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Abstract 
Arcachon Bay, in the southern Bay of Biscay, is the first French production area of Manila clam 

(Ruditapes philippinarum) with an annual commercial fisheries production around 400 tons in recent 

years. This bivalve mollusc was introduced into the bay in the 1980s for aquaculture purpose and quickly 

succeeded in natural settlement so that its high market value led to the progressive establishment of a 

perennial fishery from the mid-1990s. Local management plans applied to this species are based on a 

licensing system for the commercial, protected fishery areas and days of prohibited fishing for both 

commercial and recreational fishermen. A minimum catch size is also prescribed by European regulation, 

and so growth rates are an important matter in this context. This work focuses on studying shell growth 

from the recapture of shells, previously marked using a chemical marker (calcein) and then grown in 

natural conditions, and was performed in order to determine shell growth patterns. Manila clams were 

marked by immersion in situ in seawater containing calcein. In order to study the limitations of calcein 

on the mark readability in situ and manila clam mortality, various exposure times, from 30 minutes to 1 

hour, and concentrations, from 50 mg.L-1 to 200 mg.L-1 were tested. After a period of 35 days, 69 growth 

micro-increments were observed, and, it was found that increment deposition in manila clams occurs 

with a tidal periodicity. Moreover, this study showed that a method for fast-marking of manila clams, and 

potentially other species, is feasible in situ. 
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1. Introduction 
Growth information is necessary for population structure assessment of economically 
important and exploited bivalve species. The Manila clam Ruditapes philippinarum (Adams 
and Reeve 1850), endemic to Indo-Pacific waters, is one of the most commercially exploited 
bivalve molluscs in the world. Introduced in different geographical areas, the Manila clam is 
now widely distributed along the Pacific coast of the United States, the European Atlantic 
coast, the Adriatic and Aegean seas and the Indo-Pacific region [1]. This species was 
introduced into Arcachon Bay at the beginning of the 1980s for aquaculture purposes [2] and it 
rapidly colonised all intertidal flats of the lagoon. Arcachon Bay has the highest catch levels in 
French waters at around 400 tonnes per year [3, 4]. Current methods for age estimation of 
bivalves rely on quantification of growth rings on the shell surface. However, for this species, 
it is not possible to distinguish external growth increments due to typically slow growth in 
winter and also from occasionally unfavourable summer conditions (e.g hypoxia). Therefore, 
establishing a fixed, internal shell mark and could potentially be used to investigate growth. 
Several chemical markers have been tested to validate animal age through the deposition of an 
internal growth increment, as the organisms exposed to chemical markers incorporate it into 
the growing calcified structures. An efficient marker must present certain characteristics: being 
harmless to the organisms, detectable, easy-to-use, long-lasting etc. Several markers have been 
used and experience has demonstrated that marker suitability is species-specific [5, 6]. Among 
fluorochromes, calcein has presented little toxicity and reliable marking quality [6, 7]. In the 
present study, the potential of in-situ marking with very short exposure time to the 
fluorochrome calcein has been investigated in R. philippinarum, specifically in relation to 
mark quality and mortality rate, depending on concentration and exposure time. Determination 
of the periodicity of shell growth ring production typically is accomplished by marking shells 
in the laboratory and then the animals return to the wild. This long manipulation of the 
shellfish increases the stress level and consequently the mortality level of the organisms.  
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Moreover, in the specific context of Arcachon Bay 

characterized by a lot of small areas production, it is very 

difficult to realize one ‘traditional’ marking study in the 

laboratory across this entire of these areas without to 

introduce the bias in the methodology between different 

locations. Consequently, this In-situ fast marking study of 

Manila Clams wants to answer at two questions:  

 Is it possible to realize In-situ fast marking study in thirty 

minutes to follow the differential growth of Manila 

Clams in many locations during the same environmental 

conditions and to limit the potential effects of the 

marking step on the growth of this shellfish?  

 The tidal deposition of growth ring: is it clearly present 

from the cold shock as observed by Richardson [8] in 

Wales or from calcein-marked individuals during 3 hours 

used the benthic chamber in the Gulf of Morbihan [9]? 

  

2. Materials and Methods 

2.1 Study site 

Arcachon Bay is a 156 km² semi-sheltered lagoon on the 

south-west coast of France. Mostly composed of tidal flats 

(110 km long within the inner lagoon); this mesotidal system 

is characterized by a sediment composition ranging from mud 

to muddy sands and colonized by vast Zostera noltii seagrass 

meadows. The bay is influenced by external neritic waters and 

by continental inputs [10], and presents a semidiurnal 

macrotidal rhythm. The manila clam is, in terms of biomass, 

the dominant species of these intertidal flats [10, 11]. In 

February 2011, 80 living specimens were collected in the 

same geographical area. The samples represented all R. 

philippinarum length classes which were between 10.4 and 

45.0 mm (length defined as the longest distance from front 

edge to back edge). 

 

2.2 Staining experiment 

The manila clams were divided into 8 groups of 10 

specimens, each with a similar size distribution (from 10 mm 

to 45 mm in length). The clams were marked by immersion in 

situ in seawater containing calcein (CAS 1461-15-0) (Fig. 1). 

In order to study the limits of calcein on the mark readability 

in situ and the manila clam mortality, various calcein 

exposure times, from 30 minutes to 1 hour, and 

concentrations, from 50 mg.L-1 to 200 mg.L-1 have been 

tested. 80 individuals were marked during 30 minutes with the 

calcein concentrations of 50 mg.L-1, 100 mg.L-1 and 200 

mg.L-1, and during 1 hour for only the calcein concentrations 

of 100 mg.L-1 with 2 replicates for each tagging condition (i.e. 

exposure time-calcein concentration). After the marking 

procedure, all manila clam groups were replaced in an 

experimental structure. These cages were built as a cube with 

a side length of 50 cm to obtain a density equal to that 

observed and a depth covering the life depth of this species, 

living mostly in the first ten centimetres of the substratum [12] 

(Fig. 1).  

 

2.3. Detection and periodicity of growth mark 

After a period of 35 days, all manila clams from each group 

were recaptured and sacrificed. Empty shells were cleaned 

and oven-dried at 30°C for 48h to enable the shell inclusion 

into the resin. To analyse internal micro-growth increments, 

shells were embedded in thermoplastic resin then transversely 

cut along the maximum growing axis (from the umbo to the 

ventral margin) using a precision saw with a blade thickness 

of 0.25 mm (Fig. 2). The thin sections (thickness of 0.2 mm) 

were first mounted in slides, where were then ground on a 

lapidary wheel using 600-grade grit followed by 1000-grade 

grit waterproof abrasive paper, and polished with wrapping 

film sheets (3M, St. Paul, MN, USA) using grits of 2000, 

4000, 8000, 10 000, 15 000 and 40 000 grades consecutively 

on both sides. Polished surfaces were examined by 

stereomicroscope for scratches using reflecting light, and 

polishing was repeated until all visible scratches were 

removed. 

Manila clams marked with calcein were observed through 

Zeiss motorized microscope combined to motorized stage, 

capable rebuild one mosaic image from many calibrated 

images and capable of fluorescent imaging with wavelengths 

of 460-490 nm. Image analyses were carried out by means of 

numerical camera (Hamamatsu) dedicated to the fluorescent 

light and piloted by the TNPC software (Calcified Structure 

Digital Processing, www.tnpc.fr) in order to determine the 

number of increments mineralized during the 35 days of the 

experiment. To identify the growth increments, two experts 

analysed the shell area between the fluorescent band along the 

growth axis parallel to the growth axis. Moreover, grey levels 

have been extracted by image analysis measuring the 

luminous intensity of each pixel along this growth axis. These 

measurements and its location along the growth axis were 

used to identify the limits between each opaque band and each 

hyaline band, reflecting each one growth increment.  

 

3. Results  

No mortality occurred during the experiment in any of the 8 

groups. Thus, calcein marker treatments proved not to be 

lethal at maximal concentrations of 200 mg.L-1 and for the 

longest exposure time of 1 hour. Calcein produced a clearly 

visible fluorescent growth band in shells at all concentrations 

and exposure time (Fig. 2). Calcein fluorescent bands were 

easily identified in all recovered manila clams from 30 

minutes exposure with a concentration of 100 mg.L-1 (Fig. 2). 

The mark intensity of fluorescence essentially depends on the 

calcein concentration; the influence of exposure time appears 

limited (Tab. 1).  

Single marked increments have been identified by 

fluorescence each time the experiment was successful and the 

mark was distinguishable almost along the whole shell, from 

the ventral margin to the hinge, suggesting uptake along the 

whole mantle edge. Additionally, distinct growth lines are 

recognized under fluorescence microscopy (Fig. 3). The 

experts, with image analysis, identified 69 growth micro-

increments on the shell from the calcein band to the edge 

during the experiment relevant to the period of 35 days and 69 

tides (Fig. 3). Consequently, it is established that increment 

deposition in manila clams occurs with a tidal periodicity. 

 

 
 

Fig 1: In situ fast marking study of Manila Clam with the calcein 

fluorochrome dye. 
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Fig 2: A Valve of Manila Clam with the line which represents the direction of growth (DOG); B) Thick section of shell (thickness of 0.2 mm); 

C) Ventral margin of a calcein-marked shell with a fluorescent mark (Calcein exposure time and concentration are indicated for each staining 

experiment) 

 

 
 

Fig 3: Magnification of a ventral margin in Manila clam: green 

fluorescent mark produced following 30 minutes calcein solution 

exposure (100 mg L−1) and observed growth increments before and 

after marking. Along a growth axis, grey levels have been measured 

(AU: arbitrary unit) and each grey peak is identified (blue circle) as 

the limit between each opaque band and each hyaline band, 

reflecting each one growth increment. 

 
Table 1: Quality marking (Mark intensity in arbitrary units, AU) and 

mortality according to calcein concentration and exposure time. 
 

 
 

4. Discussion 

In recent studies on other bivalve growth, calcein exposure 

time and concentration used varied from 3 to 72 hours and 

from 10 to 500 mg.L-1 [6, 13, 14, 15, 16, 17]. Several studies on 

bivalve growth have suggested that calcein fluorochrome 

exhibits little toxicity [6, 13, 14, 16, 18, 19]. Similarly, in this work, 

the range of calcein concentrations used (from 50 to 200 

mg.L-1) had no lethal effect for all clam length classes during 

the experiment. In the same way, to limit the effects of stress 

to the clams during calcein marking, In situ experiments have 

been performed. A marking study of subtidal populations of 

manila clams in the north of the Bay of Biscay was realised in 

3 hours with the calcein concentration of 150 mg.L-1 using 

benthic chambers [9]. Our study showed in 30 minutes, in situ 

exposure is enough to realise an effective shell mark on the 

species. Consequently, in situ calcein marking is efficient and 

has a time benefit allowing work during a single tidal period 

and also limits the stress to the manila clams caused by 

manipulation. 

Manila clam’s shell is composed of two aragonitic layers, an 

inner homogeneous layer and an outer prismatic layer. Our 

images analysis showed 69 growth micro-increments within 

the 35 days. Consequently, this periodicity was considered to 

be tidal. The result corroborated other studies on this species 
[8, 9, 20] and confirms the tidal regime as the main 

environmental factor dictating shell growth in intertidal 

habitats [21]. As shell growth of bivalves is limited to high 

tides [22, 23], during aerial exposure at low tide, the animals are 

forced to keep their valves tightly closed, and retract the 

mantle into the shell, leading to shell growth cessation and the 

formation of a growth-check line [9, 20, 24, 25]. Other intertidal 

bivalve species have presented a similar tidal periodicity of 

growth micro-increments in Clinocardium nuttalli [22], 

Cerastoderma edule [26, 27], Tapes philippinarum [8], Chione 

fluctifraga and C. cortezi [28], Phacosoma japonicum [29], 

Mesodesma donacium [30], Phacosoma japonicum [31] and 

Saxidomus gigantea [32], Anadara granosa [33]. However, it 

was not the case for all bivalves, as daily [34, 35, 36, 37, 38] or 

fortnightly periodicities have also been shown [20, 28, 29, 30, 31, 32]. 

These periodicity growth increment mainly could be 

explained by the hydric stress differences due to the location 

in the neritic zone (subtidal versus intertidal) and the 

emersion time in the intertidal area. 

 

5. Conclusions 

This preliminary study showed that it was possible to realise 

the relatively simple in situ marking of bivalves during a 
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single tide with no observed mortality. This type of approach 

could be applied to the other bivalve species.  
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