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Abstract 
 

The mechanisms underlying virus emergence are rarely well understood, making the appearance of 

outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an insect-borne virus of 

ruminants, emerged in livestock in Northern Europe in 2006, spreading to most European countries 

by 2009 and causing losses of billions of Euros. Though the outbreak was successfully controlled 

through vaccination by early 2010, puzzlingly a closely-related BTV-8 strain re-emerged in France in 

2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms 

underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole 

BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus 

evolution during both epizootics but found negligible evolutionary change between them. We 

estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 

2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence 

in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence 

over this period without replication, we conclude that the second outbreak was most likely initiated 

by accidental exposure of livestock to frozen material contaminated with virus from approximately 

2008. Our work highlights new targets for pathogen surveillance programmes in livestock and 

illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence. 
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Introduction 

Infectious disease outbreaks are a major burden on human and animal health. They can dramatically 

reduce the productivity of entire countries, due to direct losses, control measures, trade bans or 

public fear [1]. Diseases caused by insect-borne viruses (arboviruses) in particular, have increased 

substantially in recent decades [2-4] and there is an urgent need to better understand the causes of 

their emergence in order to devise better control and prevention strategies.  The factors leading to 

disease emergence are often unclear and case studies of intensely studied outbreaks can therefore 

provide important wider lessons.  

 

Bluetongue is a major disease of domestic ruminants caused by the bluetongue virus (BTV), an 

arbovirus transmitted by Culicoides midges. BTV is the type species of the genus Orbivirus, within 

the family Reoviridae and possesses 10 double-stranded RNA genome segments encoding for 7 

structural and 4 or 5 non-structural proteins [5-7]. BTV infection in sheep can induce a variety of 

clinical outcomes, which in the most extreme cases include a lethal hemorrhagic fever [8-10]. 

Infection in cows and goats results instead in milder and often sub-clinical clinical signs [8, 9]. BTV 

can also infect wild ruminants and, more rarely, other mammal species [11-15]. 

 

Like many other arboviruses, the geographical spread of BTV has increased significantly in the last 

20 years [16-18]. In August 2006, BTV serotype 8 (BTV-8) emerged for the first time in the 

Netherlands [19-24], leading to dramatic losses of sheep and causing extensive economic damage 

to farming communities, costing on the order of billions of euros [25-28]. The virus quickly spread 

across the continent, with confirmed infections in 16 countries by 2008 (Fig 1). The outbreak was 

ultimately controlled through a pan-European vaccination campaign, using inactivated vaccines, 

with a few last cases detected in Europe in 2010 [29]. However, after a five-year period with no BTV-

8 cases recorded throughout Europe, the virus re-emerged in France [30] and has since continued 

to spread. France was declared enzootic in 2018 and recent cases reported in adjacent countries, 

including Germany, Switzerland and Belgium [31]. 

 

The source and mechanism of BTV-8 re-emergence in France remains obscure. Initial genetic data 

from one isolate, suggested the re-emerging virus in France to be a close relative of the lineage 

causing the 2006-2010 outbreak [30, 32, 33].  The prevailing theory was that the virus had continued 

to be transmitted sub-clinically but remained unrecorded in livestock or wild ruminants after it had 
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been declared absent from Europe in 2011 [30]. However, there is currently little evidence to support 

this hypothesis. Based on serological evidence, wild ungulates do not appear to have sustained 

transmission [34, 35]. Similarly, serological testing of cattle sampled in 2014, indicated a rapid 

decline of seropositivity after vaccination ceased in France in 2010, consistent with a new (re-) 

introduction of the virus in, or just before, 2015 [34, 36, 37].  

 

We describe the use of phylogenetic and evolutionary analyses of BTV-8 virus samples, collected 

during the first and second European outbreaks, to gain insights into the mechanisms that allowed 

BTV-8 to re-emerge in France in 2015. For this, we generated a novel data set of full genome 

sequences for more than 150 viruses sampled throughout both outbreaks. We show that the 

evolutionary signatures contained in these data are inconsistent with continuous circulation of BTV-

8 between the outbreaks and instead point to re-emergence being caused by an anthropogenic 

factor, such as accidental release of contaminated material.  

 

Results 

 

Viruses from the first and second European BTV-8 outbreaks form a single monophyletic clade 

We analysed newly sequenced full genomes of 153 BTV-8 samples collected from infected sheep 

and cattle throughout the BTV-8 outbreaks in Europe along with 11 BTV-8 isolates previously 

published. Samples from the first outbreak were collected from infected animals in 10 different 

countries between 2006 and 2009, while samples from the second outbreak were collected from 

France between 2015 and 2018 (Table S1). To minimise or exclude the possibility of including 

genome mutations acquired during extensive passage of the virus in culture, we sequenced the great 

majority of samples directly from clinical samples (blood) of infected animals or from isolates kept 

in culture for a minimum number of passages (Table S1).  

 

A maximum likelihood (ML) tree revealed considerable genetic diversity both within the first (2006-

2010) and the second outbreak (2015-2018) (Fig 2). The tree showed that all sequences from the 

second European outbreak form a well-supported monophyletic clade that is nested within the virus 

lineages circulating during the first outbreak in 2006-2010 (Fig 2, Fig S1). Specifically, the clade of 

the second outbreak derives from a clade from the first outbreak, including predominantly viruses 

from France and Germany collected in 2007 and 2008. The viruses from the second French outbreak 

can be distinguished into two further clades, one including viruses from 2015 and 2016, the other 
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including samples spanning the entire outbreak (2015-2018). Interestingly, both clades were already 

present among the eight samples from the farm in France (in Auvergne-Allier) from which the first 

diagnosis of re-emerged BTV-8 was made in August/September of 2015. Surprisingly, the branch 

leading to the re-emerging virus appeared short, given the 5-year period between the outbreaks, 

implying a slow rate of evolution during this period (Fig 2). 

 

BTV-8 re-emergence associated with exceptionally slow evolution 

To test if the lower amount of divergence along the branch separating the two outbreaks was 

unusual, we estimated the evolutionary rate of BTV-8 from the set of 164 genomes. For this, we 

applied a lognormal relaxed clock model that allows for branch-specific heterogeneity in clock rates, 

implemented in the Bayesian phylogenetic software BEAST (Fig 3 and Fig S2). The mean evolutionary 

rate estimate was 4.04x10-4 substitutions per site per year (95% HPD: 3.37x10-4, 4.72x10-4), 

corresponding to an expected 7.76 substitutions per year (95% HPD: 6.47, 9.06) across the entire 

BTV-8 genome. In contrast, the emerging branch had an estimated mean evolutionary rate that was 

nearly an order of magnitude slower at 8.24x10-5 substitutions per site per year (95% HPD: 3.93x10-

5, 1.32x10-4). Indeed, within the presented maximum clade credibility tree, this branch had the 

lowest median rate across the posterior distribution of trees. 

 

Using BEAST, we reconstructed the sequence of the most recent common ancestor of the viruses 

sequenced from the second outbreak. This ancestral sequence displayed only 7 nucleotide 

substitutions (of which 6 were synonymous or in the untranslated regions of the viral genome) 

compared to BTV-8FRA2007-3673, the genetically closest virus within the data set, which was collected 

from France in August 2007 (Fig 4A). In comparison, BTV-8FRA2007-3673 displayed 23 nucleotide 

substitutions (of which 16 were synonymous or in the UTR) compared to the first sequence available 

from the first outbreak and collected in August 2006 in the Netherlands (BTV-8NET2006-04) (Fig 4A).  

The number of mutations of BTV-8FRA2007-3673 compared to the BTV-8 sequences in the dataset in 

2006 (n=23) ranges between 15 and 23 while those compared to the virus sequences collected in 

2008 (n= 37) varies between 2 and 56. Hence, sequence variation between BTV-8 samples collected 

only a year apart during the first outbreak is in general far higher than that between the ancestor of 

the re-emerged BTV-8 strain and its closest relative in the first outbreak.  

 

“Frozen evolution”:  clock-like evolution of BTV-8 during, but not in-between, outbreaks 
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Next, we included the reconstructed ancestral sequence in our dataset and re-estimated the ML tree 

to get measures of genetic distance from the root of the tree. Consistent with clock-like evolution, 

the genetic distance between virus sample and the root increased linearly with time during both the 

first (TempEst: slope=7.2708x10-4 subs/site/year, r2=0.8113) and second outbreaks (TempEst: slope 

= 6.9291x10-4, r2= 0.9605). There was no evidence that the evolutionary rate of the virus differed 

between the two outbreaks (p-value for Date:Outbreak interaction = 0.194). However, there is a 

clear discontinuity in the accumulation of mutations between the two outbreaks, consistent with a 

period where clock-like evolution had essentially ceased. Consequently, the reconstructed sequence 

of the ancestor of the second outbreak, when included in the ML tree, has an inferred distance from 

the tree root that is consistent with a virus from late March 2008 according to the root to tip 

regression (Fig 4B). 

 

Discussion 

Diseases of livestock can be exceedingly interesting models to study virus emergence, given that 

harmonised international surveillance systems and regulatory frameworks provide opportunities to 

access field samples with associated metadata across national borders. Here, the BTV-8 European 

outbreaks provided us with the opportunity to investigate the mechanisms surrounding arbovirus 

emergence based on a uniquely rich dataset. Our results indicate that the re-emergence of BTV-8 in 

France in 2015 was caused by a virus that exhibits a lack of evolutionary changes since the first 

outbreak. This is inconsistent with the prevalent view of undetected low-level circulation of the virus 

in wild or domestic ruminants, between 2010 and 2015, and instead points to another mechanism 

of emergence.  

 

We showed a large discontinuity in the number of mutations accumulated by BTV-8 between 2010 

and 2015, even though the evolutionary rates of the virus during the first and second outbreak were 

indistinguishable and of the same order as rates reported in previous BTV studies [38, 39]. If the 

virus had been replicating consistently in an undetected population from 2010 to 2015, we would 

expect the genetic distance of the isolates from the second European outbreak to continue the trend 

of increased divergence after the first outbreak. However, the sequences from the second outbreak 
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exhibit genetic divergences that fall considerably below what would be expected if the trend-line 

from the first outbreak was extended, illustrating a paucity of mutations relative to expectations (Fig 

4B). Indeed, the divergence of the reconstructed ancestor of the second bluetongue outbreak is 

consistent with the virus stopping replication in March 2008. The lack of divergence is also illustrated 

by the fact that the reconstructed ancestor of the BTV-8 outbreak has only 7 mutations separating 

it from its closest relative in the analysed dataset, a French sample collected in August 2007 (BTV-

8FRA2007-3673), despite putatively having been replicating for at least half a decade after that samples’ 

collection.  In comparison, BTV-8FRA2007-3673 showed 23 mutations compared to the genome of the 

earliest BTV-8 sample obtained from the Netherlands in August 2006, only a year earlier. The 

corresponding rate of evolution estimated for the emerging branch was almost an order of 

magnitude slower than the mean clock rate, highlighting it as exceptionally slow (Fig 3). Moreover, 

we hypothesise that some or all of the estimated seven mutations on this branch might have been 

accumulated during the first outbreak, given that the emerging branch connects to an internal node 

in the time-scaled phylogeny with a date of early 2007, at the height of the first outbreak. The 

subsequent accumulation of seven mutations is consistent with the idea that this virus continued to 

circulate until early 2008 (the inferred date from the root-to-tip regression) and then ceased to 

change all together until its re-emergence in 2015.   

 

Given the unexpectedly low number of mutations observed between the two outbreaks, our data 

indicate that the common ancestor of the second European outbreak either ceased, or dramatically 

slowed its replication, in early 2008. This is inconsistent with current knowledge of the biology of 

BTV and RNA viruses in general. For example, a potential explanation could be that BTV persistently 

infected a host for several (5 to 8) years, with little or no replication, before being re-activated and 

starting the second outbreak. While this may be possible with DNA viruses, or RNA viruses with a 

DNA intermediate [40-45], it has never been described for Reoviruses such as BTV or other RNA 

viruses. Rabies virus may provide an exception based on a handful of case reports of virus 

reactivation after latency of several years [46] but it has not been documented whether these 

involved a lack of evolutionary changes. In other cases, as in foot-and-mouth disease, viral RNA and 

infectious virus have been shown to persist in reservoir hosts for multiple years. However, re-

isolation of virus (as opposed to detection of viral RNA) indicates that the virus replicates during 

persistent infection and accumulates nucleotide substitutions at a rate comparable to actively 

replicating viruses [47, 48].  Hepatitis C virus for example is also known to persist in a number of 

patients for a number of years but, again, with continuing viremia, and thus virus replication [49].  
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Another hypothetical scenario could be envisaged if BTV-8 was to remain “latent” in midges’ eggs 

for a number of years. However, there is no evidence of vertical transmission in BTV-infected 

Culicoides [50-53]. This, in conjunction with the need for infected midge eggs to survive for years, 

rather than a single overwintering season, makes this scenario highly unlikely.  

 

Overall, we judge the possibility of persistence of BTV-8 in a mammalian or invertebrate host for 

longer than 5 years, in the absence of viral replication, followed by viral reactivation and subsequent 

onwards spread, to be implausible. Our data instead point to the release of a BTV-8 virus retained 

from the initial outbreak by other means as the cause of the second outbreak in France in 2015. 

Anthropogenic causes of virus outbreaks have been described before. Accidental virus release is 

thought to have been responsible for the 1977 influenza A H1N1 outbreak, caused by a virus which 

closely matched a variant circulating in the 1950s [54]. Likewise, the 1995 Venezuelan equine 

encephalitis subtype IC epidemic which was caused by a virus closely related to a strain circulating 

in 1962-64 [55]. For livestock pathogens, a localised outbreak of FMDV in the UK in 2007 was linked 

to virus escaped from research facilities [56].  

 

Our data cannot reveal the anthropogenic source from which BTV-8 was re-introduced in France in 

2015. We speculate that laboratory escape of virus preparations, such as the case of FMDV in the 

UK in 2007, is unlikely as BTV needs an insect vector for efficient transmission and we are unaware 

of any in-vivo insect experiments in France with BTV during that period.  However, due to specific 

animal husbandry procedures, there are important potential sources of frozen virus that apply to 

livestock viruses that are not present in viruses of most other animals, specifically the widespread 

use of bull semen for artificial insemination and embryo transfer in cows [57, 58]. BTV has been 

detected in the semen of viremic bulls and rams, can initiate infection in the mother and be 

transmitted vertically to the embryo [59, 60]. Additionally, contaminated embryos can cause 

transmission on implantation [61]. As such, both semen and embryos may represent potential 

sources of BTV infection. Contaminated frozen colostrum may also be a potential source, considering 

that oral transmission has been shown to be possible with BTV-8 [62]. However, it is not normal 

practice to keep colostrum frozen for a number of years. Interestingly, while international regulations 

specify that bull donors and semen that are exported internationally must be screened for various 

pathogens including BTV [63], this does not apply to premises trading only locally and carrying out 

private insemination procedures  [64]. Thus, semen from a BTV-8 infected bull could have been 
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collected or an embryo generated from an infected but asymptomatic animal and used years later 

without detection. The eventual use of this frozen animal product could have then led to the 

infection that caused the second Western European outbreak. 

 

We stress that the link between bull semen trade and embryo implantation in France and the BTV-8 

re-emergence in 2015 is only speculative. However, we have shown that the re-emergence of BTV-8 

in France in 2015 is unlikely to be due to cryptic continuing transmission and we can exclude a 

reintroduction from another endemic country. Thus, our data are incompatible with the two current 

dominant theories for explaining the 2015 outbreak [30]. The lack of accumulated mutations in the 

virus implies that there was either an ongoing persistent infection in the absence of viral replication 

for several years, or the virus was reintroduced by humans from material that had been frozen during 

the first outbreak. We argued the second of these explanations to be more likely. Our findings 

highlight new areas requiring thorough surveillance programmes for the control of infectious disease 

of livestock. In addition, our approach illustrates how unrecognised pathways of disease emergence 

can be revealed using pathogen genomic epidemiology.  

 

Methods 

Samples 

Blood samples from animals infected with BTV-8 were received from 10 European countries during 

the bluetongue outbreaks from 2006 to 2018. In some instances, samples analysed were viruses 

isolated in tissue culture from blood of infected animals. Table S1 provides the metadata related to 

the dataset used in this study. These include virus strain names, animal species of origin, 

geographical location and date of sampling. In addition, metadata include whether the viral genome 

sequence was obtained directly from clinical material (blood) or from an isolate in tissue culture, 

sequencing methods and GenBank accession number.   

 

RNA extraction and Illumina library preparation 

Total RNA was extracted from infected blood samples, and virus isolates using Trizol LS (Invitrogen, 

USA) and purified using Direct-zol RNA MiniPrep (Zymo Research, USA) as per manufacturer's 

protocol. RNA samples were treated with DNAse I (Ambion) and purified with 3X Agencourt 

RNAClean XP beads (Beckman Coulter, USA). Total RNA concentration was quantified using the Qubit 

Fluorimeter (Life Technologies, USA) and Qubit RNA HS Assay (Life Technologies, USA), while RNA 

integrity was assessed using Agilent 4200 TapeStation (Agilent, USA). In order to avoid cross-
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contaminations, RNA extractions, from virus isolates was performed separately from those of 

infected blood samples. Similarly, RNA extractions were carried out separately on the bases of 

geographical origin and year of collection of the samples. In addition, library preparations, target 

enrichment and sequencing runs (see below) were carried out also on separate days following the 

same criteria than above. Libraries from low and without measurable RNA (low input) were also 

prepared separately from those with measurable RNA (high input). Libraries were prepared for 

Illumina sequencing using the Illumina TruSeq Stranded mRNA HT kit (Illumina) using 5 μl of sample 

RNA (up to 250 ng of total RNA) according to the manufacturer's instructions. Briefly, after RNA was 

fragmented, it was reverse transcribed using SuperScript II Reverse Transcriptase (Invitrogen, USA) 

and random hexamers. Single strand cDNA was immediately converted to double stranded cDNA, 

cleaned-up with Agencourt® AMPure® XP magnetic beads (Beckman Coulter, USA), quantified using 

Qubit Fluorimeter and Qubit dsDNA HS Assay Kit (Life Technologies, USA) and size distribution was 

assessed using a 4200 TapeStation System with High Sensitivity D1000 Screen Tape assay (Agilent, 

USA). A-tailing was performed followed by adapters ligation. After a purification step, dual indexed 

libraries were PCR amplified and the purified PCR products were pooled in equimolar concentrations 

and sequenced using 150 paired end sequencing on MiSeq or NextSeq500 sequencers (Illumina USA).  

 

Targeted enrichment sequencing  

We carried out multiplexed viral targeted enrichment followed by Illumina sequencing using the 

NimbleGen SeqCap EZ system (Roche, USA), for improved viral detection from clinical material. This 

approach was followed in order to increase the number of BTV-8 samples from which we could 

obtain a complete viral genome sequence directly from clinical material, including those with very 

low amount of viral RNA. Libraries were prepared following the above described standard Illumina 

TruSeq Stranded mRNA protocol. They were quantified using Qubit Fluorometer and Qubit dsDNA 

high sensitivity (HS) Assay Kit (Life Technologies, USA). Quality and size distribution was validated 

using the High Sensitivity D1000 Screen Tape assay (Agilent) in a 4200 TapeStation System (Agilent, 

USA) and were normalized according to BTV viral load and mass. A 1000 ng aliquot of the pooled 

library was enriched using SeqCap EZ Developer Probes (Roche/NimbleGen) (see below), according 

to the manufacturer’s protocol. After a 14 cycle post enrichment PCR amplification, the cleaned PCR 

products were pooled and were sequenced with a 151-base paired-end reads on a NexSeq500, 550 

cartridge (Illumina, USA). Probes were designed using all BTV sequences available on NCBI Genbank, 

RefSeq, DNA Data Bank of Japan (DDBJ) and EMBL EBI databases (as accessed by October 2016). The 

resulting NimbleGen biotinylated soluble capture probe library (“BTV-Cap”), contains a probe set of 
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more than 500,000 probes, designed to minimise capture of Culicoides sonorensis, Bos taurus, Ovis 

aries, Capra hircus and Mesocricetus auratus genomes.  

 
 

Consensus calling 

All consensus calling was performed on a cluster running Ubuntu v. 14.04.5 LTS. In all cases, BAM 

and SAM files were handled using samtools v. 1.3 [65]. The R packages ggplot2 [66], seqinr [67], 

stringr [68], and vcfR [69] were all used in scripts at various points in the following section. Paired 

end raw reads were trimmed with Trim Galore! v. 0.4.0 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with a quality cut-off of 30. Any 

reads below 50 bp were discarded. Following this, any reads that were unpaired were discarded if 

they were under 100 bp. Overlapping reads were combined using FLASH v. 1.2.11 [70].  Reads were 

mapped using bowtie2 v. 2.3.4.2 [71] to a reference database containing all the segments of all the 

described strains of BTV in order to manually check for mixed infections. Read were allowed to have 

as many valid maps as could be found. Mapping statistics were generated with weeSAM v. 1.5 

(https://github.com/centre-for-virus-research/weeSAM) and transcripts per million for each target 

were then generated using eXpress v. 1.5.1 [72]. Separately, for the consensus generation, reads 

were mapped using Tanoti v. 9th July 2018 (https://github.com/vbsreenu/Tanoti/tree/master/src) 

against a reference BTV-8 genome from the European BTV-8 outbreak (GenBank accession numbers: 

JX680447-JX680456). Different software was used for the quality control and consensus building 

steps as bowtie2 generates metadata required for the downstream quality control steps which 

Tanoti does not. 

 

Variants from the BTV-8 reference were then called from the Tanoti alignment with lofreq* v. 2.1.2 

[73] with the minimum coverage of the filtering step set to 5 and all other parameters at their default 

values. Any variants from the reference with an allele frequency of greater than 0.5 were replaced 

into their positions in the reference to build a new reference sequence. Reads were then remapped 

to this new reference. This process was then repeated either 5 times or until the reference generated 

after the process was identical to the reference at the start of the last round of mapping. Reads were 

then mapped again against this new reference and ambiguities were called. A base was called 

unambiguously if the allele frequency of the dominant allele was greater than 0.75, otherwise the 

base was called ambiguously over all alleles with a frequency of greater than 0.05 using a bespoke 

script in R (Data S1). For both of these consensus sequences, positions were masked with “N”s if the 

coverage at the site was less than 5 separate paired end reads. 
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Final sequences were processed and annotated for submission to GenBank using an extension to 

the BTV-GLUE resource (http://btv-glue.cvr.gla.ac.uk). GenBank accession numbers for each of the 

sequences in our dataset are indicated in Table S1.   

 

Quality control 

A sequence showing evidence of mixed infection or contamination was discarded. Potential 

contamination and/or mixed infection were detected by finding sequences that met the following 

two criteria: i) visible numbers of reads mapping to serotypes other than BTV-8 or the closely related 

BTV-18 in segments 2 and 6; and ii) the presence of regions, which when aligned showed large 

numbers of unique SNPs and ambiguous nucleotides. In total, 8 samples were discarded due to 

mixed infection with different BTV strains and/or contamination. During quality control, segment 7 

from the sample FRA2008-28 was also removed, as it represented an obvious reassortment from a 

distinct BTV strain, but the rest of the sample was preserved. We used GiRaF v 1.02 [74] and MrBayes 

v 3.2.7a [75] on all the samples to test for the presence of less obvious reassortments between 

serotypes. Within the GiRaF algorithm, per segment trees were run for 1000000 iterations, with 

500000 iterations discarded as burn-in. All other parameters were left at their default values. No 

reassortment was detected, so we opted to use all segments in a single concatenated phylogenetic 

tree. However, it should be noted that, as there is little variation in many segments, our ability to 

detect reassortment between two distinct but phylogenetically related strains is correspondingly 

low. 

 

Phylogenetics 

Two separate phylogenetic analyses were performed, a maximum likelihood analysis performed in 

PhyML v. 20120412 [76] and a Bayesian analysis performed in BEAST v. 1.10 [77].  

 

Maximum likelihood analysis 

To explore the diversity of the outbreaks, we generated a maximum likelihood tree. All segments 

were concatenated into a single sequence and a phylogeny using the GTR+G+I nucleotide model was 

run in PhyML v. 20120412 [78]. All parameters were optimised by maximum likelihood. The 

algorithm was the best of NNI and SPR moves with 10 random starts with 1000 bootstraps being 

performed on the best tree found. A maximum likelihood tree containing all sequences was then 

run, using the same settings as the first, and 1000 bootstraps were performed on the best tree found 
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in those 12 starts. Given the observed short branch between the first and second outbreaks, this 

tree was then rooted at the optimal root found from the tree containing only the sequences from 

the first outbreak generated under the same settings, as calculated by TempEst v. 1.5.1 [79]. The 

TempEst rooting procedure also confirmed clock-like evolution for this dataset. 

 

BEAST analysis 

Using known break points, the sequence for each segment was split into the untranslated region, 

and the first, second and third codon positions of the coding sequence. In the 9th and 10th segments 

there are regions with overlapping open reading frames, these were also placed together in their 

own partition. Separate evolutionary models, linked across segments, were applied to each of these 

partitions. The segments shared a lognormal relaxed molecular clock [80]. Given the difficulty, 

caused by combinatorial explosion, of model selection when there are multiple partitions, we 

performed a pre-analysis model selection protocol. Each segment was concatenated and a model 

was chosen for each partition using jModelTest v 2.1.10 [81]. The best model by Akaike Infomration 

Criterion corrected for small sample size (AICc) that was implemented in BEAST 1.10 was used. This 

was a GTR model for the first codon position, a HKY for the second, GTR+G with 4 gamma categories 

for the third, K80 for the UTR and JC for the regions with overlapping ORFs. We used a GRMF skyride 

model [82] for the tree prior. When the sampling date was not exactly known, the age of the tip was 

estimated in the MCMC with a uniform prior over the period of uncertainty. All priors were left at 

their default values except for the mean of the lognormal distribution for the relaxed molecular clock 

which was given a lognormal(-7.6, 3) prior. In all cases ambiguous nucleotides were used in the tree 

likelihood. Two trees were run, one containing only the sequences from the 2015 outbreak, and one 

containing all sequences. The tree containing all sequences was used to reconstruct the sequence 

of the ancestor of all the viruses in the second outbreak. BEAST will reconstruct sequence even in 

locations where the majority of sequences show gaps in the alignment. As such, there were three 

nucleotides that we removed from the final reconstructed sequence corresponding to locations in 

the original multiple sequence alignment where all sequences but one had gaps. The BEAST XMLs 

for the two trees described above are available as Data S2. 

 

Downstream statistical analysis and figure generation 

Observed genetic distance from the full ML tree and sampling date were combined in R. When the 

exact sampling date was unknown, if the day within the sampling month was unknown, the date 

was fixed to the 16th of the month, and when the month was unknown, the date was fixed to the 
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midpoint of the year. General linear models were fitted to test if the evolutionary rate of the virus 

was the same between two outbreak in the glm function in base R. The models used a gamma 

distribution with an identity link. The regression equation for the first model was: Genetic distance 

from root ~ Date + Outbreak. The regression equation for the second model was: Genetic distance 

from root ~ Date + Outbreak + Date:Outbreak. After no evidence of was found of differential rates 

between the two outbreaks, the general linear model without the interaction was run in brms [83] 

to generate predictive intervals for Figure 4b. A normal(0, 10) prior was placed over the intercept, 

standard normal priors were placed over all regression coefficients and a gamma(0.01, 0.01) prior 

over the shape parameter. The normalised rank of the evolutionary rate of the long branch was 

calculated by; for each tree in the posterior, ranking the estimated evolutionary rate of each branch 

from slowest to fastest, extracting the rank for the long branch, subtracting 1 so that the minimum 

was 0, [83]then dividing by the number of branches minus 1, so that a number between 0 and 1 was 

generated. Figures used the following R packages: ggplot2 [66], ggtree [84], ggthemes [85], cowplot 

[86, 87], ggmap [87], viridis [88], tidybayes [89], lubridate [90], sp [91], raster [92], maptools [93], 

rgeos [94], rgdal [95], sf [96] and PBSmapping [97]. 
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Figure Legends 

 

Figure 1. Emergence and re-emergence of BTV-8 in Europe. Location and number of premises 

housing livestock infected with Bluetongue virus serotype 8 collected from “immediate reports” to 

the OIE (World Organisation for Animal Health). Data was accessed from the WAHIS database on the 

12th of July 2019. Immediate report data was provided by the OIE. Each point corresponds to one 

infected premise, with total counts for each year (n), with the first outbreak shown in purple and the 

second outbreak shown in orange. Please note that maps includes only immediate notification to 

the OIE and this is therefore a smaller number than the totality of affected premises during the 

outbreaks. In addition, France is shaded in 2009 and 2018 as France stopped providing immediate 

reporting, requiring location data, to the OIE. As such, the counts of infected premises from 2009 

and 2018 are not comparable to previous years as they exclude France, where the virus was 

widespread. Map adapted from tiles by Stamen Design, under Creative Commons (CC BY 3.0) using 

data by OpenStreetMap, under the Open Database Licence. 

 

Figure 2. Phylogenetic tree of 164 BTV-8 samples collected during the European outbreak between 

2006 and 2018. Maximum likelihood tree estimated in PhyML. The scale shows substitutions per site. 

Clades represented 700 or more times within 1000 bootstraps are indicated by a white circle. 

Samples from the first outbreak are shown with purple circles while samples form the second 

outbreak are shown with an orange circle. Note that an identical tree with labels corresponding to 

the individual samples is shown as Fig S1.  

 

Figure 3. Time-scaled phylogenetic tree of BTV-8 samples collected during the European outbreaks 

between 2006 and 2018. Maximum clade credibility time-calibrated phylogenetic tree generated in 

BEAST. The tree is scaled in years, with the final sampling date being October 2018. Clades with 

posterior support of 0.9 or higher are indicated by a white circle. Samples from the first outbreak 

are shown with a purple circle while samples from the second are shown with orange circles. The 

branches are coloured accordingly to their median evolutionary rate across the posterior (see 

heatmap within the figure). The long branch leading from the first outbreak to the second (in dark 

purple) shows the slowest evolutionary rate on the maximum clade credibility tree. The inset shows 

the posterior distribution of the normalised rank of the evolutionary rate of the long branch relative 

the other branches in the tree, as estimated from the lognormal relaxed clock. Values close to 0 

represent slow evolution relative to the rest of the tree, values close to 1 represent fast evolution 
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relative to the rest of the tree, and 0.5 represents the median branch evolutionary rate on the tree. 

This analysis show an unusually slow evolution of BTV-8 between outbreaks. See the methods 

section for the specifics of this calculation. Note that an identical tree with labels corresponding to 

the individual samples is shown as Fig S2. 

 

Figure 4. Lack of evolution of BTV-8 between the two European outbreaks. A. Graphic 

representation of nucleotide substitutions between the genomes of the earliest BTV-8 collected 

from the 1st European outbreak (BTV-8NET2006-04), the reconstructed ancestor of the second BTV-8 

outbreak (BTV-8FRA2015) and the most similar virus to the latter sequence present in our dataset (BTV-

8NET2007-3673). Substitutions are shown as a blue circle with numbers indicating the genomic position 

for each of the 10 genomic segments. Asterisks indicate those mutations inducing also an amino acid 

substitution. B. Genetic divergence of 164 BTV-8 samples collected from the two European 

outbreaks against their sampling date (circles). The regression lines from the best fitting linear model 

for each outbreak are shown in black. Error regions around the lines correspond to 50%, 80% and 

95% posterior predictive intervals. When the day was unknown, the date was fixed to the 16th of 

the month, and when the month was unknown, the date was fixed to the midpoint of the year. The 

inferred age of the ancestor of the second outbreak is shown in blue, with a 95% highest posterior 

density error. The dashed line indicates that a virus of the degree of divergence inferred for the 

ancestor of the second outbreak is consistent with virus from the first outbreak circulating in 2008. 
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