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The authors wish to make the following corrections to the paper [1]. In this manuscript [1]
we investigated the ability of two machine learning methods (a Support Vector Regression-
SVR, and a Multi-Layer Perceptron-MLP) to reconstruct satellite surface Chlorophyll-
a concentration (Chl) based on physical predictors from oceanic satellite observations
and atmospheric reanalysis. Among the predictors used, we considered geographical
information through the cosinus and sinus of longitude and the sinus of latitude. A mistake
has been made in keeping the geographical positions in degrees whereas they should have
been converted into radians.

This error induces an overall increase in the performance of all methods. However, the
hierarchy between each method and their specific skills, which is one of the main points
discussed in our study, is not altered. Therefore, the main findings remain unchanged:

- Earlier efforts in literature relying on the SVR were only applied to numerical model
data and put aside the question of whether different algorithms may have specific
behaviors. Here, we show that (1) this learning-based approach can also be applied
to satellite observations and (2) can even be further improved through the use of a
neural network.

- The use of an MLP also removes computational restrictions regarding the size of the
training dataset as imposed by the SVR. As such, SVR could not make the most of
available observation datasets.

- The MLP, thanks to its ability to capture complex non-linear relationships, still outper-
form the SVR to retrieve both Chl spatial and temporal patterns.

The authors apologize for any inconvenience caused and state that the scientific
conclusions are unaffected. The original publication has also been updated.

According to the error mentioned above, the following contents should be corrected
to the paper.

1. Table Correction

The content in the last line of Table 1 has been corrected as follows:
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Table 1. Physical predictors, their relevance to Chl variability, the products used, and their resolution.

Proxy Used as Predictors Relevance to Chl Variations
and Associated References Products Spatio-Temporal

Resolutions

SST

Vertical mixing and
upwelling [17–20]

Impacts on phytoplankton
metabolic rates [21]

Reyn_SmithOIv2 SST
dataset [22]

Monthly on a 1◦ × 1◦

spatial grid

Sea level anomaly Thermocline/pycnocline
depths [11,23,24]

Ssalto/Duacs merged product
of CNES/SALP project [25]

Weekly on a 1/3◦ × 1/3◦

spatial grid

Zonal and meridional surface
winds

Surface momentum flux
forcing and vertical motions

driven by Ekman
pumping [20,26]

Atmospheric model reanalysis
ERA interim 4 [27]

Every 5-days on a
0.25◦ × 0.25◦ spatial grid

Zonal and meridional surface
total currents

Horizontal advective
processes [4,28]

OSCAR unfiltered satellite
product [29]

Every 5-days on a
0.25◦ × 0.25◦ spatial grid

Short-wave radiations Photosynthetically active
radiation

NCEP/NCAR Numerical
reanalysis [30] Daily on a 2◦ grid

Month (cos and sin)

Periodicity of the day of the
year (day 1 is very similar to

day 365 from a seasonal
perspective) [31]

Longitude (cos and sin) and
Latitude (sin)

Periodicity (longitude
0◦ = longitude 360◦) [31]

Table 2 has been corrected as follows:

Table 2. Multi-layer perceptron (MLP) predictor’s relative importance.

Weight Predictors

0.471 Sin(lat)
0.246 Sea surface temperature
0.052 Cos(lon)
0.05 Sin(lon)
0.03 Short-wave radiations
0.028 Sin(month)
0.025 Zonal surface wind
0.023 Cos(month)
0.021 Meridional surface wind
0.019 Sea level anomaly
0.018 Zonal surface current
0.017 Meridional surface current

2. Figures Correction

This error affects some of the figures in the article with an overall increase in the
performance of all methods (e.g., corrected Figure 2).

According to the correction, the correct Figures 2–6 are as follows.
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Figure 2. Scatter plots of log of ChlOC-CCI vs. (A–C) ChlSVR, (D–F) ChlMLP-9% and (G–I) ChlMLP trained 
on 80% of the dataset, for each oceanic basin between 50° S and 50° N and over 1998–2015. The 
ChlOC-CCI vs. reconstructed Chl regression lines are plotted in black and the 1:1 regression lines are 
plotted in red. The figure is color-coded according to the density of observations. 
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trained on 80% of the dataset, for each oceanic basin between 50◦ S and 50◦ N and over 1998–2015.
The ChlOC-CCI vs. reconstructed Chl regression lines are plotted in black and the 1:1 regression lines
are plotted in red. The figure is color-coded according to the density of observations.
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Figure 6. Time series of the monthly mean area (km2) with surface Chl less than or equal to 0.07 
mg.m−3 between 5° and 45° N/° S latitude with the seasonal cycle removed in the (A) North Pacific, 
(B) South Pacific, (C) North Atlantic, (D) South Atlantic and (E) Indian Oceans. ChlOC-CCI is in blue, 
ChlSVR in grey and ChlMLP in orange. Straight lines are the linear trends calculated as in Figure 5. 
The average trends and standard deviation are also indicated. 

Figure 6. Time series of the monthly mean area (km2) with surface Chl less than or equal to
0.07 mg.m−3 between 5◦ and 45◦ N/◦ S latitude with the seasonal cycle removed in the (A) North
Pacific, (B) South Pacific, (C) North Atlantic, (D) South Atlantic and (E) Indian Oceans. ChlOC-CCI

is in blue, ChlSVR in grey and ChlMLP in orange. Straight lines are the linear trends calculated as in
Figure 5. The average trends and standard deviation are also indicated.
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3. Text Correction

According to the correction, we updated the related contents in the sections Abstract,
3. Results, 4. Discussion, and Supplementary Materials.

Line 11–15 in Abstract is corrected as:
“ . . . The MLP, thanks to its ability to capture complex non-linear relationships, out-

performs the SVR to capture satellite Chl spatial patterns (correlation of 0.75 vs. 0.65 on
a global scale, respectively) along with its interannual variability and trend, despite an
underestimated amplitude. . . . ”

Line 1–9 in Paragraph 1 in Section 3.1. is corrected as:
“A first evaluation of the ChlSVR vs. ChlOC-CCI is provided during 1998–2015 at basin

scales and for the whole dataset (Figure 2, upper row). Determination coefficients between
both datasets are below 0.88, while RMSE is above 0.25 in the three basins. The MLP trained
on the same amount of data than the SVR is more skillful than the SVR at reconstructing
ChlOC-CCI (Figure 2, middle row). Determination coefficients between the log of ChlMLP-9%
vs. ChlOC-CCI increase higher than 0.9 in the Atlantic and Pacific oceans, and RMSE are
slightly improved. Increasing from 9% to the usual 80%, the MLP training dataset further
increases the skills of the NN approach to reconstruct ChlOC-CCI with a relative gain of 9%
to 16% in RMSE and regression lines between the log of ChlMLP vs. ChlOC-CCI closer to the
1:1 line for each oceanic basin (Figure 2, lower row). . . . ”

Line 1–9 in Paragraph 2 in Section 3.1. is corrected as:
“Consistent with the scatterplots, ChlOC-CCI temporal correlations with ChlSVR are

significantly lower than with ChlMLP (Figure 3A,C; r = 0.65 vs. 0.75 and NRMSE = 0.31
vs. 0.26 on a global scale, respectively). ChlOC-CCI - ChlSVR correlations are higher than
0.8 (p < 0.001) over limited regions such as the Atlantic, Indian, and Pacific subtropical
areas (Figure 3A). The MLP allows for a significant improvement in the correlation with
ChlOC-CCI with values higher than 0.75 over most of the global ocean (Figure 3C). Areas of
high and low NRMSE are similarly distributed for ChlSVR and ChlMLP (Figure 3B,D). For
instance, in both cases, NRMSE is higher at the highest latitudes and along the Amazon
plume in the Atlantic Ocean. Although the MLP slightly reduces NRMSE compared to the
SVR, biases in reference to ChlOC-CCI still remain in these regions. . . . ”

The last two sentences in Paragraph 1 in Section 3.2. are corrected as:
“ . . . The seasonal variability of ChlOC-CCI is well reproduced by both the SVR and MLP

(correlations between ChlOC-CCI and ChlSVR or ChlMLP PCs are both of 0.99; Figure 4B).”
Line 2–5 in Paragraph 2 in Section 3.2. is corrected as:
“ . . . Here, the MLP results in an improvement compared with the SVR to reconstruct

ChlOC-CCI inter annual variability, with its first PC correlation with ChlOC-CCI of 0.95 vs.
0.91 for ChlSVR and amplitude closer to ChlOC-CCI (Figure 4D).”

Line 2–5 in Paragraph 3 in Section 3.2. is corrected as:
“ . . . While most of these trends are captured by ChlSVR, their amplitude is underes-

timated (Figure 5B). On its side, ChlMLP better reproduces ChlOC-CCI trends in terms of
amplitude, although they remain underestimated (Figure 5C).”

Paragraph 5 in Section 3.2. is corrected as:
“Finally, a first attempt to investigate predictors’ relative importance is performed

with the MLP approach and a perturbation-based method [60]. Besides latitudes, and as
expected, the SST and short-wave radiations are the two most important physical predictors
(Table 2). Interestingly, among the physical predictors, the surface wind components seem
slightly more important than the sea level anomaly, while this is a common variable used to
infer regression between Chl and ocean dynamics [15]. Indeed, redundant indirect informa-
tion about the ocean circulation can be derived from those predictors, with potentially more
information “embedded” within the wind stress that may also be linked to a meaningful
parameter for phytoplankton growth: the mixed layer depth. Spatial coordinates, and
more specifically the latitude, remain important for the reconstructions, although part of
this information is embedded in the spatial patterns of the physical predictors. Indeed,
removing spatial information from the MLP training still allows us to reconstruct realistic
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Chl, unlike the SVR, which produces unrealistic concentrations, suggesting that the MLP
can extract geospatially dependent features from other predictors than the coordinates
themselves. The impact of the different predictors on Chl reconstruction according to the
oceanic regions and/or the climate cycles should, therefore, be specifically considered and
investigated in a dedicated study, once a deep learning scheme will have been considered
as sufficiently satisfying.”

Line 7–11 in Paragraph 1 in Section 4 is corrected as:
“ . . . The MLP demonstrates the ability of deep learning schemes to reproduce satellite

Chl with better skill than the SVR, not only to capture the general spatial patterns of Chl
but also their interannual signal and trends. Neither the training of the MLP nor that of
the SVR involve time information through the training loss which only involves a grid
point-wise reconstruction error criterion. . . . ”

Line 1–7 in Paragraph 3 in Section 4 is corrected as:
“If, in this study, we demonstrate the better potential of NNs to accurately represent

Chl spatial distribution as well as the interannual and trend signals, compared to the SVR,
so far, only an MLP was used. MLP is known to not explicitly consider the spatial and
temporal correlations in the dataset. Specific architectures to handle spatially or temporally
structured data, i.e., convolutional neural networks and recurrent neural networks (such as long
short-term memory networks), are currently under investigation and are expected to further
improve the Chl reconstruction performance, in particular for the Chl amplitude. . . . ”

The following two sentences in Supplementary Materials should be deleted:
“Figure S3: Scatter plots of ChlMLP trained only for predictors with a relative impor-

tance higher than 0.1 in Table 2. Figure S4: Correlation and NRMSE of ChlOC-CCI vs. ChlMLP
trained only for predictors with a relative importance higher than 0.1 in Table 2.”

4. Supplementary Materials Correction

According to the correction, relevant Figures published in the Supplementary Materi-
als were corrected.

5. Reference Correction

Reference [60] is corrected as: Kim, Y.J.; Kim, H.C.; Han, D.; Lee, S.; Im, J. Prediction
of monthly Arctic sea ice concentrations using satellite and reanalysis data based on
convolutional neural networks. Cryosphere 2020, 14, 1083–1104.
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