set is heavily biased to summer months, as are all Southern Ocean ship-based
data sets (Figure 1). Selecting on time greatly reduces the number of comparisons. Since our primary assess-
ment is based on data below 300 m (Figure 8, right), where there should be little or no seasonal cycle, we
report only the comparisons without time.

Table 7 summarizes the results of the crossover analyses using only data from below 300 m, which will min-
imize seasonal variability. The scatter of the measurements about the regression lines is larger than for the
comparisons to the measurements made at the deployment stations (Table 4). The ratios of the standard
deviations in Table 7 are 9:1.8:12 C:N:O, where a standard deviation of 0.023 in pH would correspond to a
standard deviation of 9 mmol kg21 in dissolved inorganic carbon at typical Southern Ocean alkalinity values.
These ratios scale to 106:21:141, which is very close to the modified Redfield ratio of 106:16:150 [Anderson,
1995]. It is very likely that the scatter in Figure 8 results, primarily, from ocean variability that produces
linked shifts in the distributions of pH, nitrate, and oxygen, rather than changes in sensor performance that
fortuitously co-occur at near Redfield proportions.

The slopes of model II regression equations fitted to the oxygen and nitrate crossover data below 300 m
are very close to 1. The mean difference for oxygen from GLODAPv2 minus the corresponding float value is
3 6 11 mmol kg21 for depths below 300 m, where seasonal differences should be minimized (Table 7). The
mean difference in GLODAPv2 minus sensor is similar to that observed at the time the sensors were
deployed and the standard deviation of the data from the regression line is only marginally larger (Table 4).
The offset of the sensor nitrate data from GLODAPv2 measurements near the middle of the concentration
range is 20.5 mmol kg21. There is no evidence for a large degradation in oxygen or nitrate sensor perfor-
mance as the floats age.

The slope of the pH sensor data versus the GLODAPv2 data at the crossover stations is significantly lower
than 1 and the offset from the GLODAPv2 data (0.031 near pH 8.05) is relatively large and increases towards
shallow depths (higher pH). This stands in contrast to the comparison with data collected at the float
deployment (Table 4), where the slope is one and the offset is small. We do not believe that the low slope
and large offset results from a degradation of sensor performance. The mean age of the pH data at the
crossover stations that we have obtained from GLODAPv2 is 15 years. Acidification rates near 20.0022 pH
yr21 in Southern Ocean surface waters [Williams et al., 2015] would produce mean biases of 0.033, similar to
the offset observed here in near surface waters. The lowest pH values correspond to greater depths, where
acidification signals are weaker. Offsets for sensor pH measurements near 1000 m are about 0.01 in pH, con-
sistent with observed acidification rates in deep, Southern Ocean waters [R�ıos et al., 2015]. The slope of 0.93
for sensor pH data versus GLODAPv2 (Table 7) then results because the lowest pH values observed by the
floats have been shifted the least by acidification and the highest values near the surface have been shifted
the most.

4.5. Oxygen Sensor Gain Changes
The optode oxygen sensors used in SOCCOM appear to generally have good stability when deployed in the
ocean. The oxygen data reported by the SOCCOM floats have, therefore, been corrected using a constant
sensor gain. This results in a sensor with accuracy near 1% for the initial, surface ocean oxygen concentra-
tions. The gain values for many floats do show a statistically significant change in time, as we have reported
previously [Johnson et al., 2015]. These changes are both positive and negative and, for a large number of
floats, tend to average near zero. Optode oxygen sensor drift is generally only towards higher gain in time
(decreased response to oxygen) [D’Asaro and McNeil, 2013]. As a result, we attributed the observed, significant
changes in gain to other, unidentified factors [Johnson et al., 2015]. However, there is some evidence that oxygen
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sensor drift rates are small, but not zero, when deployed in the ocean [Bushinsky et al., 2016; Bittig and K€ortzinger,
2017]. We have, therefore, revisited the question of changes in sensor gain over time.

The observed oxygen sensor gain changes are shown in Figure 9. In a few cases, these changes are rela-
tively large, equivalent to a 1% change in gain per year. The average is near zero and in most cases it

Figure 8. Comparison of float oxygen, nitrate, and pH data to GLODAPv2 measurements when a float profile occurs within 20 km of a
GLODAPv2 profile. No selection was made based on time of year. Left figures show all comparisons from surface to maximum depth of a
float profile. Right figures show only data from below 300 m depth. Dashed line is the 1:1 relationship and red line is a model II regression.
Color scale shows number of data points at each grid point after dividing each axis by 200 units.

Table 7. Model II Regression of Float Versus GLODAP Data From Below 300 m Depth

Parameter Slope SD GLDP-Flt at Midrange N

Oxygen (mmol kg21) 1.028 6 0.006 12 3.2 6246
Nitrate (mmol kg21) 0.983 6 0.006 1.8 20.5 4767
pH 0.93 6 0.01 0.023 0.024 1361
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amounts to a few tenths percent per year.
Not all of these changes in gain appear to
result from drift of the sensor response itself.
The rate of change in gain for all SOCCOM
sensors deployed for more than two years, as
well as the Argo Canada fleet analyzed previ-
ously [Johnson et al., 2015], is significantly cor-
related with the rate of change in surface
water temperature seen by the float (Figure
9). Floats drifting towards warmer regions see
an increase in sensor gain over time (lower
response to oxygen), while floats drifting to
colder temperatures see a decrease in sensor
gain (greater response to oxygen). The mean
rate of change in gain for all floats is 20.1%
yr21. This suggests that some of the gain
changes are due to an uncompensated tem-
perature coefficient in the sensor, perhaps
related to the transient state that results when
floats emerge from the ocean. This conclusion

is supported indirectly by the results of Bushinsky et al. [2016]. They deployed profiling floats with paired oxy-
gen sensors. The temporal drifts of the complete oxygen data set from each sensor on a float are nearly identi-
cal, indicating that they are driven by an environmental factor that impacts both sensors equally. Temperature
variations would be such an environmental factor. However, the R2 value (Figure 9) is only 0.2, indicating that
temperature variations account for only 20% of the gain change.

At this point in time, we have not corrected the oxygen data for this apparent temperature coefficient of
the sensor. Pending further analysis of the float oxygen sensor data, we may implement an additional tem-
perature correction, beyond that recommended by the manufacturer. However, there still appear to be sig-
nificant variations in sensor gain over time that are not corrected by temperature alone.

4.6. Bio-Optical Sensors
The bio-optical sensors have shown high reliability (Table 3). Very rarely, a profile is marked bad because it
appears that a large aggregate has been trapped on the sensor face. To check for sensor drift we looked at
the signal at �1000 m and found them to vary by only 2–3 digital counts in a range of 4096 (except for a
few spikes) within the lifetime of a float. This variability is close to the sensitivity limit of the instruments
(�1.4 counts for fluorescence and �1.8 counts for backscattering). This indicates no change in the dark per-
formance of the sensor. Ha€entjens et al. [2017] have compared the bio-optical measurements near the sur-
face with satellite observations and find no evidence of sensor drift. Here we briefly summarize the bio-
optical products.
4.6.1. Optical Backscatter Sensor
A review of the optical backscattering sensor principles and performance, including WET Labs sensors, was
recently published [Sullivan et al., 2013]. We obtain the volume scattering function b from the sensor raw
signal using the manufacturer’s calibration

b hð Þ 5 slope 3 signal 2 darkð Þ; (4)

where h is the scattering angle (1428 and 1508 for FLBB and MCOMS, respectively, all at 700 nm). The manu-
facturer dark counts are used unless a predeployment dark measurement, determined with the sensor on
the float, is available. The backscattering coefficient of particles bbp is determined as

bp hð Þ5 b hð Þ2bsw hð Þ; (5)

bbp 5 2 3 p 3 vp hð Þ3 bp hð Þ; (6)

where bsw (h) is the volume scattering function of sea water using local temperature and salinity [Zhang et al.,
2009] and vp(h), with a value near 1.1, is the particulate conversion coefficient from Sullivan et al. [2013].

Figure 9. Changes in oxygen sensor gain per time are plotted versus the
change in surface water temperature per time seen by the float. The slope of a
model II regression (0.40 6 0.05%/8C (1 SD, N 5 45) is significant (p< 0.005).
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The concentration of POC was then estimated empirically from the bbp sensor data. This POC estimate is
reported in the data file with the quality controlled and adjusted data. POC concentrations measured from
upper ocean water samples collected at the float deployment stations were regressed against bbp measure-
ments from the first profile of each float. The bbp(700) (bbp at 700 nm) from the floats were averaged in the
5 m around the depth at which water samples were taken to minimize effects of spikes in the backscatter
data, which integrates a much smaller volume than the water samples. The regression equation (Table 8 and
Figure 10) is consistent with observations reported in the literature [Stramski et al., 1999, 2008; Loisel et al.,
2001; Cetin�ıc et al., 2012]. This equation was used to predict POC. The RMS deviation about the regression
line corresponds to an uncertainty in POC of 35 mg m23 (3 mmol C m23), similar to the variability seen in
other studies using similar sensors [Cetin�ıc et al., 2012]. This uncertainty corresponds to the accuracy
expected for a POC estimate. The relationship between POC and bbp(700) was derived for surface samples
and it may be biased at depth below the MLD or euphotic zone. However, vertically resolved changes in the
POC to bbp(700) ratio observed in other studies are on the order of 20% [Cetin�ıc et al., 2012], similar to the
error found above. Thus, an overall error for estimated POC might be the larger of 35 mg m23 or 20%. Note
that the zero intercept is not significantly different from zero, which is consistent with no significant bias dur-
ing sample filtration arising from processes such as adsorption of dissolved organic compounds.
4.6.2. Chlorophyll a Fluorescence
The concentration of chl a (mg m23) was initially estimated from the fluorescence signal using the linear
calibration slope provided by the manufacturer

chla½ �Raw 5 slope 3 signal 2 darkð Þ: (7)

In this calculation, the dark signal was determined with the sensor mounted on the float. These values are
reported in the raw data files.

The raw chlorophyll concentrations determined from chlorophyll fluorescence suffer from two major defi-
ciencies. Phytoplankton regulate the absorption and utilization of light energy, including energy received
from the fluorometer. This photo-protection mechanism, known as nonphotochemical quenching (NPQ),

Table 8. Regressions Between the Float Measurements of Chl a (mg m23) or POC (mg m23) and Discrete Samples Analysis (HPLC and
POC)a

Relationship N R2 RMSD RMSRD

chlaHPLC50:15 60:017ð Þ 3 chlafloat 73 0.77 0.20 0.48
chlaHPLC50:213 60:016ð Þ 3 chlafloat

0:714 60:242ð Þ 73 0.80 0.12 0.37
POC53:12 3 104 62:47 3 103

� �
3 bbp 700ð Þ13:04 66:78ð Þ 67 0.76 35 0.47

POC59:776 3 104 61:90 3 104
� �

3 bbp 700ð Þ1:166 60:173ð Þ 67 0.88 40 0.59

aRMSD is root mean square deviation from the regression line and RMSRD is the root mean squared relative deviation from the
regression line.

Figure 10. Relationship between POC (from discrete samples taken in the upper 100 m during float deployment) and bbp(700) on the first
float profile on linear scales (left) and log scales (right). Equations reported in other studies are shown as dashed lines.
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induces a large decrease in the fluorescence to chlorophyll ratio near the sea surface in daytime [Kolber and
Falkowski, 1993; Muller et al., 2001]. Several methods to correct for this bias exist and have been applied as
described below. In addition, it has been understood for decades that the relationship between chlorophyll
fluorescence and chlorophyll concentration is variable due to changes in phytoplankton physiology [Cullen,
1982]. One consequence of this can be significant biases between the estimate of chlorophyll concentration
determined from the manufacturer’s calibration equation and concentrations that are determined by HPLC
even in the absence of NPQ [Roesler et al., 2017]. As a first-order correction for this error, an empirical cali-
bration was determined by comparing NPQ corrected chla½ �Raw to HPLC measurements. Both of these cor-
rections are applied in the quality-controlled data file for each float as described below.

A comparison of NPQ corrected raw chlorophyll values to chlorophyll concentrations measured in the
Southern Ocean has a linear slope of 6.4 (Figure 11a and Table 8). The raw chlorophyll sensor values thus
appear too high by a factor over 6 in the Southern Ocean. This factor of 6 difference in HPLC chlorophyll
and the raw sensors values is not an artifact of the time offset between sample collection and the first pro-
file, as it persists at all time scales available for comparisons (data not shown). Roesler et al. [2017] recently
assessed this issue more generally for WET Labs ECO fluorescence sensors. They concluded that the original
calibration, which the manufacturer has maintained through time using artificial standards, has a global
mean bias that results in chlorophyll sensor values too high by a factor of 2. Further, they find a gain correc-
tion in the Southern Ocean with floats other than those described here that is similar to the sixfold bias
shown in Figure 11a. This difference must reflect regional influences of phytoplankton physiology. Roesler
et al. [2017] recommend that the raw chl a values obtained with WET Labs ECO FLBB sensors be corrected
by a factor of 2, which will produce a global set of data with a relatively small bias compared to global aver-
age HPLC values. We have applied this factor of 2 reduction to the adjusted chlorophyll data in our quality
controlled data set. This would provide consistency with an adjusted global data set generated by FLBB sen-
sors when there is no further calibration information. The meta data for this variable is accompanied by the
recommended statement, ‘‘The community-established calibration bias of 2 for the WET Labs ECO-series
fluorometer was applied to these in situ fluorometric chlorophyll values’’ [Roesler et al., 2017].

Note that these twofold corrected chlorophyll values were not corrected for NPQ. Further, the large regional
bias seen in the Southern Ocean chlorophyll fluorescence data is not fully compensated by a twofold cor-
rection. To produce a chlorophyll data set with a closer fidelity to Southern Ocean chlorophyll, a second
chlorophyll product was included in the quality controlled data set. The raw chlorophyll concentration was
corrected for NPQ effects and a gain correction of 6.4 was applied to the data set to bring our data into
agreement with the HPLC values collected on the deployment casts. To determine if a profile requires a

Figure 11. Relationship between total chlorophyll a (from HPLC) and chl a fluorescence (from floats) adjusted for darks and corrected for NPQ on a linear scale (left) and log/log scale
(right). The red line is a linear fit with slope 6.4 (Table 8), the blue line is a power law fit (Table 8), and the 1:1 relationship is the dashed gray line.
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correction for NPQ, the sun elevation angle was determined [Reda and Andreas, 2004]. The chla½ �Raw was cor-
rected for NPQ if the sun elevation was greater than 58. Corrections for NPQ were made using the average
of two methods. Sackmann et al. [2008] uses the backscattering channel as a guide to extrapolate chloro-
phyll fluorescence to the surface. Xing et al. [2012] assumes a constant concentration of chla½ �Raw above the
highest value found near the mixed layer depth (MLD). The MLD was estimated with a fixed density thresh-
old criterion of 0.005 kg m23. In addition, the sensor dark signal for these calculations was determined fol-
lowing the procedures outlined by Xing et al. [2017] for a sensor without an FDOM channel. The dark signal
was taken as the median of the minimum signal from ten profiles and this was used on all profiles. This
essentially sets deep chlorophyll concentration to a value near zero.

The scatter of the corrected data chlorophyll values about the linear regression in Figure 11 is 0.2 and
0.12 mg m23 for the power law fit. These would be reasonable estimates of chlorophyll uncertainty if one is
confident that the population sampled on a new float profile has the same photo-physiological properties
as that of the populations used to create Figure 11. However, the linear slope correction to the raw chloro-
phyll concentration estimates may vary from values near 2 in much of the ocean [Roesler et al., 2017] to val-
ues near 6 in the Southern Ocean (Figure 11). It is also possible that the linear slope correction may vary in
time [Xing et al., 2011]. If one does not know, a priori, which factor to apply, the uncertainty in estimated
chlorophyll can be larger than stated above. The chlorophyll values reported in the SOCCOM program have
been validated through matchups with satellite estimates throughout the Southern Ocean and have been
found to be consistent [Ha€entjens et al., 2017], which suggests that the linear slope correction is relatively
constant. However, we caution that the corrected chlorophyll values, although consistent with our best
understanding of Southern Ocean conditions, may carry additional uncertainty. If a robust estimate of bio-
mass is required, we recommend using the POC concentration estimated from backscatter. The addition of
downwelling irradiance sensors on profiling floats can help remove much of the additional uncertainty in
estimates of chlorophyll concentration [Xing et al., 2011] and this is being pursued.

5. Conclusions

Addressing the major questions in ocean biogeochemistry will require observing systems that operate year
around throughout all the major ocean basins. Such systems will depend on autonomous chemical sensors. It
is incumbent on the community to understand both the strengths and limitations of these systems as we
develop new methods of ocean observing. It is clear from the work reported here that the current generation
of chemical sensors are capable of generating high-quality products, but only if sufficient care is applied to
compensate for limitations in the raw observations. The early evolution of oxygen sensor performance on pro-
filing floats makes it clear that it is probably unreasonable to simply deploy sensors and expect high-quality
data without additional effort at calibration and validation. However, it is also clear, both from the evolution of
the quality of oxygen sensor data [K€ortzinger et al., 2005; Bittig and K€ortzinger, 2015; Johnson et al., 2015; Bushin-
sky et al., 2016] and, more recently, pH data (Table 6) that sensors and our knowledge of their operation are
improving. Independent efforts to validate bio-optical measurements at the global scale [Roesler et al., 2017]
are achieving similar results. Global scale, autonomous sensor networks are feasible.

The statistical comparison of the sensor output to the bottle samples collected near the time of the first
float profile represent an upper limit on the initial accuracy of the sensors. The float profiles and the hydro-
casts are never in exactly the same location or time, as the float does not surface until 18 h after it is
deployed and the last activity on station is typically deployment of the float to ensure there is no chance of
the ship running over a float. With that as a caveat, we note that the fleet average oxygen concentrations
have a bias of 3 mmol kg21, there is no significant bias for nitrate, and pH has a 0.006 bias (Table 4). Long-
term experience with the nitrate sensor suggests that a more reasonable limit for initial accuracy is 0.5 mmol
kg21. These metrics are consistent with other analyses of sensor performance. For example, Williams et al.
[2016] performed a detailed error analysis of the pH sensor and concluded that 0.007 was a reasonable limit
on the accuracy of corrected data. The standard deviations about the regression lines in Table 4 must con-
tain a significant contribution from oceanographic variability and do not reflect sensor precision alone. This
effect is apparent because the ratios of the standard deviations in Table 4 are relatively close to the Redfield
Ratio, as they are in Table 7. The standard deviations are dominated by ocean variability, rather than sensor
noise. Considering the contribution of ocean variability, reasonable upper limits for the accuracy of the
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initial, fleet average oxygen concentration is 1% at near surface oxygen concentrations. One standard devia-
tion for individual sensors from this accuracy specification would be an additional 1%. Similarly for nitrate,
we conclude that the fleet average accuracy is within 0.5 mmol kg21 of bottle samples and individual sen-
sors may deviate from this with a standard deviation of 0.5 mmol kg21. The fleet average pH values lie
within 0.005 of the bottle samples and individual sensors may scatter by 0.007 (one SD) from this mean off-
set. If air oxygen calibrations are not available, as is the case for two of our floats with Aanderaa optodes
and all of the SBE63 oxygen sensors, then oxygen accuracy is likely worse than the value noted above. Oxy-
gen sensor calibrations using air oxygen and comparisons to WOA have been made [Johnson et al., 2015]
and these suggest that the oxygen on floats without air measurements are probably only reliable to 3%.

These figures represent the overall initial accuracy that can be achieved when care is applied to compen-
sate for calibrations that may have shifted due to aging, contamination (e.g., dirty optics) or shock during
transport. These metrics also apply as the average over a large number of sensors. As noted above for oxy-
gen, frequently an individual sensor will show greater deviations when compared to shipboard data.
Because of this, care should be exercised when examining data from individual floats, rather than large
numbers of sensors where these errors are minimized.

It is also clear that there are long-term shifts in the calibration of these chemical sensors. Compensating for
these shifts requires a carefully developed procedure. The correction methods developed for the chemical
parameters oxygen, nitrate, and pH are essentially independent of the data collected on the hydrographic
cast when sensors are deployed. The procedure for oxygen is an assessment of error in the air oxygen mea-
surement. For nitrate and pH, it is an assessment of the difference from concentrations estimated with MLR
equations at depths near 1500 m where the ocean has longer-term stability and little seasonal variability.
The primary validation for these correction schemes is the comparison to the laboratory measurements
made on samples collected near the time the float was deployed.

The corrections are validated over longer time periods by comparing the corrected data to estimations of
neural network systems [Sauzède et al., 2017] and observations in the GLODAPv2 data set. The accuracy of
the sensor data for nitrate and pH should not degrade appreciably in time because the correction process is
the same as that used to make the initial corrections that produce the favorable comparison to indepen-
dent deployment profiles (Table 4). It does appear from the air oxygen observations that some sensors
begin to deviate from their initial calibration over time. In part, this seems to be due to an uncompensated
temperature coefficient, as noted above. We have not attempted to correct for this error at the present
time. As a result, some of our sensors may accumulate oxygen errors on the order of 0.5% per year. How-
ever, the fleet average drift rate for oxygen remains close to zero. This is clearly an area where additional
work must be done. It may be feasible to improve oxygen sensor accuracy into the tenths of a percent
region with further improvements.

These shipboard measurements remain essential, in the short term, to validate correction schemes for floats in
new regions or for new sensors. However, it is also possible to envision a future where a hydrographic cast
need not be coupled to each float deployment. This does not, however, free a biogeochemical sensor network
from shipboard sampling. The correction scheme for sensor data depends on having accurate estimates of
deep chemical concentrations, where concentrations are relatively stable and can be predicted using interpola-
tion methods (multiple linear regressions or neural networks) based on shipboard observations. It is also clear
from the pH observations that, even in the deepest waters reached by our profiling floats, there are anthropo-
genic changes in chemical concentrations. The long-term success of a global chemical sensor observing system
will depend on support from an ongoing, shipboard hydrographic program to produce a high-quality data set
for deep waters at the global scale. The shipboard measurements should meet the specifications listed by Olsen
et al. [2016, Table 2] (oxygen, 1%; nutrients, 2%; pH, 0.005). The adjusted float sensor data are close to these
specifications. However, until the biogeochemical sensors can be demonstrated to have a similar initial accu-
racy and high stability, the profiling float measurements will remain dependent on a background of ship-based
observations. This relationship is mutually beneficial, as the floats can then provide a perspective on seasonal
changes that shipboard programs have not been able to achieve.

The bio-optical sensors for optical backscattering and chlorophyll fluorescence appear stable in time, in
most cases. The empirical conversion factor determined for backscattering by particles to POC is consistent
with factors determined in other regions of the ocean. The data-estimated POC data appear accurate to
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within about 3 mmol C kg21. However, the number of comparisons remains fairly limited and should be
expanded to other regions. It is clear that large changes in the conversion factor for chlorophyll fluores-
cence to chlorophyll occur. Deployments of fluorimetric chlorophyll sensors will require continuous assess-
ments of calibration accuracy, including in situ calibration using irradiance sensors [Xing et al., 2012].

The metrics discussed here apply to sensor accuracy. Short-term sensor precision is typically much better.
Over a single profile, oxygen and nitrate concentrations are precise (1 SD) to order of 0.1 mmol kg21, which
is based on variability of measurements in the mixed layer on a single profile. pH values are typically precise
to 0.001. Such high precision can enable additional types of studies, but this precision should not be con-
fused with sensor accuracy.

Finally, we note that the current correction scheme for sensors is conducted on a float by float basis. At
some point in the future, when the global biogeochemical fleet of profiling floats reaches a critical size, con-
sideration should be given to performing a systematic optimization of the entire fleet data set, similar to
the optimization described in Olsen et al. [2016] for the GLODAPv2 data set. This would likely produce an
extremely homogeneous data set with spatial and temporal resolution that would greatly improve our
understanding of ocean biogeochemistry and serve as an improved tool to constrain ocean models.
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