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Abstract :

Pathogens are embedded in a complex network of microparasites that can collectively or individually alter
disease dynamics and outcomes. Endemic pathogens that infect an individual in the first years of life, for
example, can either facilitate or compete with subsequent pathogens thereby exacerbating or
ameliorating morbidity and mortality. Pathogen associations are ubiquitous but poorly understood,
particularly in wild populations. We report here on 10 years of serological and molecular data in African
lions, leveraging comprehensive demographic and behavioural data to test if endemic pathogens shape
subsequent infection by epidemic pathogens. We combine network and community ecology approaches
to assess broad network structure and characterise associations between pathogens across spatial and
temporal scales. We found significant non-random structure in the lion-pathogen co-occurrence network
and identified both positive and negative associations between endemic and epidemic pathogens. Our
results provide novel insights on the complex associations underlying pathogen co-occurrence networks.
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I ntroduction

Identifying and@termining thenatureof interactiondbetweermultiple pathogens increasingly
consideredritical to understanding infectious disease dynamics (e.g., Pedersen & Fenton 2007,
Graham.2008; Telfest al. 2010; Johnsost al. 2015; Gorsiclet al. 2018). Individuals are often
co-infected by a diverse infra-community of pathogens, and interactions betwheggrat can
bothalter infectionpatterngCattadoriet al. 2008; Lasst al. 2013; Susét al. 2015)and
influencediseaseoutcomegMosset al. 2008; Munsoret al. 2008; Knowles 2011; Wejst al.
2015). Pathegensfectingindividuals in the first years dife may impact infectiorby
subsequent pathogens (Fenton 2008; Raedalll 2013; Rynkiewiczt al. 2015; Aivelo &
Norberg 2018; Budischadt al. 2018).For example, endemjzathogenshatcompete for the
same resourees apidemicpathogens andanreduce the likelihood of infectigfiRandallet al.
2013) or, converselyacilitate infectionvia immune suppresside.g., Geldmacher & Koup
2012).Thessequence in whigtathogens infect an individual or ‘priority effs’ have been
experimentally,shown to be important in shapingrdeetion dynamics in a variety of systems
(e.g., Hovermaret al. 2013; Hallidayet al. 2017),yet arerarelydemonstrateth non-
experimental contextglow priority effectsand pathogen traits (e.g., transmission madfet

the nature and frequency aésociations betweemdemic and epidemic pathogeualimately



83 shapng pathogennfra-communitiess a knowledge gap that has significant consequences for
84 understanding patterns of infection (Munsbal. 2008; Telferet al. 2010; Ezenwa & Jolles
85  2015; Hallidayet al. 2017).
86
87  Quantifyingassociations between pathogens from observational datafamahg interactions
88 from thesepatterns, howevers a methodological challengEentonet al. 2014). Dscriminating
89  between positive (i.e., two pathogens are more likely to occur togethmejativeassociations
90 (i.e., two pathogens are less likely to ocimgether)etween pathogens in populatiogs
91 complicated bythe short time window tlegtathogen is shedding (and thus detectable with
92  molecular.methods) and by potentially confounding imstuneenvironments (Tompkingt al.
93  2011).Thisis particularly the case for microparasites where pathogen detection often relies on
94  serology, and, thus, without resampling the same individual, the precise timing afirexpos
95 cannotbe estimatedDetection of pathogens that form chronic infectiore/ be more
96 straightforward as thiafectionis active fodonger periods, but deducing pathogesociations
97 is difficult without extensive longitudinal da(entonet al. 2014; Hellarcet al. 2015).
98 Identifying'whethetwo pathogensre associatedueto hosthabitatpreferencesheincreasing
99 likelihoodwef exposure with ager are a product of a negative (e.g., competition) or positive
100 (e.g., facilitation) interactions is methodologically challendidgulin 2007; Johnson & Buller
101  2011; Fentoret al. 2014; Hellarcet al. 2015; Clarket al. 2016). Identifyhg associations that
102  couldrepresent candidateteractionshased on observational data can not only provide a basis
103  for experiments to test potential interactions but also provide novel insights intograthfrg-
104  communitysdynamics.
105
106  Detecting,associatiorisetween pathogens also likely to depend on taxonomic and spatial
107  scaleghatareseldomconsideredAraudjo & Rozenfeld 2014; Stugt al. 2018). Studies
108 commonlyaggregat@athogerdata togenudevel, butassociations betwegrathogens can be
109  subtype or.genotypspecific(e.g., Wejset al. 2015; Benesh & Kalbe 2016; Broekal. 2017).
110 For example,.individuals infectedith human immunodeficiency virus subtype 1 (HlYare
111 four times more likely to lmmeco-infectedwith tuberculosis compared to individuagh
112 HIV-2 (Wejseet al. 2015). Beyond subtype or genus, genotgpeeific associations have been
113  demonstrated in snails infected by trematodes (Louhi et al. 2015) and in rodenéslibfect
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Bartonella bacteria (Brook et al. 201 Apfra-community dynamics are also likely to vary with
spatiotemporal scale. In general, associations betfmeetving species are more apparent at
scales where interachsoccurcompared to broadspatiotemporal scalégltonian noise
hypothesis; Petersost al. 2011; Aradjo & Rozenfeld 2014), biitis unclear if this is true for
pathogensNenethelessfor crosssectionaldatasetsimportant patterns maye missedinless
multiple spatietemporalscales are considetr¢Ovaskainemt al. 2017).To overcome these
challenges,analytical approaches thataqaamntifyassociations between pathogerisist
controllingfoerpotential confounding factoase required to assess the role of associations

shaping pathogen infreemmunities.

Recentapplications of network theoty parasiteeommunity ecadgy provideanopportunityto
move beyond the pairwise associations between two path(@anket al. 2016; Aivelo &
Norberg 2018; Stutet al. 2018). Networkneasure$ave frequently been used to study food
websbut are_ increasinglyppliedto pathogen infra-commumgswhere nodes are pathogeasd
edges represent pathogenamzurrences withithe host (Vaumouriret al. 2015).Networks are
modular if pathogenso-occurmore frequentlyn particulargroups,nested’ if pathogens
frequentlysshare interaction partnexgoss the networlor ‘segregatedf the inverse is true
(Strona_&Veech 2015; Ulrica al. 2017). If for examplenetworksare segregatethrgeted
control of one ‘leystone pathogen may lead to co-extinction of other pathogens in a module
(Pedersen.& Fenton 2007; Saterbetrgl. 2013). If a network is nested, perturbations to the
pathogen infrasommunitymay spread throughout the netw@@iffiths et al. 2014).

Although pathogen co-occurrence networks are valuable for quantifying broadrsiruct
patterns, they do not account for environmental or host factors, pathogeortdifitsrences in
spatial or temporal scale. Joint species distribution m@d8IBMs)fill this gap by
simultaneously/assessiegvironmentainfluences and interspecific @@currences across
multiple scales using hierarchical Bayesian mixed moifétstonet al. 2015; Ovaskained al.
2017).Here'we, use both eoccurrence netwoskandJSDMsto examine the structure of
pathogerpathogemetworksandquantify pathogeasso@tionswhile controlling for
environmental/hodactorsand scalesNVe includeinformation on pathogen traits such as

transmission mode to assess what role they played in the distribution of each patfegen.
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collate ten yearof crosssectional datan endemic and epidemic pathogem 105 African lions
(Panthera leo) as well as extensivieost and environmental data from the Serengeti Lion Project
(SLP,Packeret al. 2005) The SLP datasepsovide a unique opportunity to understand
pathogen co-occurrence networks in a wild populatibite controlling for group, individual

and environmental characteristics. We use this tdedakthe following interlinked questioret

two levels of taxonomic resolution

() To'what degree is the pathogeng‘occurrence networeif Serengetlions nested or
segregatedl

(I Afteraccounting foenvironmerdl/host factorandspatictemporalscalg is thetype
of endemicpathogen an individuas infectedby early in lifeassociated with
exposure tepidemicpathogengater in life?

(1 Are theresignificantendemieendemic or epidemiepidemic pathogen eo

occurrencs?

Because we could not directly determihe order of infection events from crossetional data

in isolation,we used age-prevalence relationships in combination with the natural histoch of ea
pathogen to eStimate probable timing of eveWs.describ@nanalytical pathway that can
assesbroadnetwork structure and quantify pathogessociationacross multiple scales thedn
generdly be appliedo understanthfectious disease dynamicghe ceoccurrence netark
detects clusters of pathogen sharing amongst individuals and screens for discbnoees
(pathogens that rarely co-occur with othevd)ile theJSDMapproach was used to apntidy
pathogerpathogerassociations. To assess the plausibility of these putative interactions, we
compare.our.findings to similar mammalian pathogens in experimental siDdiesting
pathogen cmeeurrence not only provides novel insights into pathogen infra-community
dynamicsbut alsahelps aide surveillance efforiis the field andyenerataestablenypotheses
that carbe answereth laboratory experiments.

Methods

Pathogen data
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Serological testing anguantitative PCRJPCR were performed to deteehdemicand
epidemicpathogengrom blood samples taken from lionsthe Serengetiational Park,
Tanzanidrom 1984-1994. In total, 394 individualgere sampledhroughout this period, but our
analysis was restrictad the105 individuals tested for the full suite teh pathogensTable 1
pathogen natural historJable S1 number of individualsested per yeancluded in the
analyses Nomadic individualsi(e. lions that were not resident in any pridere excludediue
to the difficulty of assigning environmental variables (Geafounding variables below).
Serologicaldataon canine distemper virus (CDV), feline calicivirus, parvoviarg]coronavirus
has beenpublished previoustxceptRift Valley Fever (RVF)Packeret al. 1999, see Table S2
for assay details)o detect RVF exposure veenducted a plaque reduction vimeutralizing
test PRNT)sthat quantified viruseutralizingantibodies from serurollowing Scottet al.

(1986) protocol:

We usedyPCRto identify nucleotides for feline immunodeficiency virdalY pie) and the
protozoan pathogens in this studywble 1) Three distinct subtypes of F¥ co-circulate in
Serengetiions (Troyeret al. 2005, 2011; Antunest al. 2008) and thus subtype specific gPCR
was performed,.(see Troyetral. 2004, 2005 for gPCR protocols). The resultant 3xepair
sequenceBom thepol gene were aligned and assigned to 21 operational taxonomic
units/genotypes based on a 95% molecular similarity threshold (see Fountaietbn2317
for details) Lions also commonly get infected by a rich protozoan fauna inclig#besia and
Hepatazoon generaWe developedjuantitativePCR protocols using demgigel gradient
electrophoresif identify each protozoan species (see Mungai. 2008).

We categorize@ach pathogen dikely endemiocor epidemicin thelion population endemic
pathogens were considered to be constamttyllatingand often infecting the young while
epidemic pathogersveep through the populatienery few years infecting all age classes
(Packeret al. 1999; Penzhorn 2006; Troyeral. 2011). Many of the pathogens have been
previously classified as endemic or epide(®ackeret al. 1999). We supported our
classification with agerevalence plots (Fig. S1) and pietted yearly prevalence (Fig. 5r

the pathogens not previously classifiBdathogensvith a highprevalencet a young age<(2

y.0.) with little fluctuation across ajlearsandage cassesvere considered to be likely endemic,

whereas an increasing ageevalence relationshignd high temporalariationwere classifiecs
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more likely to be epidemic in this populatidfeline coronavirus can haepidemicand endemic
cycles andit is challengimg to assess which form the individwedsinfected withfrom
serological data, but based on ggevalence relationships we categorizedonavirusas an
endemic infection (Fig. S1lrurther, we used patternsadeprevalenceo inferthe potential
timing of infections As most individual lions were likely to be infected by the pathogens we
considere@ndemicwithin the first two years after birifTroyer et al. 2011, Fig. Slyye assume
thatendemicexposure typically occurrpdor to exposurdy anepidemicpathogenWe
partitionedthe"endemipathogen data into twaetsbased on taxonomic resolution (high and
medium) The high taxonomic resolutiodataseencompassefllV pi. genotype andabesia
species datagwhereas thedium resolutiordataset aggregatédV pie subtypenformationand

Babesia datatorgenudevel.

Cosoceurrence network

We examined«pathogen amcurrence patterns to evaluate preferential associations among
pathogensWesconstructed coccurrence networks for each taxonomic resolution as well as for
pathogens,testefr usinggPCR and by serology in caseombining both lines of diagnostic
evidence.led to altered network structure.do so, we first builtmm x n matrix that described
presences/absences (igccurrences) of both endemic and epidemic pathogens across individual
lions, where m was the mober of individual lions and n the number of pathogens. By
multiplying#it“by its transpose, we then created a summakyn co-occurrence matrix that
described, *for" each pair of pathogens, the number of obserwedcooences across all
individualilions. Pathogensietected infrequentlyn this lion population were included in this
analysisto help screen for pathogens disconnected in the netbelco-occurrence matrix was
used to evaluate which pathogens were carried by the same indiwilialsg a modularity

based “greedy” approacfClausetet al. 2004) Measures of moduldyi aim to determine the
adequacy.of different classification schemes in representing clusters and divisions irs;dataset
here, theclustersrepresented the emccurrence of pathogens in individual hosts. Estimates of
modularitywere calculatedor each paosible classification by comparing the expected fraction of
pathogengo-occurrence twandomco-occurrencegNewman 2006) The classificationwith the

highest modularity from all the generated classifications was selected.
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We then computed a measure of network structdyed modularity index based on node
overlap and segregation (Strona & Veech 2015; Ukich. 2017).N ranges fronscaled from

1 (entirely segregated networlg 1 (entirely nested networklheseanalysesvere performed in

R using theigraph and ‘nos’libraries(Csérdi & Nepusz 2006; Strona & Veech 2018)e co
occurrence matrix was obtained from the incidence matrix usingrthph. i nci dence and

thebi par ti.te. proj ecti on functions. The classification analysis was performed using the

fast greedy. comruni ty function inigraph(Csardi & Nepusz 2006).

Joint spegei es distribution modeling

Joint species distribution models (JSBMre a flexible multivariate extension of generalized
linearmixed models that can examine hemvironment (and host) shapriltiple species
simultaneously.across biological scal@wvaskainen et al. 2017; Bjork et al. 2018DMs can
guantify associations between species across scales using latent factor models to estimate
speciesspecies covariance for each random eff@staskainen et al. 2017; Bjork et al. 2018).
We fitted JSDMS for both high and medium taxonomic resolution datasets, combining
informationsen environmental and host covariates as fixed effects (see Confoundhbtegari
below for-details), to the ocaence data for each of the pathogens. Pathogens detected fewer
than five times were excluded from this analysis leavingp&hogens in the medium taxonomic
model and\17 in thkigh-resolutiondata setincluding pathogens with fewer than five
occurrence'may lead to spuriowssociationgOvaskaineret al. 2017).We fitted all the JISDMs
with Bayesianfinference, using “Hierarchical Modelling of Species Communities” (Blagichet
al. 2018) For each analysis, we modekbe@ response pathogea-occurrence matrixising a
probit model based on the approach outlined in Ovaskairaén(2016). In contrast to the
network appoach summary, the JSDM-o@currence matrix is a product of the patheggen
pathogen varianceevariance matrix estimated for each random effect (e.g.,-peae in the
model. Eaeh'random effect (and thus each estimated@arence matrix) measures a
componentofithe variation in the response that is different than the other randosaefteot
the set of explanatory variables (fixed effects) considered in the nhodeir modelsye added
individual (e.g., sexand age)pride, and environmental characteristics (see Confounding
variables below) as fixed effects. Individual sampled, pride-year (i.e., whadhgnd year the
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264 individualwas sampledh), and yealandscapéi.e., what year was the individusampledn the

265 Serengeti) sampledere addecs random effecté\s pathogen traits may shape the distribution
266  of each pathogen (e.g., similar environmental and host variables may shdpmniek-

267 pathogens)ive includedraitssuch as pathogen typseg Table Ylin each analysidVe utilized

268 the default priors (described in full detail in Ovaskaisea. 2017) and ran the HMSC model

269  twice using.3 million MCMC samples (the first 300 000 of which being burn-in). Each run was
270 carried 'out'using a different seddsualinspection of MCMC traceandthe Gelman-Rubin

271  diagnosticcalculatedo assess convergence. In addite made sure that the effectsample

272 size (ESS) of each parameter was > 200.
273

274  Confounding variables
275

276 As part'of the SLP, most tifieindividuals in this study haveeen regularly observed

277  since birth (Mosser & Packer 2009Ye selected 3 predictor variableshat we thought were

278 likely to beimportant for pathogen exposure and thus could confousdipleassociations

279  patterngTable:2) We includedvariablesthat capturedndividual variability (e.g., agat

280 samplingzandspride characteristics including environmental variables (e.g., average vegetation
281  cover of thepride'sterritory; see Tabl& for measuement details).

282 Results
283

284  The Serengeti lions were exposed to an averaggathogenst{vo epidemicand three

285 endemi¢SD.= 1) one individual had been infected by®10 pathogensk{ased on medium

286  resolution data, Fig. S3). Cubstween 1 a2 y.o.were ofteralready infected with an average
287  of 4 pathogens (SD %), with one 1.5 y.o cub positive for All lions were gPCR positive for at
288 least one protozoan speciaad25% of them were infected by all foprotozoans tested.

289

290 Pathogen co-occurrence networks are highly nested
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The high taxonomicesolution summarpetworkindicateda significantly nestedrchitecturgN

= 0.74)with relatively low modularitymodularity index = 0.393, z = 3.307, p = <0.001) with
three clusters«(Fig. 1a) h€ largest cluster (green nodesjluded all of the protozoanspidemic
pathogensandsoeme FI\be genotypeswhilst the remaining two clusters consisted of iV
genotypes (Fig. 1aywhen wemodelednetworks based aiagnostic test, thgeneral pattern did
not substantially changevith the exception that RVF clustered separdtemy the other viruses
detectedusingserology. In both network formulationbyfmgenetically similar genotypes

FIV did noteeluster together (Fountain-Joeeal. 2017, see Fig. S5 contrastthe medium
resolution network wasompletelynestedwith no modularity N = 1, modularity index = 0, z =

o, p = 0) andne.significant clusters (Fig. 1b).

Strong associations between endemic and epidemic pathogens

After accounting for environmental, individual and pridetorsand scalethe JSDM analysis
identified-strongassociations betwegrathogengFig. 2)thatwere not detecteith thesummary
co-occurrence networkncluding individual, pridesear and landscapgear scales our co-
occurrence'modelsas important as our ability to detect@sations vaied. At an individual
and prideyearlevel, we detectedstrong associations betwearsmall subset of epidemand
endemicpathogens-1V pe B andH. feliswere negatively associatedth RVF (Fig. 2),and
FIVpie B was also negatively associated with parvovirus (Fig. 29/86wever these
associationsould onlybe detectedt medium taxonomic resolutiolm contrastat high
taxonomicresolution,we identified positiveassociations betwedh gibsoni and R thatwere
not detecte@tmedium-resolution.

The strongest associations between endamilepidemicpathogensvere detectedt the lowest
spatialtemporal resolution (landscape-year). In the high taxonomic resolution motelgeas
separated into twgroups with each group having a very similar association profileg@up

was characterizebly positive associations between Babesia species, FI¥ C2, CDV,and
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parvovirus. The other group wekaracterizetby positive associations between two Bl
genotypes (C1 & B2), coronavirud, felis andcalicivirus (Figs. 2c/6c¢). There were strong
negative associations between pathogens in each segranape(e.g., CDV and FIM. C1).
Generally, the same associations held in the umedaxonomic resolution models (Fig. 2c£}6
but with exceptionsFor exampleFIVpe C1 and C2 had opposing association profiles, but as
FIVpie C1 hadahigherprevalencdFig. S7), C1 had the sanwverall association profile as
FIVpiC:

Associations betweegpidemicpathogens were rare. At tigearlevel, we detected positive
associationssbetween CDV and parvovirus with both pathogens negatively assoitiated w
calicivirus (Fig. 2c/8c). In contrast, associations between the endpatltogens wereommon,
but the nature.of thassociations also differed @ach taxonomic scale. For example, in the
medium reselution modelve detected a positive association betwdefelis and FIVke C not
found in thehightresolutionmodel indicating that FlV. subtype, but not genotyp&as
importantfor this association (Fig. 2b/S6b). Strikingly, we found thatdelSubtypes had
contrasting association profiles. At the individual le¥dVp,. B and Cwere negatively
associateavith.each otherandFIV p C waspositively associated with coronavirugjile

FIV pe B was negatively associated with coronaviffeg. 2a/S6a). Both high and medium
taxonomicrresolution JSDMs had reasonable explanatory power (TjOR81 & 0.330,
respectively)ln both models, the landscape and host factors that explained the distribution of
each pathogen were not predicteell by pathogen traité€See Fig. 8). See Fig. 3 for a summary
of all of the associations detected across sdales our crosssectional datand Figs. S9/16@r

model details

Discussion

Here we demonstrate nsandom associations in the pathogens infecting wild African lions,
with both'negative and positive associations detected between endemic andcepalbagens.
While there wasninimal structure in the summary -@currence network (Fig. 1a), we
uncovered structure after accounting for scale and controlling for potectaligunding

environmental and host variables and scale (FidJ@)g ageprevalence relationshipge could
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assesthe likely order of infection using cross-sectional data. We foundrbgidrticular

endemic pathogen an individual is infected by as a cub may have consequencesfoowdlic
epidemic pathogen the individualirgectedwith later in life (Fig. 3). Weemphasizehat the
approach used here can start to untangle pathogen infra-community relationshg@enafyd i
potential endemiepidemic associations wmild populations. These can then be compared with
knowledge, of pathogen pathogenesis and validatedro in a laboratory setting/Vhile clinical

or laboratory'studies of co-infection in lions are rare for good reason, theatissscive found
have clearprecedence in simip@thogengo-infectinghumans and represent plausible
interactions Our results not only provide new insights on pathogen community structure in the
Serengeti lions,but also provide a valuable frameviariexploring pathogen coecurrence

networks and infraommunity dynamics.

Co-occurrence networksere highly nestedith relatively low modularityparticularlyat a
medium taxenamic resolutioflonetheless, RVF did cluster separatedyn the other pathans
tested via serelogy which potentially indicates that RVF, unlike the othderem viruses, has a
distinct 'epidemic cycle with most of the interacting partners being more chronic pathdgsens.
is supportedby the unique association profile detected in our JSDM analysis antive int
given that RVF is the only mosquito-borne pathogen that we sampled. Even thosgimmled
pathogens.considered important for lion health lacked datan other potentially pathogenic
bacteria, helminthgndfungi that the lions were exposed to or potentially infected by. Further,
symbiont interactions can also be important in shaping pathogen dynamics (e.daytetdi.
2017) and could be considered in pathogen infra-community stdtiese additional taxa may
lead to further segregation in the networklaagerand more diverse networks typically show
increased modularity and segregat{®hebault & Fontaine 2010; Saustal. 2014). Expanding
sampling to_construct morecomplete microbe and macroparasite network would also capture a
broader array‘of potentially facilitative and competitive associatioren(iaz 2016; Aivelo &
Norberg 2018).
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After accounting for environment, host and scale, we found that the endemic pathegens w
strongly associated with the epidemic pathogenslzasktd on mammalian lddased
experimentssuggest thahese patterns represent plausible interactions between pathbgens
example, we detected negative associations between endemic pathogep®8(&hdH. felis)
and RVF after.accounting for differences between individuals. Coinfectionsdret
bunyaviruses like RVF and retroviruses are likely common in humans and wildtitegh there
are surprisinglyfew studies addressing the topic. In contrast, relatiobgitvpsen dengue virus
(a flavivirus)yand HIV are relatively well understood. Flaviviruses and $hate similar
immune receptars that can inhibit HIV replication and the molecular machireshytaslo so
may be a viable way to control HIV infection (e.g., Xiatgl. 2009). Given the overall
structural similarity of flaviviruses and bunyavirugelernandezt al. 2014),it is possible that a
similar mechanism underlies thssociation in lions between RVF and EiMhat we observed,
although we show that this association was subtype specific. If this was\aeight inhibit
FIV pie B infection— counterto our assumption that endemic pathogens in our system infected

eachindividualdfirst (Fig. 3).

The greatest number of associations between epidemic and endemic pathogens were detected
when we included differences across years (lgaiscape scale) in our analysis. These
associations could represent plausible facilitative or competitive interadfibivsandBabesia
are well knewn,to interact with high levels Bdbesia infection magnifying the impacts of
consequent.T«cell depletion caused by CDV infection leading to mortality of #&&dgf the
lion population in 1994 (Munsoet al. 2008). We found that alick-bornehemoparasites
showed positive associations with CDV includBigeo (with insert) despite its low prevalence
in 1993/4 (Fig. S9). Parvovirus was also positively associated with CDV, but thigkelg due
to similarities in timings of epidemics with a parvovirus epidemic in 1992 justd#ier1994
CDV epidemic (Packest al. 1999) Parvoviruses are also immune suppressindso the timing
of the parvovitus outbreak may also have contributed to the Bibeéia-induced matality.

The general negative relationship betweendel€ and CDVBabesia supports the theory that

individuals infected by subtype C were more likely to die in the consegabedia/CDV
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outbreak(Troyeret al. 2011). Thus, this negative association may not be due to competition

between pathogens but rather to mortality.

Our approach.detected stromgsociations betwedhe endemic pathogens also. For example,
there wer@pposingassociations between the FRysubtypes and coronavirus (Fig. 2). Negative
associations'between retroviruses and coronaviareesrely reported, yet there are plausible
molecularpathways. HIV-1 and human coronaviruses (HCoV) share remarkaibdy binding
receptorgChanet al. 2006) and some mild HCoV straingaven considered a viable vaccine
against HIV(Erikssonet al. 2006).This may explain the negative association we detected for
FIV pe B and coronavirus but does not explain the positive association betwegn@And
coronavirus waletectedacross scales. The mechanism drivingde $ubtype specific
relationships with coronaviruses are unclear, and as coronaviruses infectingdiafsodikely
to be genetically diverse, examining the genetic structure of coronavirusefpayntangle thee
associationssfurther. In contrast, competitigsociations betwedtlV strainsare well
characterizeavith HIV-1 found to outcompete HIV-2 for blood resour¢Asén et al. 2005).

For FIVpiemeven thogh cainfection is relatively commo(irroyeret al. 2011)competition
between subtypes could be importastthere is anecdotal cell culture evidence thapgB/can

propagate more rapidly than R\ C (Melody Roelke, unpublished data).

There werelse’contrasting associations between the protozoan species. For example, the
distribution ofB. feliswas not shaped by any other protozoan argeireralhad a narrow
association profile (Fig. 2), unlike the otligabesia species. For the individuals aafected by
protozoans, associations involviBgfelis were also common, whereasiofections involving

H. felis and the. otheBabesia species varied in prevalence and composition (Fig. S9). Even
thoughB. gibsoni andB. felis show similar age prevalence profiles (Fig. S1), the prevalgice
B. felis overtime was relatively stable compared to the other protozoa (Fig. S10)eits in
the host range for individu8labesia speciesand potential host differences in viencemay
partially explain these patterns. For exampldglis has only ever been detected in felids,

whereadsB. gibsoni has a much broader host range including canids (Penzhorn B®ralist
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434  pathogens may have greater pathaggnas there can be reduceelective restraint on virulence

435 particularly in ‘dead end’ hosts (Woolhousteal. 2001) If more pathogenic species are more

436 likely to interactwith other pathogens compared to less virulent pathogens is an open question in
437  disease ecologymportantly patterns like these woulte missedvithout incorporatindnigh-

438  resolution pathogen data.

439  There are, however, limitations to this approach. Thbility to distinguish mortality or

440 correlatediexposure€., an individual is infected by multiple pathogemshe same

441  transmission event) fromegative associations @me of them, and careful interpretation of

442  negative associations is necessary. fipoating approaches such as structural equation models
443  that explicitly include potential mechanisms that underlie candidate pathogen associations
444  (Carveret al:2015) could be a valuable additional step in future pathogen network studies.
445  Another weakness is the inability estimate théming of these infections more preciseor

446  example, the negative association between RVAHaiidis could be due to temporal differences
447  when ticks and mosquitoes emerge after raflears withhigher rainfall increase mosquito

448  abundance thuacreasingRVF prevalence (Fig. S2) whereas ticks emergeiasse when rains
449  follow a.dry.periodootentiallyincreasingH. felis prevalencéMunsonet al. 2008).As rainfall

450 was calibratedostheyearof sampling rather than ttageof infection (which could differ) the

451  JSDM approach could not capture this variation. Studies using longituidirzabd quantify

452  associations using a similar framewado ours(e.g., Telferet al. 2010; Henrich&t al. 2016)will
453  be beneficial'as they are likely to provide more robust estimates of the ordesotibmi wild

454  populations. Furthermore, we cannot quantify the importance of these associati@agsng s

455  pathogen distribution across scales compared to processes such as host dehsity. Last

456  incorporating.immune function and host resources in both the summary network and JSDM
457  analysesrarkkely to provide mechanistic insight into pathogen network strugtarifiths et al.
458  2014). Higher resolution pathogen traits, such as duration of infectidikedyeto provide

459  further mechanistic insight into how and why pathogens co-occur as they dolimifrge-

460 communitieqUlIrich et al. 2017). However, given the daunting complexity of pathogen infra-
461  community dynamics, our twstep approach can assbssad network structure and identify

462  useful candidate interactions between pathogens thereby reducing some of piéxitpm

463
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The high frequency of eoccurrence and emfection in lions — and the potential for specific
associations to cause population decline — highlights the importance of understarithggrmpat
associations. The summary lion pathogetoccurrence networkwas highly connectedith both
positive and negative associations between endemic and epidemic pathogens. Our findings
indicate that:the lion pathogen infra-commungtynfluencedoy a number oecological factors
and associations between pathogens. We identify ussgotiationdetween pathogens thereby
reducing some-of this complexity. More broadly, our work demonstrates how wiiffetsvork
approaches€an be combined to gain insights into the ecological factors undextiimgep
associations ankow this carbe appliedo the study of pathogen communities in wildlife
populations. Imaddition to these biological insights, the study highlights sevécall @ieas for
methodological improvement that can currently limit robust inference of patlasgeniations
from crosssedional serological and gPCR data. Addressing these limitations is timely, given the
ongoing threat of wildlife population decline, creating a neadtegrate bettanolecular,

ecological'and network informatidar disease control.

Acknowledgements

N.M F-J.andMEC werefunded by National Science Foundation (DEB-1413925 and 1654609),
the University of Minnesota’ Office of the Vice President for Research and Academib Healt
Center Seed Grant, and the Cooperative State Research Service, U.S. Departieculaira,
under Project.No. MIN62-098. We thank the three anonymous reviewers for their constructive
feedback on this paper. We also th&nkLinda Munson who led the CDBabesia work and

Professor CJ¥*Peters for performing the RVF virestralizatiortests.

References

Aivelo, T. & Norberg, A. (2018). Parasitaicrobiota interactions potentially affect intestinal

communities in wild mammalg. Anim. Ecol., 87, 438-447.

Antunes, A., Troyer, J.L., Roelke, M.E., Pecon-Slattery, J., Packer, C., WinterbaettalC.,
(2008). The evolutionary dynamics of the lidanthera leo revealed by host and viral
population genomic$LoS Genet., 4, €1000251.

This article is protected by copyright. All rights reserved



18

492  Araujo, M.B. & Rozenfeld, A. (2014). The geographic scaling of biotic interactieugyr aphy
493 (Cop.)., 37, 406-415.

494  Arién, K.K., Abraha, A., Quifiones-Mateu, M.E., Kestens, L., Vanham, G. & Arts, E.J. (2005).
495 Thesreplicative fitness of primary human immunodeficiency virus type 1 (Hyd)p M,
496 HIV-1 group O, and HIV-2 isolated. Virol., 79, 8979-90.

497  Beneshy DiP#& Kalbe, M. (2016). Experimental parasite community ecology: irdifaspe

498 variationrin'a large tapeworm affects community assendbAnim. Ecol., 85, 1004-1013.

499  Bjork, J.R.»Hui, F.K.C., O’'Hara, R.B. & Montoya, J.M. (2018). Uncovering the drivers of host-
500 assoclated microbiota with joint species distribution modellg. Ecol., 27, 2714-2724.

501 Blanchet, F.G.,\Tikhonov, G. & Norberg, A. (2018). HMSC: Hierarchical Modelling oi8pe

502 Community. R package version 2.2-1.

503 Brook, C.E.,Bai, Y., Yu, E.O., Ranaivoson, H.C., Shin, H., Dobson, &.8.,(2017).
504 Elucidating transmission dynamics and hpatasitevector relationships for rodent-borne

505 Bartonella spp. in Madagascakpidemics, 20, 56-66.

506 BudischaksS"A., Wiria, A.E., Hamid, F., Wammes, L.J., Kaisar, M.M.M., van Lieshouat,dl.,
507 (2018). Competing for blood: the ecology of parasite resource competition in human
508 malafiahelminth ceinfections.Ecol. Lett., 21, 536-545.

509 Carver, S|, Beatty, J.A., Troyer, R.M., Harris, R.L., Stutzman-Rodriguez, K., BarRsgval.

510 (2015). Closing the gap on causal processes of infection risk fromsaoissnal data:
511 structural equation models to understand infectioncaridfection.Parasit. Vectors, 8,
512 658:

513  Cattadori, I.M., Boag, B. & Hudson, P.J. (2008). Parasite co-infection and interectioners
514 of host heterogeneitynt. J. Parasitol., 38, 371-380.

515 Chan, V.S.F., Chan, K.Y.K., Chen, Y., Poon, L.L.M., Cheun{l.X., Zheng, B.gt al. (2006).
516 Homozygous ESIGN (CLEC4M) plays a protective role in SARS coronavirus infection.
517 Nat. Genet., 38, 38—46.

This article is protected by copyright. All rights reserved



518
519
520

521
522

523
524

525
526

527
528

529
530

531

532
533

534
535
536

537
538
539

540
541

542
543

19

Clark, N.J., Wells, K., Dimitrov, D. & Clegg, S.M. (2016). Co-infections and environmental
conditions drive the distributions of blood parasites in wild bisdd&dnim. Ecol., 85, 1461—
1470.

ClausetAs=Newman, M.E.J. & Moore, C. (2004). Finding community structure in veey larg
networks.Phys. Rev. E, 70.

Csardi,"G"&Nepusz, T. (2006). The igraph software package for complex network research.
Inter Journal Complex Syst., 1695.

Eriksson, KiKsy"Makia, D., Maier, R., Ludewig, B. & Thiel, V. (2006). Towards a coronavirus-

based HIV multigene vaccin€lin. Dev. Immunal., 13, 353-60.

Ezenwa, V.0O. (2016). Helmintmicroparasite canfection in wildlife: lessons from ruminants,
rodents and rabbit®arasite Immunol., 38, 527-534.

Ezenwa, V.0."& Jolles, A.E. (2015). Opposite effects of anthelmintic treatment cobralc

infection atiindividual versus population scal8sence, 347, 175-7.
FAO & HASA. (2009).Harmonized world soil database. Food andAgriculture Orgarnization

Fenton[A«=(2008). Worms and germs: the population dynamic consequences of microparasite-

macroparasite emfection.Parasitology, 135, 1545-1560.

Fenton, A.,.Knowles, S.C.L., Petchey, O.L. & Pedersen, A.B. (2014). The reliability of
observational approaeh for detecting interspecific parasite interactions: comparison with
experimental result$nt. J. Parasitol., 44, 437-445.

Fountain-Jones, N.M., Packer, C., Troyer, J.L., VanderWaal, K., Robinson, S., Jacqebd M.,
(2017). Linking social and spatial networks to viral community phylogeneticslsevea

subtypespecific transmission dynamics in African liodsAnim. Ecol., 86, 1469-1482.

Geldmacher, C. & Koup, R.A. (2012). Pathoggrecific T cell depletion and reactivation of
opportunistic pathogens in HIV infectiofr.ends Immunoal., 33, 207-14.

Gorsich, E.E., Etienne, R.S., Medlock, J., Beechler, B.R., Spaan, J.M., Spaag,dR.82018).
Opposite outcomes of coinfection at individual and population s¢&les.Natl. Acad. Sci.

This article is protected by copyright. All rights reserved



20

544 U.S A, 115, 7545-7550.

545  Graham, A.L. (2008). Ecological rules governing helminth-microparasiteextion. Proc. Natl.
546 Acad. <i. U. S A, 105, 566-70.

547  Griffiths, E.C., Pedersen, A.B., Fenton, A. & Petchey, O.L. (2014). Analysis of aaymm
548 network of'co-infection imumans reveals that parasites interact most via shared resources.
549 Proceedings. Biol. ci., 281, 20132286.

550 Halliday, FsW s Umbanhowar, J. & Mitchell, C.E. (2017). Interactions among symbiontt®pe
551 acrossiseales to influence parasite epiderfiod. Lett., 20, 1285-1294.

552 Hellard, E:Fouchet, D., Vavre, F. & Pontier, D. (2015). Pargsamsite interactions in the
553 wild: How to detect them™Prends Parasitol., 31, 640—-652.

554  Henrichs,B., Oosthuizen, M.C., Troskie, M., Gorsich, E., Gondhalekar, C., BeechlegtBIR.,
555 (2016)." Within guild canfections influence parasite community membership: a
556 longitudinal study in African Buffalal. Anim. Ecol., 85, 1025-1034.

557 Hernandez, R., Brown, D.T. & Paredes, A. (2014). Structural differences observedvinuaedso
558 of the.alphavirus and flavivirus genefalv. Virol., 2014, 259382.

559 Hoverman, J.T., Hoye, B.J. & Johnson, P.T.J. (2013). Does timing matter? How priogty effe
560 influenee“the outcome of parasite interactions within h@ssologia, 173, 1471-1480.

561 Johnson, P.I.J. & Buller, I.D. (2011). Parasite competition hidden by correlateelctioinf
562 using‘surveys and experiments to understand parasite interactions, 92, 535-541.

563 JohnsongP:I.d!, de Roode, J.C. & Fenton, A. (20/&Y. infectious disease research needs
564 community. ecologyScience, 349, 1259504-1259504.

565 Knowles, S.Cqd (2011). The effect of helminthiofection on malaria in mice: A meta
566 analysisint. J. Parasitol., 41, 1041-1051.

567 Lass, S., Hudson, P.J., Thakar, J., Saric, J., Harvill, E., Albedt &.,(2013). Generating
568 supershedders: cinfection increases bacterial load and egg production of a
569 gastrointestinal helmintld. R. Soc. Interface, 10, 20120588.

This article is protected by copyright. All rights reserved



21

570 Moss, W.J., Fisher, C., Scott, S., Monze, M., Ryon, J.J., Quinn,& &.(2008). HIV Type 1
571 infection is a risk factor for mortality in hospitalized Zambian children with meaSlies.
572 Infect. Dis., 46, 523-527.

573  Mosser,"A.xFryxell, J.M., Eberly, L. & Packer, C. (2009). Serengeti real edéatsity vs.
574 fithessbased indicators of lion habitat qualiBcol. Lett., 12, 1050-1060.

575  Mossery A& Packer, C. (2009). Group territoriality and the benefits of socialibeiAfrican
576 lion, Panthera lecAnim. Behav., 78, 359-370.

577  Munson, LiysFerio, K.A., Kock, R., Mlengeya, T., Roelke, M.E., DubovigEal. (2008).
578 Climate /extremes promote fatal-sdections during canine distemper epidemics in African
579 lions.PLoSOne, 3, e2545.

580 Newman, M.E.J. (2006). Community structure in social and biological netwnde.Natl.
581 Acad.'Sci. U. S A, 99, 7821-6.

582  Ovaskainen, O3 Abrego, N., Halme, P. & Dunson, D. (2016). Using latent variable models to
583 identify large networks of specis-species associations at different spatial scales.
584 Methods Eeol. Evol., 7, 549-555.

585  Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., DunsehaD.,
586 (2017). How to make more out of community data? A conceptual framework and its

587 implementation as models and softwdtenl. Lett., 20, 561-576.

588 Packer, C., Altizer, S., Appel, M., Brown, E., Martenson, J., O'Brien,&al.,(1999). Viruses
589 of the Serengeti: patterns of infection and mortality in African lidn&nim. Ecol., 68,
590 1161-1178.

591  Packer, C., Hilborn, R., Mosser, A., Kissui, B., Borner, M., Hopcraftet@l, (2005).
592 Ecological’change, group territoriality, and population dynamics in SerdiogestiScience,
593 307,390-3.

594 Pedersen, A.B. & Fenton, A. (2007). Emphasizing the ecology in parasite commurotyyecol
595 Trends Ecol. Evol. Eval., 22, 133-9.

This article is protected by copyright. All rights reserved



596

597
598
599

600

601
602
603

604
605
606

607
608

609
610

611
612

613
614
615

616
617
618

619
620

621

22

Penzhorn, B.L. (2006). Babesiosis of wild carnivores and ungulses®arasitol., 138, 11-21.

Peterson, A.T. (Andrew T., Soberon, J., Pearson, R., Anderson, R., Martinez-Meyer, M.,
Nakamura, M.,et al. (2011).Ecological niches and geographic distributions. Princeton

University-Press, Princeton.
Poulin, R.(2007). Are there general laws in parasite ecolBgrygaitology, 134, 763—766.

Randall, J:;, Cable, J., Guschina, I.A., Harwood, J.L. & Lello, J. (2013). Endemic infection
reduces transmission potential of an epidemic parasite during co-inféatomeedings.
Biol. Seix»280, 20131500.

Reed, D.Nw/Anderson, T.M., Dempewolf, J., Metzger, K. & Serneels, S. (2009). The spatial
distributioniof vegetation types in the Serengeti ecosystem: the influence of ramufall a

topographic relief on vegetation patch characterisiiddiogeogr., 36, 770—782.

Rynkiewicz, E.C., Pedersen, A.B. & Fenton, A. (2015). An ecosystem approach to understanding

and managing withimost parasite community dynamidsends Parasitol., 31, 212-221.

Saterberg,.T., Sellman, S. & Ebenman, B. (2013). High frequency of functional iexisnict
ecological networkdNature, 499, 468—-470.

Sauve, A.M.C., Fontaine, C. & Thébault, E. (2014). Structure-stability relationshipsviorke
combining"mutualistic and antagonistic interactiddigos, 123, 378—384.

Scott, R.My, Feinsod, F.M., Allam, |.H., Ksiazek, T.G., Peters, C.J., Botros, B.&.AMl.,
(1986). Serological tests for detecting rift valley fever viral antibodiehéep from the
Nile Delta.J. Clin. Microbiol., 24, 612-614.

Sinclair, A/.R.E., Metzger, K.L., Fryxell, J.M., Packer, C., Byrom, A.E., Craft, MtEl,
(2013)."Asynchronous food-web pathways could biufie response of Serengeti predators
to EIFNifo Southern Oscillatiofecology, 94, 1123—-1130.

Strona, G. & Veech, J.A. (2015). A new measure of ecological network structure based on node
overlap and segregatiollethods Ecol. Evol., 6, 907-915.

Stutz, W.E, Blaustein, A.R., Briggs, C.J., Hoverman, J.T., Rohr, J.R. & Johnson, P.T.J. (2018).

This article is protected by copyright. All rights reserved



622
623

624
625

626
627
628

629
630

631
632

633
634
635

636
637
638

639
640
641

642
643
644

645
646
647

23

Using multiresponse models to investigate pathogen coinfections across scaless Insight

from emerging diseases of amphibiavgthods Ecol. Evol., 9, 1109-1120.

Susi, H., Barres, B., Vale, P.F., Laine, A.-L., Mideo, N., Alizong&al. (2015). Co-infection
alters population dynamics of infectious dised&. Commun., 6, 5975.

Telfer, S.,"Lambin, X., Birtles, R., Beldomenico, P., Burthe, S., Patersaa5.(2010).
Speciestinteractions in a parasite community drive infection risk in a widigelation.
Science"330, 243-6.

Thebault, Ex&Fontaine, C. (2010). Stability of ecological communities and théeatane of
mutualisticiand trophic networkScience, 329, 853—-856.

Tompkins, D.My, Dunn, A.M., Smith, M.J. & Telfer, S. (2011). Wildlife diseases: from

individuals to ecosystemg. Anim. Ecol., 80, 19—-38.

Troyer, J.L.,;"Pecon-Slattery, J., Roelke, M.E., Black, L., Packer, C. & O'Brien, S.J..(2004)
Patterns of\feline immunodeficiency virus multiple infection and genome divergeiac

freeranging population of African liong. Virol., 78, 3777-3791.

Troyer, J.Lsy"Pecon-Slattery, J., Roelke, M.E., Johnson, W., VandeWoude, S., Vazquez-Salat, N.,
et al. (2005). Seroprevalence and genomic divergence of circulating strains of feline

immunodeficiency virus among Felidae and Hyaenidae spdciisol., 79, 8282—-8294.

Troyer, J.L., Roelke, M.E., Jespersen, J.M., Baggett, N., Buckley-Beason, V., MacNudty, D
al. (2011). FIV diversity: FIVpe subtype composition may influence disease outcome in

African lions.Vet. Immunol. Immunopathol., 143, 338—-346.

Ulrich, W., Kryszewski, W., Sewerniak, P., Puchatka, R., Strona, G. & Gotelli, N.J. (2017). A
comprehesnive framework for the study of speciesazurrences, nestedness and turnover.
Oikos, 1267 1607-1616.

Vaumourin, E.;Vourc’h, G., Gasqui, P., Vayssier-Taussat, M., Windsor, D., AndersenalR.,
(2015). The importance of multiparasitism: examining the consequences of dwirddor

human and animal healtRarasit. Vectors, 8, 545.

This article is protected by copyright. All rights reserved



648
649
650

651
652
653

654
655

656
657

658
659
660

661

662

24

Warton, D.l., Blanchet, F.G., O’'Hara, R.B., Ovaskainen, O., Taskinen, S., WalkertSIC.,
(2015). So many vables: Joint modeling in community ecolodyends Ecol. Eval., 30,
766-79.

Wejse, Cs,Patsche, C.B., Kiuhle, A., Bamba, F.J.V., Mendes, M.S., Lemvé,a.(2015).
Impact of HIV-1, HIV-2, and HIV-1+2 dual infection on the outcome of tuberculdstsJ.
Infect. Dis., 32, 128-134.

Westgate"M:3:(2016). circleplot: Circular plots of distance and associatinooas.aR package

version 0.4.

Woolhouse, M.E.J., Taylor, L.H. & Haydon, D.T. (2001). Population biology of multihost
pathogensScience, 292, 1109-1112.

Xiang, J., McLinden, J.H., Rydze, R.A., Chang, Q., Kaufman, T.M., Klinzmaref B, (2009).
Viruses within the Flaviviridae decrease CD4 expression and inhibit HI\Cagipln in
human-€D4+ cells]. Immunol., 183, 7860-9.

Table 1: Traitsof bothendemicandepidemicpathogens in this study.

Pathogen Type Trans. One Immune Exposure  Test
mode host?  sup. timing?  type

Data type (binary) (categorical) (binary) (binary) (binary) (binary)

EPIDEMIC

Felinecalicivirus  Virus Direct/env N NE Epidemic  Serology

(calicivirus) t year

Caninedistemper  Virus Direct N Yes Epidemic  Serology

virus (CDV) year

Feline Virus Vertical, N Yes Epidemic  Serology

panleukopenia direct/env year

(parvovirus)

Rift valley fever Virus Vector N Yes Throughout Serology
(RVF) (mosquito) life#
ENDEMIC
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Felineenteric Virus Vector N U Epidemic  Serology
coronavirus year

(coronavirus) t

B. gibsoni Protozoa Vector(tick) N NE <2Yy.0 gPCR
B. leo with Protozoa Vector(tick) N NE Throughout gPCR
insertion life

B. felis Protozoa Vector(tick) N NE <2y.0. gPCR
Hepatozoomifelis Protozoa Vector(tick) N NE <2y.0. gPCR
Feline Virus Vertical/ Y Yes <2y.0. gPCR
immunodeficiency direct

virus

FIVpeA, B;andC

and FIV

genotypes Al, B1-

12, C1-C8

663 Trans.mode :Transmission mode (all pathogens can be horizontally transmittetiune sup.Pathogen can
664  suppress the immune systeviertical: Vertical transmission is also possible. Env: Environmentally pensis
665 Direct: Transmission througtost contact. Immune supmmune suppressionLikely time of exposurd:

666 Determined bysagprevalence relationships (sktethods and Fig. S1) but can haemdemic or epidemicariants.
667 U: Unknown*NE: No evidencet: More likely after heavy rainfall (Figs2).

668

669 Table 2: Details of thandividual, prideleveland environmental predictors used in the joint
670  species distribution models to help account for potential confounding faslovariables were

671 calculatedsbased on the year of sampling.

Predictor Type M easurement details Data
Sex Individual Male or female. SLP data
Age Individual Age of lion whensampleddays) SLP data
Number of Individual Number of pridesin individual has SLP data
immigratiors immigrated intgprior to sampling.

Pride or Individual Was themale involved in a coalition SLP data
coalition male? occupying multiple prides (binayy
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Group size Pride Averagenumber of individuals in SLP data
pride two yearsprior tosample
collection.

Despotic Pride Was the pride considereldspotic at SLP data
time of sample collection?

Territory size Pride Based on location data over a tyear SLP data
period based outilization—

distribution curves with a 75% kernel.

Territory Pride What percentage of territory size SLP data

overlap overlappedwith other prides.

Habitat quality” \Pride Pride habitat quality score calculated (Mosseret al. 2009)
across a twyear period.

Number of Pride Numberof individuals inneighboring SLP data

neighbors prides Neighboring prides had

territory overlap.
Yearly rainfall __,Environmental Yearly rainfall experienced in each  (Sinclairet al. 2013)
pride territory based on weather

stations in the plains and woodlands.

Average Environmental Average vegetation cover across the (Reedet al. 2009)
vegetation:-cover pridesterritory based on a 75%ernal
Soil pH Environmental Average pH thraghout thepride's World Harmonized Soll
territory based on a 75% kernel. Databas€FAO &
[IASA 2009).

672 * We calculatedsthis predictor two yegmsor to sampling to account for differences in individual staties
673 potential time of exposure or infection (e.g., individuals that hadrjusigrated intca pridewhen sampled were
674  considered'nomads as exposure or infection was likely to have occleveolgly). T: We averaged overasttwo

675  years to réducerthe variability in pride countgggsosuravas unlikely to have happened during the sampling year.

676
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Fig. 1: Pathogen summary amcurrence network for a) high taxonomic resolution and b)
medium taxenemic resolution data, where nodes are pathagdedges reflect coccurrence.
Edgesare.showronly when there were 3 co-occurrencedNodecolorsreflect separate clusters
Edge weightsare proportional to the number obcodrrencesPathogen labels in boldh(
boxes)were considered epidemi8ee Fig. 8 for networks fo pathogerdetected via qPCR and

serology sparately.
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Fig. 2: Pathogefpathogen associations detected at (a) individual, (b) yedeand (c)
landscapeyear level after controlling for individual, pride, and environmental variables im hig
and mediumstaxonomic resolution moddtue represents negative correlasand red
indicates positive associations. Only associations with posterior coefficient estindatavith
95% credible intervals that do not crosar® shownThe light red lineandicatesthe assocation
betweerH:felisand CDV that wag 0.4 in the medium resolution model buas below the
threshold (0.38) in the high resolution model. Pathogens in bold and in drexiée epidemic
viruses (all other pathogens diteely endemig. This figure was drawn using the R package
‘circleplot' (Westgate 20165ee Fig. & for associatioomatrices and Figs.9510 for covariate

partitioning. and effect size.
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Fig. 3: Summa§ of the strong positive (red line/arrows) aedative(blue lines/arrows)
associations e@mdemidqgrey circles) anépidemic(orange circles) pathogens in the

Sereng s; dargrey borders indicate protozoa. The direction of the red or blue arrows
indicates the potential sequence of infection events. The black arrow alongatkis ¥epresents

age; the circles reflect the ages when lions were likely to be infected by each pathogen (based on
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703  ageexposure data rather than longitudinal data, see FigD&%hed circles indicat®ajorco-
704  occurrence clusts identified at the landscapyear scale.
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