FN Archimer Export Format PT J TI The Impact of Methane on Microbial Communities at Marine Arctic Gas Hydrate Bearing Sediment BT AF CARRIER, Vincent SVENNING, Mette M. GRUNDGER, Friederike NIEMANN, Helge DESSANDIER, Pierre-Antoine PANIERI, Giuliana KALENITCHENKO, Dimitri AS 1:1,2;2:1,2;3:3;4:2,4,5;5:2;6:2;7:2; FF 1:;2:;3:;4:;5:;6:;7:; C1 Arctic Univ Norway, Dept Arctic & Marine Biol, Tromso, Norway. Arctic Univ Norway, Ctr Arctic Gas Hydrate Environm & Climate, Tromso, Norway. Aarhus Univ, Arctic Res Ctr, Dept Biosci, Aarhus, Denmark. Univ Utrecht, Royal Netherlands Inst Sea Res, Dept Marine Microbiol & Biogeochem, Den Burg, Netherlands. Univ Utrecht, Fac Geosci, Dept Earth Sci, Utrecht, Netherlands. C2 UNIV TROMSO, NORWAY UNIV TROMSO, NORWAY UNIV AARHUS, DENMARK UNIV UTRECHT, NETHERLANDS UNIV UTRECHT, NETHERLANDS IN DOAJ IF 3.941 TC 30 UR https://archimer.ifremer.fr/doc/00667/77893/80077.pdf https://archimer.ifremer.fr/doc/00667/77893/80078.docx LA English DT Article DE ;Arctic;methane seeps;prokaryotes;methanotrophs;ANME;Sulfate-reducing bacteria;eukaryotes;foraminifera AB Cold seeps are characterized by high biomass, which is supported by the microbial oxidation of the available methane by capable microorganisms. The carbon is subsequently transferred to higher trophic levels. South of Svalbard, five geological mounds shaped by the formation of methane gas hydrates, have been recently located. Methane gas seeping activity has been observed on four of them, and flares were primarily concentrated at their summits. At three of these mounds, and along a distance gradient from their summit to their outskirt, we investigated the eukaryotic and prokaryotic biodiversity linked to 16S and 18S rDNA. Here we show that local methane seepage and other environmental conditions did affect the microbial community structure and composition. We could not demonstrate a community gradient from the summit to the edge of the mounds. Instead, a similar community structure in any methane-rich sediments could be retrieved at any location on these mounds. The oxidation of methane was largely driven by anaerobic methanotrophic Archaea-1 (ANME-1) and the communities also hosted high relative abundances of sulfate reducing bacterial groups although none demonstrated a clear co-occurrence with the predominance of ANME-1. Additional common taxa were observed and their abundances were likely benefiting from the end products of methane oxidation. Among these were sulfide-oxidizing Campilobacterota, organic matter degraders, such as Bathyarchaeota, Woesearchaeota, or thermoplasmatales marine benthic group D, and heterotrophic ciliates and Cercozoa. PY 2020 PD SEP SO Frontiers In Microbiology SN 1664-302X PU Frontiers Media Sa VL 11 UT 000575900000001 DI 10.3389/fmicb.2020.01932 ID 77893 ER EF