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Abstract :   
 
Pathogens are embedded in a complex network of microparasites that can collectively or individually alter 
disease dynamics and outcomes. Endemic pathogens that infect an individual in the first years of life, for 
example, can either facilitate or compete with subsequent pathogens thereby exacerbating or 
ameliorating morbidity and mortality. Pathogen associations are ubiquitous but poorly understood, 
particularly in wild populations. We report here on 10 years of serological and molecular data in African 
lions, leveraging comprehensive demographic and behavioural data to test if endemic pathogens shape 
subsequent infection by epidemic pathogens. We combine network and community ecology approaches 
to assess broad network structure and characterise associations between pathogens across spatial and 
temporal scales. We found significant non-random structure in the lion-pathogen co-occurrence network 
and identified both positive and negative associations between endemic and epidemic pathogens. Our 
results provide novel insights on the complex associations underlying pathogen co-occurrence networks. 
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in the first years of life, for example, can either facilitate or compete with subsequent pathogens 54 

thereby exacerbating or ameliorating morbidity and mortality. Pathogen associations are 55 

ubiquitous but poorly understood, particularly in wild populations. We report here on ten years 56 

of serological and molecular data in African lions, leveraging comprehensive demographic and 57 

behavioral data to test if endemic pathogens shape subsequent infection by epidemic pathogens. 58 

We combine network and community ecology approaches to assess broad network structure and 59 

characterize associations between pathogens across spatial and temporal scales. We found 60 

significant non-random structure in the lion-pathogen co-occurrence network and identified both 61 

positive and negative associations between endemic and epidemic pathogens. Our results provide 62 

novel insights on the complex associations underlying pathogen co-occurrence networks. 63 

 64 

Introduction 65 

 66 

Identifying and determining the nature of interactions between multiple pathogens is increasingly 67 

considered critical to understanding infectious disease dynamics (e.g., Pedersen & Fenton 2007; 68 

Graham 2008; Telfer et al. 2010; Johnson et al. 2015; Gorsich et al. 2018). Individuals are often 69 

co-infected by a diverse infra-community of pathogens, and interactions between pathogens can 70 

both alter infection patterns (Cattadori et al. 2008; Lass et al. 2013; Susi et al. 2015) and 71 

influence disease outcomes (Moss et al. 2008; Munson et al. 2008; Knowles 2011; Wejse et al. 72 

2015). Pathogens infecting individuals in the first years of life may impact infection by 73 

subsequent pathogens (Fenton 2008; Randall et al. 2013; Rynkiewicz et al. 2015; Aivelo & 74 

Norberg 2018; Budischak et al. 2018). For example, endemic pathogens that compete for the 75 

same resources as epidemic pathogens and can reduce the likelihood of infection (Randall et al. 76 

2013) or, conversely, facilitate infection via immune suppression (e.g., Geldmacher & Koup 77 

2012). The sequence in which pathogens infect an individual or ‘priority effects’ have been 78 

experimentally shown to be important in shaping co-infection dynamics in a variety of systems 79 

(e.g., Hoverman et al. 2013; Halliday et al. 2017), yet are rarely demonstrated in non-80 

experimental contexts. How priority effects and pathogen traits (e.g., transmission mode) affect 81 

the nature and frequency of associations between endemic and epidemic pathogens, ultimately 82 
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shaping pathogen infra-communities is a knowledge gap that has significant consequences for 83 

understanding patterns of infection (Munson et al. 2008; Telfer et al. 2010; Ezenwa & Jolles 84 

2015; Halliday et al. 2017). 85 

 86 

Quantifying associations between pathogens from observational data and inferring interactions 87 

from these patterns, however, is a methodological challenge (Fenton et al. 2014). Discriminating 88 

between positive (i.e., two pathogens are more likely to occur together) or negative associations 89 

(i.e., two pathogens are less likely to occur together) between pathogens in populations is 90 

complicated by the short time window that a pathogen is shedding (and thus detectable with 91 

molecular methods) and by potentially confounding host immune environments (Tompkins et al. 92 

2011). This is particularly the case for microparasites where pathogen detection often relies on 93 

serology, and, thus, without resampling the same individual, the precise timing of exposure 94 

cannot be estimated. Detection of pathogens that form chronic infections may be more 95 

straightforward as the infection is active for longer periods, but deducing pathogen associations 96 

is difficult without extensive longitudinal data (Fenton et al. 2014; Hellard et al. 2015). 97 

Identifying whether two pathogens are associated due to host-habitat preferences, the increasing 98 

likelihood of exposure with age, or are a product of a negative (e.g., competition) or positive 99 

(e.g., facilitation) interactions is methodologically challenging (Poulin 2007; Johnson & Buller 100 

2011; Fenton et al. 2014; Hellard et al. 2015; Clark et al. 2016). Identifying associations that 101 

could represent candidate interactions based on observational data can not only provide a basis 102 

for experiments to test potential interactions but also provide novel insights into pathogen infra-103 

community dynamics.  104 

 105 

Detecting associations between pathogens is also likely to depend on taxonomic and spatial 106 

scales that are seldom considered (Araújo & Rozenfeld 2014; Stutz et al. 2018). Studies 107 

commonly aggregate pathogen data to genus level, but associations between pathogens can be 108 

subtype or genotype-specific (e.g., Wejse et al. 2015; Benesh & Kalbe 2016; Brook et al. 2017). 109 

For example, individuals infected with human immunodeficiency virus subtype 1 (HIV-1) are 110 

four times more likely to become co-infected with tuberculosis compared to individuals with 111 

HIV-2 (Wejse et al. 2015). Beyond subtype or genus, genotype-specific associations have been 112 

demonstrated in snails infected by trematodes (Louhi et al. 2015) and in rodents infected by 113 
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Bartonella bacteria (Brook et al. 2017). Infra-community dynamics are also likely to vary with 114 

spatiotemporal scale. In general, associations between free-living species are more apparent at 115 

scales where interactions occur compared to broader spatiotemporal scales (Eltonian noise 116 

hypothesis; Peterson et al. 2011; Araújo & Rozenfeld 2014), but it is unclear if this is true for 117 

pathogens. Nonetheless, for cross-sectional datasets, important patterns may be missed unless 118 

multiple spatio-temporal scales are considered (Ovaskainen et al. 2017). To overcome these 119 

challenges, analytical approaches that can quantify associations between pathogens whilst 120 

controlling for potential confounding factors are required to assess the role of associations in 121 

shaping pathogen infra-communities. 122 

 123 

Recent applications of network theory to parasite community ecology provide an opportunity to 124 

move beyond the pairwise associations between two pathogens (Clark et al. 2016; Aivelo & 125 

Norberg 2018; Stutz et al. 2018). Network measures have frequently been used to study food 126 

webs but are increasingly applied to pathogen infra-communities where nodes are pathogens, and 127 

edges represent pathogen co-occurrences within the host (Vaumourin et al. 2015). Networks are 128 

modular if pathogens co-occur more frequently in particular groups, ‘nested’ if pathogens 129 

frequently share interaction partners across the network, or ‘segregated’ if the inverse is true 130 

(Strona & Veech 2015; Ulrich et al. 2017). If, for example, networks are segregated, targeted 131 

control of one ‘keystone’ pathogen may lead to co-extinction of other pathogens in a module 132 

(Pedersen & Fenton 2007; Säterberg et al. 2013). If a network is nested, perturbations to the 133 

pathogen infra-community may spread throughout the network (Griffiths et al. 2014). 134 

 135 

Although pathogen co-occurrence networks are valuable for quantifying broad structural 136 

patterns, they do not account for environmental or host factors, pathogen traits or differences in 137 

spatial or temporal scale. Joint species distribution models (JSDMs) fill this gap by 138 

simultaneously assessing environmental influences and interspecific co‐occurrences across 139 

multiple scales using hierarchical Bayesian mixed models (Warton et al. 2015; Ovaskainen et al. 140 

2017). Here we use both co-occurrence networks and JSDMs to examine the structure of 141 

pathogen-pathogen networks and quantify pathogen associations while controlling for 142 

environmental/host factors and scales. We include information on pathogen traits such as 143 

transmission mode to assess what role they played in the distribution of each pathogen. We 144 
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collate ten years of cross-sectional data on endemic and epidemic pathogens in 105 African lions 145 

(Panthera leo) as well as extensive host and environmental data from the Serengeti Lion Project 146 

(SLP, Packer et al. 2005). The SLP datasets provide a unique opportunity to understand 147 

pathogen co-occurrence networks in a wild population while controlling for group, individual 148 

and environmental characteristics. We use this data to ask the following interlinked questions at 149 

two levels of taxonomic resolution:  150 

 151 

(I) To what degree is the pathogens’ co-occurrence network of Serengeti lions nested or 152 

segregated?  153 

(II)  After accounting for environmental/host factors and spatio-temporal scale, is the type 154 

of endemic pathogen an individual is infected by early in life associated with 155 

exposure to epidemic pathogens later in life?  156 

(III)  Are there significant endemic-endemic or epidemic-epidemic pathogen co-157 

occurrences? 158 

Because we could not directly determine the order of infection events from cross-sectional data 159 

in isolation, we used age-prevalence relationships in combination with the natural history of each 160 

pathogen to estimate probable timing of events. We describe an analytical pathway that can 161 

assess broad network structure and quantify pathogen associations across multiple scales that can 162 

generally be applied to understand infectious disease dynamics. The co-occurrence network 163 

detects clusters of pathogen sharing amongst individuals and screens for disconnected nodes 164 

(pathogens that rarely co-occur with others), while the JSDM approach was used to quantify 165 

pathogen-pathogen associations. To assess the plausibility of these putative interactions, we 166 

compare our findings to similar mammalian pathogens in experimental studies. Detecting 167 

pathogen co-occurrences not only provides novel insights into pathogen infra-community 168 

dynamics but also helps aide surveillance efforts in the field and generate testable hypotheses 169 

that can be answered in laboratory experiments. 170 

Methods 171 

Pathogen data 172 

 173 
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Serological testing and quantitative PCR (qPCR) were performed to detect endemic and 174 

epidemic pathogens from blood samples taken from lions in the Serengeti National Park, 175 

Tanzania from 1984-1994. In total, 394 individuals were sampled throughout this period, but our 176 

analysis was restricted to the 105 individuals tested for the full suite of ten pathogens (Table 1: 177 

pathogen natural history; Table S1: number of individuals tested per year included in the 178 

analyses). Nomadic individuals (i.e. lions that were not resident in any pride) were excluded due 179 

to the difficulty of assigning environmental variables (see Confounding variables below). 180 

Serological data on canine distemper virus (CDV), feline calicivirus, parvovirus, and coronavirus 181 

has been published previously, except Rift Valley Fever (RVF) (Packer et al. 1999, see Table S2 182 

for assay details). To detect RVF exposure we conducted a plaque reduction virus neutralizing 183 

test (PRNT) that quantified virus neutralizing antibodies from serum following Scott et al. 184 

(1986) protocol.  185 

We used qPCR to identify nucleotides for feline immunodeficiency virus (FIVPle) and the 186 

protozoan pathogens in this study (Table 1). Three distinct subtypes of FIVPle

We categorized each pathogen as likely endemic or epidemic in the lion population: endemic 195 

pathogens were considered to be constantly circulating and often infecting the young while 196 

epidemic pathogens sweep through the population every few years infecting all age classes 197 

(Packer et al. 1999; Penzhorn 2006; Troyer et al. 2011). Many of the pathogens have been 198 

previously classified as endemic or epidemic (Packer et al. 1999). We supported our 199 

classification with age-prevalence plots (Fig. S1) and we plotted yearly prevalence (Fig. S2) for 200 

the pathogens not previously classified. Pathogens with a high prevalence at a young age (≤ 2 201 

y.o.) with little fluctuation across all years and age classes were considered to be likely endemic, 202 

whereas an increasing age-prevalence relationship and high temporal variation were classified as 203 

 co-circulate in 187 

Serengeti lions (Troyer et al. 2005, 2011; Antunes et al. 2008) and thus subtype specific qPCR 188 

was performed (see Troyer et al. 2004, 2005 for qPCR protocols). The resultant 300 base pair 189 

sequences from the pol gene were aligned and assigned to 21 operational taxonomic 190 

units/genotypes based on a 95% molecular similarity threshold (see Fountain-Jones et al. 2017 191 

for details). Lions also commonly get infected by a rich protozoan fauna including Babesia and 192 

Hepatazoon genera. We developed quantitative PCR protocols using density gel gradient 193 

electrophoresis to identify each protozoan species (see Munson et al. 2008).  194 
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more likely to be epidemic in this population. Feline coronavirus can have epidemic and endemic 204 

cycles, and it is challenging to assess which form the individual was infected with from 205 

serological data, but based on age-prevalence relationships we categorized coronavirus as an 206 

endemic infection (Fig. S1). Further, we used patterns of age-prevalence to infer the potential 207 

timing of infections. As most individual lions were likely to be infected by the pathogens we 208 

considered endemic within the first two years after birth (Troyer et al. 2011, Fig. S1), we assume 209 

that endemic exposure typically occurred prior to exposure by an epidemic pathogen. We 210 

partitioned the endemic pathogen data into two sets based on taxonomic resolution (high and 211 

medium). The high taxonomic resolution dataset encompassed FIVPle genotype and Babesia 212 

species data, whereas the medium resolution dataset aggregated FIVPle

Co-occurrence network  215 

 subtype information and 213 

Babesia data to genus level.  214 

 216 

We examined pathogen co-occurrence patterns to evaluate preferential associations among 217 

pathogens. We constructed co-occurrence networks for each taxonomic resolution as well as for 218 

pathogens tested for using qPCR and by serology in cases combining both lines of diagnostic 219 

evidence led to altered network structure. To do so, we first built an m × n matrix that described 220 

presences/absences (i.e., occurrences) of both endemic and epidemic pathogens across individual 221 

lions, where m was the number of individual lions and n the number of pathogens. By 222 

multiplying it by its transpose, we then created a summary n × n co-occurrence matrix that 223 

described, for each pair of pathogens, the number of observed co-occurrences across all 224 

individual lions. Pathogens detected infrequently in this lion population were included in this 225 

analysis to help screen for pathogens disconnected in the network. The co-occurrence matrix was 226 

used to evaluate which pathogens were carried by the same individuals utilizing a modularity-227 

based ‘‘greedy’’ approach (Clauset et al. 2004). Measures of modularity aim to determine the 228 

adequacy of different classification schemes in representing clusters and divisions in datasets; 229 

here, the clusters represented the co-occurrence of pathogens in individual hosts. Estimates of 230 

modularity were calculated for each possible classification by comparing the expected fraction of 231 

pathogens co-occurrence to random co-occurrences (Newman 2006). The classification with the 232 

highest modularity from all the generated classifications was selected.  233 
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We then computed a measure of network structure (Ɲ̅) and modularity index based on node 234 

overlap and segregation (Strona & Veech 2015; Ulrich et al. 2017). Ɲ̅ ranges from scaled from -235 

1 (entirely segregated network) to 1 (entirely nested network). These analyses were performed in 236 

R using the ‘igraph’ and ‘nos’ libraries (Csárdi & Nepusz 2006; Strona & Veech 2015). The co-237 

occurrence matrix was obtained from the incidence matrix using the graph.incidence and 238 

the bipartite.projection functions. The classification analysis was performed using the 239 

fastgreedy.community function in igraph (Csárdi & Nepusz 2006). 240 

Joint species distribution modeling 241 

 242 

Joint species distribution models (JSDMs) are a flexible multivariate extension of generalized 243 

linear mixed models that can examine how environment (and host) shape multiple species 244 

simultaneously across biological scales (Ovaskainen et al. 2017; Björk et al. 2018). JSDMs can 245 

quantify associations between species across scales using latent factor models to estimate 246 

species-species covariance for each random effect (Ovaskainen et al. 2017; Björk et al. 2018). 247 

We fitted JSDMs for both high and medium taxonomic resolution datasets, combining 248 

information on environmental and host covariates as fixed effects (see Confounding variables 249 

below for details), to the occurrence data for each of the pathogens. Pathogens detected fewer 250 

than five times were excluded from this analysis leaving ten pathogens in the medium taxonomic 251 

model and 17 in the high-resolution data set. Including pathogens with fewer than five 252 

occurrences may lead to spurious associations (Ovaskainen et al. 2017). We fitted all the JSDMs 253 

with Bayesian inference, using “Hierarchical Modelling of Species Communities” (Blanchet et 254 

al. 2018). For each analysis, we modeled the response pathogen co-occurrence matrix using a 255 

probit model based on the approach outlined in Ovaskainen et al. (2016). In contrast to the 256 

network approach summary, the JSDM co-occurrence matrix is a product of the pathogen-to-257 

pathogen variance-covariance matrix estimated for each random effect (e.g., pride-year) in the 258 

model. Each random effect (and thus each estimated co-occurrence matrix) measures a 259 

component of the variation in the response that is different than the other random effects and of 260 

the set of explanatory variables (fixed effects) considered in the model. In our models, we added 261 

individual (e.g., sex and age), pride, and environmental characteristics (see Confounding 262 

variables below) as fixed effects. Individual sampled, pride-year (i.e., which pride and year the 263 
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individual was sampled in), and year-landscape (i.e., what year was the individual sampled in the 264 

Serengeti) sampled were added as random effects. As pathogen traits may shape the distribution 265 

of each pathogen (e.g., similar environmental and host variables may shape tick-borne 266 

pathogens), we included traits such as pathogen type (see Table 1) in each analysis. We utilized 267 

the default priors (described in full detail in Ovaskainen et al. 2017) and ran the HMSC model 268 

twice using 3 million MCMC samples (the first 300 000 of which being burn-in). Each run was 269 

carried out using a different seed. Visual inspection of MCMC traces and the Gelman-Rubin 270 

diagnostic calculated to assess convergence. In addition, we made sure that the effective sample 271 

size (ESS) of each parameter was > 200.  272 

 273 

Confounding variables 274 

 275 

As part of the SLP, most of the individuals in this study have been regularly observed 276 

since birth (Mosser & Packer 2009). We selected 13 predictor variables that we thought were 277 

likely to be important for pathogen exposure and thus could confound possible associations 278 

patterns (Table 2). We included variables that captured individual variability (e.g., age at 279 

sampling), and pride characteristics including environmental variables (e.g., average vegetation 280 

cover of the pride's territory; see Table 2 for measurement details).  281 

Results 282 

 283 

The Serengeti lions were exposed to an average of 5 pathogens (two epidemic and three 284 

endemic, SD = 1); one individual had been infected by 9 of 10 pathogens (based on medium 285 

resolution data, Fig. S3). Cubs between 1 and 2 y.o. were often already infected with an average 286 

of 4 pathogens (SD = 1), with one 1.5 y.o cub positive for 5. All lions were qPCR positive for at 287 

least one protozoan species, and 25% of them were infected by all four protozoans tested.  288 

 289 

Pathogen co-occurrence networks are highly nested  290 
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 291 

The high taxonomic resolution summary network indicated a significantly nested architecture (Ɲ̅ 292 

= 0.74) with relatively low modularity (modularity index = 0.393, z = 3.307, p = <0.001) with 293 

three clusters (Fig. 1a). The largest cluster (green nodes) included all of the protozoans, epidemic 294 

pathogens, and some FIVPle genotypes, whilst the remaining two clusters consisted of FIVPle 295 

 302 

genotypes (Fig. 1a). When we modeled networks based on diagnostic test, the general pattern did 296 

not substantially change, with the exception that RVF clustered separately from the other viruses 297 

detected using serology. In both network formulations, phylogenetically similar genotypes of 298 

FIV did not cluster together (Fountain-Jones et al. 2017, see Fig. S5). In contrast, the medium 299 

resolution network was completely nested with no modularity (Ɲ̅ = 1, modularity index = 0, z = 300 

∞, p = 0) and no significant clusters (Fig. 1b). 301 

Strong associations between endemic and epidemic pathogens 303 

 304 

After accounting for environmental, individual and pride factors and scale, the JSDM analysis 305 

identified strong associations between pathogens (Fig. 2) that were not detected in the summary 306 

co-occurrence network. Including individual, pride-year and landscape-year scales in our co-307 

occurrence models was important as our ability to detect associations varied. At an individual 308 

and pride-year level, we detected strong associations between a small subset of epidemic and 309 

endemic pathogens. FIVPle B and H. felis were negatively associated with RVF (Fig. 2), and 310 

FIVPle

The strongest associations between endemic and epidemic pathogens were detected at the lowest 315 

spatial-temporal resolution (landscape-year). In the high taxonomic resolution model, pathogens 316 

separated into two groups with each group having a very similar association profile. One group 317 

was characterized by positive associations between the Babesia species, FIV

 B was also negatively associated with parvovirus (Fig. 2a/S6a). However, these 311 

associations could only be detected at medium taxonomic resolution. In contrast, at high 312 

taxonomic resolution, we identified positive associations between B. gibsoni and RVF that were 313 

not detected at medium-resolution.  314 

Ple C2, CDV, and 318 
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parvovirus. The other group was characterized by positive associations between two FIVPle 319 

genotypes (C1 & B2), coronavirus, H. felis and calicivirus (Figs. 2c/S6c). There were strong 320 

negative associations between pathogens in each separate group (e.g., CDV and FIVPle C1).  321 

Generally, the same associations held in the medium taxonomic resolution models (Fig. 2c/S6c), 322 

but with exceptions. For example, FIVPle C1 and C2 had opposing association profiles, but as 323 

FIVPle C1 had a higher prevalence (Fig. S7), C1 had the same overall association profile as 324 

FIVPle 

Associations between epidemic pathogens were rare. At the year-level, we detected positive 326 

associations between CDV and parvovirus with both pathogens negatively associated with 327 

calicivirus (Fig. 2c/S6c). In contrast, associations between the endemic pathogens were common, 328 

but the nature of the associations also differed at each taxonomic scale. For example, in the 329 

medium resolution model, we detected a positive association between H. felis and FIV

C.  325 

Ple C not 330 

found in the high-resolution model indicating that FIVPle subtype, but not genotype, was 331 

important for this association (Fig. 2b/S6b). Strikingly, we found that FIVPle subtypes had 332 

contrasting association profiles. At the individual level, FIVPle B and C were negatively 333 

associated with each other, and FIVPle C was positively associated with coronavirus, while 334 

FIVPle B was negatively associated with coronavirus (Fig. 2a/S6a). Both high and medium 335 

taxonomic resolution JSDMs had reasonable explanatory power (Tjur R2

Discussion 341 

 = 0.381 & 0.330, 336 

respectively). In both models, the landscape and host factors that explained the distribution of 337 

each pathogen were not predicted well by pathogen traits (See Fig. S8). See Fig. 3 for a summary 338 

of all of the associations detected across scales from our cross-sectional data and Figs. S9/10 for 339 

model details.  340 

 342 

Here we demonstrate non-random associations in the pathogens infecting wild African lions, 343 

with both negative and positive associations detected between endemic and epidemic pathogens. 344 

While there was minimal structure in the summary co-occurrence network (Fig. 1a), we 345 

uncovered structure after accounting for scale and controlling for potentially confounding 346 

environmental and host variables and scale (Fig. 2). Using age-prevalence relationships we could 347 
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assess the likely order of infection using cross-sectional data. We found that the particular 348 

endemic pathogen an individual is infected by as a cub may have consequences for which novel 349 

epidemic pathogen the individual is infected with later in life (Fig. 3). We emphasize that the 350 

approach used here can start to untangle pathogen infra-community relationships and identify 351 

potential endemic-epidemic associations in wild populations. These can then be compared with 352 

knowledge of pathogen pathogenesis and validated in-vitro in a laboratory setting. While clinical 353 

or laboratory studies of co-infection in lions are rare for good reason, the associations we found 354 

have clear precedence in similar pathogens co-infecting humans and represent plausible 355 

interactions. Our results not only provide new insights on pathogen community structure in the 356 

Serengeti lions but also provide a valuable framework for exploring pathogen co-occurrence 357 

networks and infra-community dynamics. 358 

 359 

Co-occurrence networks were highly nested with relatively low modularity, particularly at a 360 

medium taxonomic resolution. Nonetheless, RVF did cluster separately from the other pathogens 361 

tested via serology which potentially indicates that RVF, unlike the other epidemic viruses, has a 362 

distinct epidemic cycle with most of the interacting partners being more chronic pathogens. This 363 

is supported by the unique association profile detected in our JSDM analysis and is intuitive 364 

given that RVF is the only mosquito-borne pathogen that we sampled. Even though we sampled 365 

pathogens considered important for lion health, we lacked data on other potentially pathogenic 366 

bacteria, helminths, and fungi that the lions were exposed to or potentially infected by. Further, 367 

symbiont interactions can also be important in shaping pathogen dynamics (e.g., Halliday et al. 368 

2017) and could be considered in pathogen infra-community studies. These additional taxa may 369 

lead to further segregation in the network, as larger and more diverse networks typically show 370 

increased modularity and segregation (Thebault & Fontaine 2010; Sauve et al. 2014). Expanding 371 

sampling to construct a more complete microbe and macroparasite network would also capture a 372 

broader array of potentially facilitative and competitive associations (Ezenwa 2016; Aivelo & 373 

Norberg 2018). 374 

 375 
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After accounting for environment, host and scale, we found that the endemic pathogens were 376 

strongly associated with the epidemic pathogens and, based on mammalian lab-based 377 

experiments, suggest that these patterns represent plausible interactions between pathogens. For 378 

example, we detected negative associations between endemic pathogens (FIVPle B and H. felis) 379 

and RVF after accounting for differences between individuals. Coinfections between 380 

bunyaviruses like RVF and retroviruses are likely common in humans and wildlife, though there 381 

are surprisingly few studies addressing the topic. In contrast, relationships between dengue virus 382 

(a flavivirus) and HIV are relatively well understood. Flaviviruses and HIV share similar 383 

immune receptors that can inhibit HIV replication and the molecular machinery used to do so 384 

may be a viable way to control HIV infection (e.g., Xiang et al. 2009). Given the overall 385 

structural similarity of flaviviruses and bunyaviruses (Hernandez et al. 2014), it is possible that a 386 

similar mechanism underlies the association in lions between RVF and FIVPle that we observed, 387 

although we show that this association was subtype specific. If this was true, RVF might inhibit 388 

FIVPle

 391 

 B infection— counter to our assumption that endemic pathogens in our system infected 389 

each individual first (Fig. 3).  390 

The greatest number of associations between epidemic and endemic pathogens were detected 392 

when we included differences across years (year-landscape scale) in our analysis. These 393 

associations could represent plausible facilitative or competitive interactions. CDV and Babesia 394 

are well known to interact with high levels of Babesia infection magnifying the impacts of 395 

consequent T cell depletion caused by CDV infection leading to mortality of nearly 40% of the 396 

lion population in 1994 (Munson et al. 2008). We found that all tick-borne hemoparasites 397 

showed positive associations with CDV including B. leo (with insert) despite its low prevalence 398 

in 1993/4 (Fig. S9). Parvovirus was also positively associated with CDV, but this was likely due 399 

to similarities in timings of epidemics with a parvovirus epidemic in 1992 just before the 1994 400 

CDV epidemic (Packer et al. 1999). Parvoviruses are also immune suppressive, and so the timing 401 

of the parvovirus outbreak may also have contributed to the CDV/Babesia-induced mortality. 402 

The general negative relationship between FIVPle C and CDV/Babesia supports the theory that 403 

individuals infected by subtype C were more likely to die in the consequent Babesia/CDV 404 
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outbreak (Troyer et al. 2011). Thus, this negative association may not be due to competition 405 

between pathogens but rather to mortality.  406 

 407 

Our approach detected strong associations between the endemic pathogens also. For example, 408 

there were opposing associations between the FIVPle subtypes and coronavirus (Fig. 2). Negative 409 

associations between retroviruses and coronaviruses are rarely reported, yet there are plausible 410 

molecular pathways. HIV-1 and human coronaviruses (HCoV) share remarkably similar binding 411 

receptors (Chan et al. 2006) and some mild HCoV strains are even considered a viable vaccine 412 

against HIV (Eriksson et al. 2006). This may explain the negative association we detected for 413 

FIVPle B and coronavirus but does not explain the positive association between FIVPle C and 414 

coronavirus we detected across scales. The mechanism driving FIVPle subtype specific 415 

relationships with coronaviruses are unclear, and as coronaviruses infecting lions are also likely 416 

to be genetically diverse, examining the genetic structure of coronavirus may help untangle these 417 

associations further. In contrast, competitive associations between HIV strains are well 418 

characterized with HIV-1 found to outcompete HIV-2 for blood resources (Ariën et al. 2005). 419 

For FIVPle, even though co-infection is relatively common (Troyer et al. 2011) competition 420 

between subtypes could be important as there is anecdotal cell culture evidence that FIVPle B can 421 

propagate more rapidly than FIVPle

 423 

 C (Melody Roelke, unpublished data).  422 

There were also contrasting associations between the protozoan species. For example, the 424 

distribution of B. felis was not shaped by any other protozoan and in general, had a narrow 425 

association profile (Fig. 2), unlike the other Babesia species. For the individuals co-infected by 426 

protozoans, associations involving B. felis were also common, whereas co-infections involving 427 

H. felis and the other Babesia species varied in prevalence and composition (Fig. S9). Even 428 

though B. gibsoni and B. felis show similar age prevalence profiles (Fig. S1), the prevalence of 429 

B. felis over time was relatively stable compared to the other protozoa (Fig. S10). Differences in 430 

the host range for individual Babesia species and potential host differences in virulence may 431 

partially explain these patterns. For example, B. felis has only ever been detected in felids, 432 

whereas B. gibsoni has a much broader host range including canids (Penzhorn 2006). Generalist 433 
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pathogens may have greater pathogenicity as there can be reduced selective restraint on virulence 434 

particularly in ‘dead end’ hosts (Woolhouse et al. 2001). If more pathogenic species are more 435 

likely to interact with other pathogens compared to less virulent pathogens is an open question in 436 

disease ecology. Importantly, patterns like these would be missed without incorporating high-437 

resolution pathogen data.  438 

There are, however, limitations to this approach. The inability to distinguish mortality or 439 

correlated exposure (i.e., an individual is infected by multiple pathogens in the same 440 

transmission event) from negative associations is one of them, and careful interpretation of 441 

negative associations is necessary. Incorporating approaches such as structural equation models 442 

that explicitly include potential mechanisms that underlie candidate pathogen associations 443 

(Carver et al. 2015) could be a valuable additional step in future pathogen network studies. 444 

Another weakness is the inability to estimate the timing of these infections more precisely. For 445 

example, the negative association between RVF and H. felis could be due to temporal differences 446 

when ticks and mosquitoes emerge after rains. Years with higher rainfall increase mosquito 447 

abundance thus increasing RVF prevalence (Fig. S2) whereas ticks emerge en masse when rains 448 

follow a dry period potentially increasing H. felis prevalence (Munson et al. 2008). As rainfall 449 

was calibrated to the year of sampling rather than the age of infection (which could differ) the 450 

JSDM approach could not capture this variation. Studies using longitudinal data to quantify 451 

associations using a similar framework to ours (e.g., Telfer et al. 2010; Henrichs et al. 2016) will 452 

be beneficial as they are likely to provide more robust estimates of the order of infection in wild 453 

populations. Furthermore, we cannot quantify the importance of these associations in shaping 454 

pathogen distribution across scales compared to processes such as host density. Lastly, 455 

incorporating immune function and host resources in both the summary network and JSDM 456 

analyses are likely to provide mechanistic insight into pathogen network structure (Griffiths et al. 457 

2014). Higher resolution pathogen traits, such as duration of infection, are likely to provide 458 

further mechanistic insight into how and why pathogens co-occur as they do in free-living 459 

communities (Ulrich et al. 2017). However, given the daunting complexity of pathogen infra-460 

community dynamics, our two-step approach can assess broad network structure and identify 461 

useful candidate interactions between pathogens thereby reducing some of this complexity.  462 

 463 
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The high frequency of co‐occurrence and co-infection in lions – and the potential for specific 464 

associations to cause population decline – highlights the importance of understanding pathogen 465 

associations. The summary lion pathogen co-occurrence network was highly connected with both 466 

positive and negative associations between endemic and epidemic pathogens. Our findings 467 

indicate that the lion pathogen infra-community is influenced by a number of ecological factors 468 

and associations between pathogens. We identify useful associations between pathogens thereby 469 

reducing some of this complexity. More broadly, our work demonstrates how different network 470 

approaches can be combined to gain insights into the ecological factors underlying pathogen 471 

associations and how this can be applied to the study of pathogen communities in wildlife 472 

populations. In addition to these biological insights, the study highlights several critical areas for 473 

methodological improvement that can currently limit robust inference of pathogen associations 474 

from cross-sectional serological and qPCR data. Addressing these limitations is timely, given the 475 

ongoing threat of wildlife population decline, creating a need to integrate better molecular, 476 

ecological and network information for disease control. 477 
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 661 

Table 1: Traits of both endemic and epidemic pathogens in this study.  662 

Pathogen Type Trans. 

mode  

One 

host? 

Immune 

sup. 

Exposure 

timing?

Test 

type * 

Data type (binary) (categorical) (binary) (binary) (binary) (binary) 

EPIDEMIC       

Feline calicivirus 

(calicivirus) † 

Virus Direct/env N NE Epidemic 

year 

Serology 

Canine distemper 

virus (CDV) 

Virus Direct N Yes Epidemic 

year 

Serology 

Feline 

panleukopenia 

(parvovirus) 

Virus Vertical, 

direct/env 

N Yes Epidemic 

year 

Serology 

Rift valley fever  

(RVF) 

Virus Vector 

(mosquito) 

N Yes Throughout 

life# 

Serology 

ENDEMIC       
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Feline enteric 

coronavirus 

(coronavirus) † 

Virus Vector N U Epidemic 

year 

Serology 

B. gibsoni Protozoa Vector (tick) N NE < 2 y.o qPCR 

B. leo with    

insertion 

Protozoa Vector(tick) N NE Throughout 

life 

qPCR 

B. felis Protozoa Vector (tick) N NE < 2 y.o. qPCR 

Hepatozoon felis Protozoa Vector (tick) N NE < 2 y.o. qPCR 

Feline 

immunodeficiency 

virus  

FIVPle 

Virus 

A, B, and C 

and FIV 

genotypes A1, B1-

12, C1-C8 

 

Vertical/ 

direct 

Y Yes < 2 y.o. 

 

qPCR 

Trans. mode : Transmission mode (all pathogens can be horizontally transmitted). Immune sup.: Pathogen can 663 

suppress the immune system. Vertical: Vertical transmission is also possible. Env: Environmentally persistent. 664 

Direct: Transmission through host contact. Immune sup.: Immune suppression.*

 668 

: Likely time of exposure †: 665 

Determined by age-prevalence relationships (see Methods and Fig. S1) but can have endemic or epidemic variants. 666 

U: Unknown NE: No evidence. #: More likely after heavy rainfall (Fig. S2).  667 

Table 2: Details of the individual, pride-level and environmental predictors used in the joint 669 

species distribution models to help account for potential confounding factors. All variables were 670 

calculated based on the year of sampling.  671 

Predictor Type Measurement details Data 

Sex Individual Male or female. SLP data 

Age  Individual Age of lion when sampled (days). SLP data 

Number of 

immigrations  

Individual Number of prides an individual has 

immigrated into prior to sampling. 

SLP data 

Pride or 

coalition male? 

 

Individual Was the male involved in a coalition 

occupying multiple prides (binary)? 

SLP data 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



26 

 

This article is protected by copyright. All rights reserved 

Group size Pride Average number of individuals in 

pride two years†
SLP data 

 prior to sample 

collection. 

Despotic Pride Was the pride considered despotic at 

time of sample collection? 

SLP data 

Territory size 

 

Pride Based on location data over a two-year 

period based on utilization–

distribution curves with a 75% kernel. 

SLP data 

Territory 

overlap 

Pride What percentage of territory size 

overlapped with other prides. 

SLP data 

Habitat quality Pride Pride habitat quality score calculated 

across a two-year period.  

(Mosser et al. 2009) 

Number of 

neighbors 

 

Pride Number of individuals in neighboring 

prides. Neighboring prides had 

territory overlap. 

SLP data 

Yearly rainfall Environmental Yearly rainfall experienced in each 

pride territory based on weather 

stations in the plains and woodlands. 

(Sinclair et al. 2013) 

Average 

vegetation cover 

Environmental Average vegetation cover across the 

prides territory based on a 75% kernal. 

(Reed et al. 2009) 

Soil pH Environmental Average pH throughout the pride’s 

territory based on a 75% kernel. 

World Harmonized Soil 

Database (FAO & 

IIASA 2009). 

* We calculated this predictor two years prior to sampling to account for differences in individual status at a 672 

potential time of exposure or infection (e.g., individuals that had just immigrated into a pride when sampled were 673 

considered nomads as exposure or infection was likely to have occurred previously). †: We averaged over past two 674 

years to reduce the variability in pride counts as exposure was unlikely to have happened during the sampling year.  675 

 676 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



27 

 

This article is protected by copyright. All rights reserved 

 677 

Fig. 1: Pathogen summary co-occurrence network for a) high taxonomic resolution and b) 678 

medium taxonomic resolution data, where nodes are pathogens and edges reflect co-occurrence. 679 

Edges are shown only when there were ≥ 3 co-occurrences. Node colors reflect separate clusters. 680 

Edge weights are proportional to the number of co-occurrences. Pathogen labels in bold (in 681 

boxes) were considered epidemic. See Fig. S4 for networks fo pathogens detected via qPCR and 682 

serology separately.  683 
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 685 

Fig. 2: Pathogen-pathogen associations detected at (a) individual, (b) pride-year and (c) 686 

landscape-year level after controlling for individual, pride, and environmental variables in high 687 

and medium taxonomic resolution models. Blue represents negative correlations and red 688 

indicates positive associations. Only associations with posterior coefficient estimates ≥ 0.4 with 689 

95% credible intervals that do not cross 0 are shown. The light red line indicates the assocation 690 

between H. felis and CDV that was ≥ 0.4 in the medium resolution model but was below the 691 

threshold (0.38) in the high resolution model. Pathogens in bold and in boxes are the epidemic 692 

viruses (all other pathogens are likely endemic). This figure was drawn using the R package 693 

‘circleplot’ (Westgate 2016). See Fig. S6 for association matrices and Figs. S9/S10 for covariate 694 

partitioning and effect size.  695 
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Fig. 3: Summary of the strong positive (red line/arrows) and negative (blue lines/arrows) 698 

associations between endemic (grey circles) and epidemic (orange circles) pathogens in the 699 

Serengeti lions; dark-grey borders indicate protozoa. The direction of the red or blue arrows 700 

indicates the potential sequence of infection events. The black arrow along the X-axis represents 701 

age; the circles reflect the ages when lions were likely to be infected by each pathogen (based on 702 
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age-exposure data rather than longitudinal data, see Fig. S1). Dashed circles indicate major co-703 

occurrence clusters identified at the landscape-year scale.  704 
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