FN Archimer Export Format PT J TI Accumulation of detached kelp biomass in a subtidal temperate coastal ecosystem induces succession of epiphytic and sediment bacterial communities. BT AF Brunet, Maéva de Bettignies, Florian Le Duff, Nolwen Tanguy, Gwenn Davoult, Dominique Leblanc, Catherine Gobet, Angelique Thomas, François AS 1:1;2:2;3:1;4:3;5:2;6:1;7:1,4;8:1; FF 1:;2:;3:;4:;5:;6:;7:PDG-RBE-MARBEC-LAAAS;8:; C1 Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR), 29680 Roscoff ,France Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de Roscoff, 29680 Roscoff, France MARBEC, Univ Montpellier, CNRS, Ifremer, IRD Sète, France C2 UNIV SORBONNE, FRANCE UNIV SORBONNE, FRANCE UNIV SORBONNE, FRANCE IFREMER, FRANCE SI PALAVAS SE PDG-RBE-MARBEC-LAAAS UM MARBEC IN WOS Ifremer UMR copubli-france copubli-univ-france IF 5.476 TC 20 UR https://archimer.ifremer.fr/doc/00666/77808/79983.pdf https://archimer.ifremer.fr/doc/00666/77808/79984.zip LA English DT Article AB Kelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor. Kelp tissue, seawater and sediment were sampled during a six‐month in situ experiment simulating kelp detritus accumulation. Evaluation of the epiphytic bacterial community abundance, structure, taxonomic composition and predicted functional profiles evidenced a biphasic succession. Initially dominant genera (Hellea, Litorimonas, Granulosicoccus) showed a rapid and drastic decrease in sequence abundance, probably outcompeted by algal polysaccharide‐degraders such as Bacteroidia members which responded within 4 weeks. Acidimicrobiia, especially members of the Sva0996 marine group, colonized the degrading kelp biomass after 11 weeks. These secondary colonizers could act as opportunistic scavenger bacteria assimilating substrates exposed by early degraders. In parallel, kelp accumulation modified bacterial communities in the underlying sediment, notably favoring anaerobic taxa potentially involved in the sulfur and nitrogen cycles. Overall, this study provides insights into the bacterial degradation of algal biomass in situ, an important link in coastal trophic chains. PY 2021 PD MAR SO Environmental Microbiology SN 1462-2912 PU Wiley VL 23 IS 3 UT 000612495800001 BP 1638 EP 1655 DI 10.1111/1462-2920.15389 ID 77808 ER EF