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ABSTRACT:
The statistical analysis of acoustic backscatter samples recorded by multibeam echosounders can be a valuable tool

for remote seafloor characterization and interpretation. The present paper aims at analyzing the statistics of

backscatter data values, both in “raw” status and after various averaging operations, using field data. It is shown that

the statistics of the data can be adequately described by a Weibull distribution parametrized by the incidence angle

and the level of applied processing: the distribution of the averaged backscatter amplitude, processed according to

various schemes, varies from a Rayleigh law for raw data to lognormal and finally to Gaussian distribution after

successive averaging operations. Based on these results, some recommendations for the calculation of the mean

backscatter strength are presented. Finally, the influence of high-amplitude scatterers in the backscatter probability

density function is addressed; a scheme is suggested to separate the contributions of the substrate from the contribu-

tions of the scatterers on the statistical distribution of sonar data samples. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Remote seafloor characterization is a particularly impor-

tant task for a wide range of applications, including delimita-

tion of benthic habitats and geological seafloor facies or

assessment of geotechnical properties, among others

(Lamarche and Lurton, 2018). Due to intrinsic difficulties in

directly accessing and sampling the seafloor, acoustic meth-

ods using sidescan sonars and single-beam and multibeam

echosounders (MBESs) are most often employed for under-

water surveying. MBESs are the most widely used systems

today, scanning the seafloor with a high number of narrow

beams across a wide swath across the sonar platform trajec-

tory (Lurton et al., 2015). For each transmitted ping, one

time series of backscattered signal is recorded for every

acoustic beam formed in reception. These time series are

used first for bathymetry measurement, based on their

intensity-time dependence or on their interferometric phase

characteristics (Lurton, 2010). However, the same time series

are also usable for measuring the intensity level of backscat-

ter and hence the acoustical reflectivity of the seafloor after

correcting for the sonar sensitivity, propagation losses, and

signal footprint extent (Lurton et al., 2015). The so-obtained

backscatter strength (BS) is itself related to the seafloor phys-

ical characteristics (impedance and roughness) and hence a

valuable descriptor for classification and characterization.

Upon acquisition, backscatter time series are recorded

at a high sampling frequency, and they can feature a high

number of samples, corresponding to a very fine spatial res-

olution, which may be unnecessary for seafloor mapping

applications; moreover, they show a randomly fluctuating

character, caused by the very process of backscatter, classi-

cally described as echoes from a population of local point

targets whose contributions mix with random amplitudes

and phases (Stanton et al., 2018). The details of such a dis-

tribution of signal amplitude values are not significant at the

scale of time samples and should be more usefully consid-

ered from a statistical point of view; it is not necessary to

use all samples of the time series, and a limited number of

parameters describing their distribution is expected to be

sufficient.

For practical applications, it is necessary to (1) average

the original sample values of the time series—at various

steps of acquisition, processing, and analysis of the data—to

decrease the noise level and to bring the resolution to a prac-

tically usable scale (typically one averaged value per beam

is enough for many applications while being consistent with

the bathymetry data) and (2) to analyze the statistics of

backscatter (before and/or after averaging) to possibly link

them to the actual characteristics of the seafloor. Regarding

the latter point, at a given acoustical frequency, the back-

scatter statistical characteristics depend both on the seafloor

nature and features and on the incidence angle of the signal

acquisition, hence varying across a swath covered in one

ping by a MBES (Fezzani et al., 2019).a)Electronic mail: lucianofonseca@unb.br
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MBES manufacturers currently implement such averag-

ing functions in their systems and provide various solutions

for the backscatter data conditioning: more often than not,

the backscatter samples are pre-filtered and are averaged at

various scales before being stored in datagrams; a common

process is to provide an average BS value associated with

each beam. The situation is even further complicated by the

post-processing software suites designed for post-processing

of backscatter data, which also propose a number of similar

operations of filtering, averaging, and sub-sampling. As a

consequence, a large discrepancy prevails in the results

obtained by users working with different MBESs and soft-

ware tools. This has been pointed out by the work of the

GeoHab Backscatter Working Group (Lurton et al., 2015)

and was the purpose of a dedicated comparison project

(Malik et al., 2019).

The present paper aims at analyzing the statistics of BS

values from field data recorded by MBESs, both in their

“raw” status and after various averaging operations. It will

be shown that the statistics of the backscatter amplitudes

can be adequately described by a single statistical law,

parametrized by both the incidence angle of the backscatter

process and the averaging level, and applicable from the raw

data to the averaged data (processed according to various

schemes).

The statistical process beneath acoustic scattering from

the seafloor has been well studied and described in the past.

Chotiros et al. (1985) applied autocorrelation function and

probability distribution measurements to conclude that the

reverberation of a uniform bottom area was consistent with

the Rayleigh model. Gensane (1989) observed that the back-

scattering statistics did not follow a Gaussian distribution

but showed an evolution toward a lognormal distribution for

longer periods of signal integration. Stanic and Kennedy

(1993) reported that reverberation fluctuations measured

from a sandy seafloor exhibited large variations of statistical

distribution, spreading between Gaussian, lognormal, and

Rayleigh distributions. Lyons and Abraham (1999) proposed

a statistical characterization of acoustic backscatter at

80 kHz, using a mixture of Rayleigh and K-distributions,

particularly at high grazing angles. Hellequin et al. (2003)

observed that the statistical distribution of echoes from

rough seafloors with strong local slope no longer fitted the

classical Rayleigh distribution and concluded that the K-

distribution proved to be better adapted to the acquired data.

Gallaudet and de Moustier (2003) analyzed fluctuations of

seafloor, sea surface, and volume acoustic backscatter at

68 kHz, applying Rayleigh, K, Weibull, lognormal, and

Rayleigh mixture, recommending that Rayleigh mixture

models provided the best fits to the backscatter data.

Siwabessy et al. (2006) found that either a Rayleigh mixture

or lognormal distribution models best fitted the data from

four different seabed types, tending to lognormal distribu-

tions as the incidence angle increased. Le Chenadec et al.
(2007) presented a new model of seabed backscattering sta-

tistics, applying a K-distribution to both sidescan and multi-

beam backscatter. Penrose et al. (2008) noted that

fluctuations of the backscatter energy could be satisfactorily

modeled by the C-distribution at oblique incidence angles.

With respect to these previous works, the present study tries

to compose a unifying representation for the statistical law

underlying acoustical backscatter, which is applicable to a

wide range of incidence angles, to a wide range of frequen-

cies, and to a wide range of processing levels applied to the

raw acquired samples. We concentrated a great effort on the

calibrations of the transducers, with the aim of acquiring

reliable observations. We were also able to include in the

proposed statistical distribution the influence of high-

amplitude scatterers.

II. BACKSCATTER STATISTICAL ANALYSIS: USING A
SIMPLE CASE

As for any sonar signal, seafloor acoustic backscatter is

measured by MBESs under the form of an electrical voltage

provided by receiving transducers (hydrophones) sensitive

to acoustic pressure. However, BS is intrinsically a measure-

ment of returned energy, hence proportional to the squared

acoustic pressure. Therefore, the statistical operations and

analyses will more naturally bear on squared amplitudes.

The recording and display of backscatter data are most often

done in dB-scale, as is generally the case with acoustical

data. Considering a set [x] of N samples/observations of

backscattered pressure, the fundamental logarithmic expres-

sion (in dB) of the acoustical level is given by

BS ¼ 20 log10x ¼ 10 log10x2; (1)

where BS is in dB and x is the observed backscatter ampli-

tude (echo acoustical pressure).

This dB form shown in in Eq. (1) is the usual format of

backscatter data recorded by sonar systems. However, for a

statistical analysis, it is usually recommended to retrieve the

natural intensity values, although directly processing the dB

values can be acceptable under certain conditions.

As an example, we will analyze four study areas in the

Bay of Brest: Elorn, Aulne, Rascass, and Renard. These

areas were surveyed with a Kongsberg EM2040 MBES at

200, 300, and 400 kHz (Eleftherakis et al., 2018) on

Ifremer’s R/V Thalia in the framework of the REM2040
annual cruises. Bottom samples and photographs show that

the seafloor at Elorn is composed of mud, at Aulne of silty

sand with shells, at Rascass of gravelly mud with shells, and

at Renard of coarse sand and gravel mixed with coarse ele-

ments (Fig. 1).

A compensated backscatter mosaic from a survey line

recorded by a Kongsberg EM2040 MBES (200 kHz) in the

Bay of Brest, on the Elorn area, is shown in Fig. 2(c). Elorn
is an estuary area known to be covered with fine sediments.

The acoustic backscatter records were assembled into a

compensated backscatter mosaic, following the procedure

described by Fonseca and Calder (2005) aimed at correcting

the trends in echo level due to propagation losses and back-

scatter angular dependence. The processing sequence starts

with the raw data [Fig. 2(a)] provided by the acquisition
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FIG. 1. Location map showing four study areas in the Bay of Brest, Elorn, Aulne, Rascass, and Renard, that were surveyed with a Kongsberg EM2040

MBES at 200, 300, and 400 kHz.

FIG. 2. Seafloor backscatter recorded by a Kongsberg EM2040 MBES (200 kHz) over a flat and uniform area with sandy mud sediment at 26-m depth, at

Elorn area, Bay of Brest, France. (a) Raw time-series samples (snippets). (b) Beam-averaged backscatter samples (one value per beam). (c) Compensated

mosaic made from the snippet samples shown in (a), with a mean BS of 0.115 (�18.8 dB). (d) Compensated mosaic made from the beam average samples

shown in (b), with a mean BS of 0.130 (�17.7 dB). The axes’ coordinates are in WGS-84 UTM 30 N projection.
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system. In fact, the sound intensity recorded by the sonar

transducer and electronics must be translated into the energy

level actually scattered by the seafloor; we call the attempt

to apply this transformation “radiometric correction.” The

BS is conventionally defined per unit of area (Lurton, 2010)

so that the actual footprint area of the incident beam should

be taken into account for proper radiometric reduction. For

this purpose, beam footprint slopes are calculated along-

and across-track with respect to a local bathymetric model

so that the effective incidence angle for each beam can be

calculated. The backscatter angular response is flattened

based on a trend removal algorithm, and a residual beam

pattern correction is removed on a ping-by-ping basis.

Finally, a speckle noise morphological median filter is

applied to the data for gap-filling and filtering (Fonseca,

1996). MBES calibration issues (Lurton et al., 2015) are not

considered here, and the BS level is arbitrarily (but consis-

tently) scaled. On this scale, the average amplitude of all

acoustic backscatter samples in this area is 0.101, which is

equivalent to �19.9 dB (also arbitrary reference), and the

average BS value, which is the average of the squared

amplitude samples [Eq. (1)] is 0.115 (or �18.8 dB).

Looking at the histogram of the distribution of ampli-

tude values [Fig. 3(a)] makes clear that just one mean value

of BS (�18.8 dB) may not be enough to fully characterize

the statistical process. In the study cases presented here, it is

found that a Rayleigh distribution satisfactorily fits the

experimental probability density function (PDF); the adjust-

ment of the PDF to the histogram was done by an annealing

optimization (Kirkpatrick et al., 1983). In fact, the ampli-

tude average value of �19.9 dB is the mean value of the

adjusted Rayleigh distribution. However, the question here

remains as to which parameters or which statistics best char-

acterize this statistical process, i.e., the mean, the median,

the mode, the decibel mean, the quadratic mean (energy), or

other parameters (variance and higher-order moments) of

the distribution.

By comparison, if we use one beam-averaged back-

scatter level per beam [Fig. 2(b)], as obtained from the

processing implemented in the MBES (Kongsberg

Maritime, 2012), we get a slightly different mosaic [Fig.

2(d)] with a mean backscatter amplitude of 0.122

(�18.3 dB) and a distribution that is no longer Rayleigh

but closer to a lognormal distribution [Fig. 3(b)]. The

mean BS value, which is the average of the squared ampli-

tude samples [Eq. (1)], is 0.130 (�17.7 dB). Similarly, the

presented average amplitude of �18.3 dB is the mean

value of the fitted lognormal distribution.

It was also observed that backscatter values drawn

from final mosaics, for instance values drawn from Fig.

2(c) or 2(d), tend to follow a Gaussian distribution, as

shown in the histogram of Fig. 3(c). This is also observed

in other processing schemes when the raw backscatter sam-

ples are subject to multiple averaging and filtering. This is

a direct consequence of the central limit theorem, which

states that averaged/filtered samples tend to a Gaussian

distribution.

A. Angular dependence of the backscatter PDF

A key point in the analysis of seafloor backscatter data

is their dependence on the incidence angle. This is illus-

trated in Fig. 4, which displays distribution histograms of

the raw backscatter samples shown in Figs. 2(a) and 2(b).

This figure shows that the acoustic backscatter statistics

have a strong dependence on the angle of incidence and that

the backscatter response at each angle also follows a statisti-

cal distribution with its own characteristics. Figures

4(a)–4(c) are the histograms of the raw backscatter ampli-

tudes depicted in Fig. 2(a) at, respectively, low grazing inci-

dence, 45�, and normal incidence. These histograms show

that the backscatter amplitudes follow approximately a

Rayleigh distribution regardless of the angle of incidence.

On the other hand, the histograms on the lower plots [Figs.

4(g)–4(i)] show that the raw beam-averaged backscatter

amplitudes from Fig. 2(b) rather follow approximately a log-

normal distribution regardless of the angle of incidence. The

central plots show the median angular responses (blue line)

superimposed on two-dimensional histograms whose color

FIG. 3. Illustration of the statistical distribution of seafloor backscatter sam-

ples at three stages of MBES processing. (a) Histogram of the raw ampli-

tude values shown in Fig. 2(a) (from the snippets time series per beam).

The black continuous curve is the adjusted Rayleigh distribution. (b)

Histogram of the raw amplitude values shown in Fig. 2(b) (beam-averaged

backscatter). The black continuous curve is the fitted lognormal distribu-

tion. (c) Histogram of the mosaic samples of Fig. 2(c). The black continu-

ous curve is the fitted Gaussian distribution.
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scale reflects the number of samples (from blue/low to red-

white/high). The 2D histograms show the actual spread of

amplitude samples around the median value.

The same behavior of a Rayleigh distribution for time

series (“snippets”) samples and a lognormal distribution for

beam-averaged values was also observed in backscatter

samples recorded by a Kongsberg EM710 multibeam sonar

(90 kHz) and a Kongsberg EM122 multibeam sonar

(12 kHz). Those records are analyzed later in this paper. The

observed behavior (from Rayleigh to lognormal to

Gaussian) hence appears to be independent of the frequency

and independent of the beam incidence angle.

B. Weibull distribution

The above analysis showed the acoustic backscatter

intensities to follow a statistical distribution that depends on

the level of processing applied by the acquisition (or post-

FIG. 4. (a)–(c) Histogram of the raw snippets backscatter samples [Fig. 2(a)] at grazing incidence (a), at 45� incidence (b), and at normal incidence (c). (d)

Median backscatter angular responses of time-series samples shown in Fig. 2(a) superimposed on a 2D histogram, whose color scale reflects the number of

samples (from blue/low to red-white/high). (e)–(g) Histogram of the raw beam average backscatter samples [Fig. 2(b)] at grazing incidence (e), at 45� inci-

dence (f), and at normal incidence (g). Note that the form of underlying statistical distribution usually follows a Rayleigh distribution, in the case of snippets,

and moves toward a lognormal distribution, in the case of beam-averaged backscatter, regardless of the acquisition angle.
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processing) system. The general trend can be summarized as

follows: for raw/unprocessed observations, the distribution

will be closer to Rayleigh; the higher the processing level,

the stronger the averaging, the closer it will be to a Gauss-

like distribution. Since (as most MBES users) we have actu-

ally little control over the processing steps applied during

acquisition, we will assume that the backscatter intensities

follow a general Weibull cumulative distribution function

(CDF) as defined in Eq. (2) (Rinne, 2008). The Weibull dis-

tribution has also been successfully used in describing the

statistical process observed for radar clutter and electromag-

netic scattering (Sekine et al., 1981; Boothe, 1969).

F xð Þ ¼ 1� e� x=að Þb ; x � 0: (2)

This CDF is defined by two parameters: a, which is related

to the central amplitude value, and b, which is related to the

shape of the distribution. If the shape parameter b is 1.0, the

distribution is exponential; b¼ 2.0 corresponds to Rayleigh;

b¼ 2.5 to lognormal; and b¼ 3.6 to Gaussian. Thus, the

Weibull distribution is very flexible and potentially able to

fit both time series data (snippets), beam-averaged data, and

possibly any other level of processed data. The mean value

hxi, the median value, and the variance of a Weibull distri-

bution are given by Eqs. (3), (4), and (5), respectively,

hxi ¼ aC 1þ 1

b

� �
; (3)

Median xð Þ ¼ a ln 2ð Þ1=b; (4)

Variance xð Þ ¼ hx2i � hxið Þ2

¼ a2 C 1þ 2

b

� �
� C2 1þ 1

b

� �� �
; (5)

where C() is the classical gamma function.

C. Squared-Weibull distribution

Assuming that a set of backscatter amplitudes ½x� fol-

lows a Weibull distribution [Eq. (2)], the backscatter inten-

sity y ¼ x2 will follow a squared-Weibull distribution. The

expression for this new distribution [Eq. (6)], is obtained by

replacing x ¼ ffiffiffi
y
p

in Eq. (2).

F yð Þ ¼ 1� e�
ffiffi
y
p
=að Þb : (6)

The expression for the mean value hyi of a squared-Weibull

distribution (Eq. 6) can be obtained by substituting Eq. (3)

into Eq. (5).

hyi ¼ hx2i ¼ a2C 1þ 2

b

� �
: (7)

The median value MedianðyÞ of a squared-Weibull distribu-

tion, given by Eq. (8), is obtained by making FðyÞ ¼ 1
2

in

Eq. (6).

Median yð Þ ¼ a2 ln 2ð Þ2=b: (8)

The offset between hyi in decibels (10 log 10hx2i) and hxi in

decibels (20 log 10x) depends only on the b parameter and is

given by Eq. (9) and plotted in Fig. 5 (dashed-dotted curve).

The offset is approximately 1.0 dB for a Rayleigh distribu-

tion (b¼ 2.0) and 0.7 dB for a lognormal distribution

(b¼ 2.5) and tends to 0.4 dB for larger values of b, corre-

sponding to a Gauss-like distribution (b¼ 3.6)—whatever,

once again, the value of a.

10 log 10 hx2i � 20 log 10hxi

¼ 10 log 10 C 1þ 2

b

� �
� 20 log 10C 1þ 1

b

� �
: (9)

Similarly, the offset between hyi in decibels (10 log 10hx2i)
and the MedianðxÞ in decibels (20 log 10ðMedianðxÞÞ)
depends only on the b parameter and is given by Eq. (10)

and is also plotted in Fig. 5 (dashed curve). The offset is

approximately 1.5 dB for a Rayleigh distribution (b¼ 2.0)

and 1.0 dB for a lognormal distribution (b¼ 2.5) and tends

to 0.4 dB for larger values of b, corresponding to a Gauss-

like distribution (b¼ 3.6).

10 log 10 hx2i � 20 log 10 Median xð Þð Þ

¼ 10 log 10 C 1þ 2

b

� �
� 20 log 10 ln 2ð Þ1=b: (10)

D. Log-Weibull distribution

Normally, the amplitudes recorded by multibeam sonar

are given in decibels (z ¼ 20 log10xÞ. If the average is done

in this logarithm space, the dB samples will follow a log-

Weibull distribution with CDF (Eq. 11) obtained by replac-

ing x ¼ 10z=20 in Eq. (2).

FIG. 5. Statistical offsets (from the direct average of squared amplitudes)

calculated for a squared-Weibull distribution related to three different

approaches for computing the mean intensity. The offset values (see

Table I) depend only on the b parameter and are statistically independent

of the a parameter.
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F zð Þ ¼ 1� e� 10z=20=að Þb : (11)

It is not possible to deduce from Eq. (11) an analytical solu-

tion to evaluate hzi, so the moments of this distribution can

only be calculated iteratively by means of infinite sum rep-

resentations (Ortega et al., 2011). As an alternative, we pre-

sent in this paper results from numerical simulations. First, a

large number N of samples are drawn from a uniform distri-

bution in the interval (0.0, 1.0), generating a set [u]. This set

is then mapped to a new set [x] of Weibull-distributed sam-

ples, with parameters a and b, through the transformation

shown in Eq. (12). While the mean value hxi is directly cal-

culated by Eq. (3) and the mean value hyi is directly calcu-

lated by Eq. (7), the mean value hzi is evaluated numerically

by taking the average of the samples [x] in decibels (Eq.

13).

x ¼ a �ln 1� uð Þ½ �1=b (12)

hzi ¼ h20 log10xi: (13)

The offset between hyi in decibels [calculated from Eq. (7)]

and hzi [obtained from numerical simulations of Eqs. (12)

and (13)] can be calculated by Eq. (14). Similar to the off-

sets presented in Eqs. (9) and (10), Eq. (14) depends only on

the b parameter. The results are also plotted on Fig. 5 (con-

tinuous black curve). This offset is approximately 2.5 dB for

a Rayleigh distribution (b¼ 2.0) and 1.9 dB for a lognormal

distribution (b¼ 2.5) and tends to 0.9 dB for larger values of

b, corresponding to a Gauss-like distribution (b¼ 3.6). All

these offset values are summarized in Table I.

10 log 10hx2i � h20 log10xi ¼ 10 log 10 C 1þ 2

b

� �
� hzi

(14)

E. Evaluation of the mean backscatter intensity

Considering a set [x] of N backscatter amplitude sam-

ples, we will now compare and discuss four different

approaches for computing the mean intensity:

(1) Direct average of squared amplitudes, 10 log 10hx2i;
(2) Average of amplitudes plus an offset, 20 log 10hxi
þoffset;

(3) Average of dB values plus an offset, h20 log10ðxÞ i
þ offset;

(4) Median plus an offset, 20 log 10ðMedianðxÞÞ þ offset.

Approach #1 is the mathematically correct form to cal-

culate the mean backscatter intensity, following a squared-

Weibull distribution and directly providing the correct mean

value. The results from approach #2 follow a Weibull distri-

bution, and those from approach #3 follow a log-Weibull

distribution. The averages calculated by approaches #2 and

#3 do not directly provide the correct values, as the calcu-

lated averages need to be shifted by statistical offsets (given

in Table I) to coincide with the results of approach #1. For

calculating the median with approach #4, it is not necessary

to imply any underlying distribution for the random variable

x, as the increasing order of a set of amplitude values, a set

of dB values, or a set of square-amplitude values remains

the same. As a result, the median will be the same for those

three sets. However, the median of a squared-Weibull distri-

bution is also shifted from its mean (Fig. 5).

Determining these offset values is an important step in

the process of comparing the results provided by various

MBES systems or post-processing software tools possibly

using different definitions for the averaging of backscatter

level values. A key point addressed in this paper is that most

of this variability, such as observed in Malik et al. (2019)

could be explained by the different averaging procedures

used by the various post-processing software suites. The

main values of b for processing acoustic backscatter are

b¼ 2.0 (snippets with Rayleigh distribution), b¼ 2.5

(beam-averaged backscatter with lognormal distribution),

and b¼ 3.6 (gridded/mosaicked backscatter with a Gauss-

like distribution).

The proposed Weibull PDF was adjusted to the histo-

grams of the Elorn area, shown in Figs. 4(a)–4(c) (snippets

at grazing, 45�, and normal incidence). The estimated a
parameters reflect the median backscatter intensity, and the

estimated b parameters are coherent with a distribution that

is close to Rayleigh (b¼ 2.0) but showing a subtle increase

toward the normal incidence (2.12, 1.98, and 1.93). The

same behavior was noticed in Figs. 4(g)–4(i) (beam-aver-

aged backscatter at grazing, 45�, and normal incidence). The

estimated a parameters reflect the median backscatter inten-

sity, and the estimated b parameters are coherent with a dis-

tribution that is close to lognormal (b¼ 2.5) but showing a

subtle increase toward normal incidence (2.68, 2.62, and

2.55).

Beyond the particular case (Elorn area) considered

above, the Weibull distribution proved to be robust in

describing histograms of backscatter amplitudes for various

types of seafloor. As an example, we show in Fig. 6 histo-

grams of backscatter samples (gray bars) at 300 kHz from

the four study areas shown in Fig. 1. All samples were used

TABLE I. Statistical offsets (obtained from Fig. 5) corresponding to the various approaches for computing backscatter averaged levels.

From the average of natural amplitudes

(#2) (dB)

From the average of dB values

(#3) (dB)

From the median

(#4) (dB)

Rayleigh distribution (snippets): b¼ 2.0 þ1.0 þ2.5 þ1.6

Log-normal distribution (beam average): b¼ 2.5 þ0.7 þ1.7 þ1.0

Gaussian distribution (final mosaics): b¼ 3.6 þ0.4 þ0.9 þ0.4
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to assemble the histograms, regardless of their incidence

angle. The black continuous lines in Fig. 6 show the

adjusted Weibull distribution with the proper offsets; the

Weibull a parameter separates perfectly the four areas Elorn
(line 292, a ¼�18.9 dB), Aulne (line 247, a ¼�16.2 dB),

Rascass (line 110, a ¼�14.6 dB), and Renard (line 049,

a ¼�11.6 dB). Although the four areas show completely

different sediment facies on the seafloor, with different

mean BS (a parameter), they all show a similar statistical

distribution form close to Rayleigh (b � 1.9).

III. MODELING HIGH-AMPLITUDE SCATTERERS

For a sufficient number of samples recorded over a

homogeneous seafloor area and if the required statistical off-

sets given above are properly applied, all four discussed

approaches for calculating the mean BS will give similar

results, apart from some statistical fluctuations. However,

looking at actual MBES backscatter samples, it is noticed

that random noise and high-amplitude scatterers often con-

taminate the registered values of backscatter amplitudes.

Figure 7(a) shows a uniform seabed (a homogeneous sandy

substrate), and Fig. 7(b) shows the same sandy substrate

with some high-reflectivity scatterers (pebbles). It will be

shown that in such situations, these high-amplitude scatter-

ers will completely dominate the averaging of backscatter

amplitudes (Goff et al., 2004).

Suppose we acquired acoustic data over the seafloor

depicted in Fig. 7(b) and we would like to remotely charac-

terize the seafloor based solely on the acoustic backscatter

samples. In a first approach, we would like to characterize

the substrate shown in Fig. 7(a), ignoring the high-

amplitude scatterers. For this purpose, we should definitely

avoid averaging together the acoustic samples from the sub-

strate and from the high-amplitude scatterers, as these aver-

aged values from different physical origins would reflect

FIG. 6. Histograms of 300-kHz backscatter samples (gray bars) from the four study areas shown in Fig. 1. All samples were used to assemble the histograms,

regardless of the incidence angle. The black continuous lines show the adjusted Weibull distribution, with the adjusted a and b parameters; the sediment

description comes from seafloor samples and photographs. The image insets show the assembled backscatter mosaic for each area (scaled from white/0 dB

to black/�40 dB).

FIG. 7. (a) Underwater photo of a homogeneous sandy seabed. (b) Same sandy substrate with some high-amplitude scatterers. Those scatterers will control

the calculation of the mean backscatter intensity.
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neither the substrate nor the scatterers, leading to an errone-

ous interpretation.

Figure 8 shows a Weibull PDF (black line) characteriz-

ing the substrate of Fig. 7(a) with an average level of

�15 dB. In the same figure, we plot a statistical realization

of this Weibull PDF (gray), obtained from a numerical sim-

ulation. The light gray line shows the same statistical reali-

zation (black) plus a random noise at a 10-dB signal-to-

noise ratio (SNR). The histogram bars show the statistical

realization including noise (light gray curve) together with

the contribution of high-intensity scatterers (with average

level of �5 dB) affecting 1% of the backscatter samples.

The sonar actually registers the samples corresponding to

the histogram bars (substrate plus noise plus scatterers).

However, in a remote characterization approach, we would

presumably rather like to retrieve the black curve (just the

substrate, neither the noise nor the scatterers).

Based on this more realistic statistical modeling

(including noise and high-amplitude scatterers), numerical

simulations were conducted to determine the most appropri-

ate way to calculate the mean backscatter intensity of the

various distributions. Simulations were run for two compos-

ite seafloors made of a sediment-like substrate (average BS

level, respectively, �15 and �40 dB) and a number of

sparse scatterers affecting 1% of signal samples with an

average level of �5 dB. A random noise was added to all

samples with a 10-dB SNR. For both cases, the four averag-

ing approaches were applied, accounting for various num-

bers of samples and applying the offsets defined in Table I.

The results are plotted as a function of the number of sam-

ples used in the averaging (from 5 to 100). It can be

observed (Fig. 9) that, in the presence of random scatterers

and noise, the results of the four averaging approaches differ

considerably (up to 20 dB), depending on the amount of

noise, the number of contributing scatterers, and the number

of samples considered in the averaging process.

From these simulations, it can be seen that in the pres-

ence of noise and high-amplitude scatterers, direct averaging

of squared amplitudes should be avoided. Although this

approach is mathematically correct, its result is severely

contaminated by noise and high-amplitude scatterers (con-

tinuous gray curve). Figure 9 shows that the estimation

errors are maximal for low values of substrate backscatter

(�40 dB) and negligible at high values (�15 dB). Indeed,

the estimation errors increase considerably for lower back-

scatter values.

Averaging of amplitudes should also be avoided, as it is

also severely contaminated by noise and high-amplitude

scatterers (dashed black curve). This average does not

FIG. 9. Calculation results of the mean backscatter intensity as a function

of the number of averaged samples for two simulated environments with

sediment substrate backscatter levels of �15 and �40 dB, the addition of

1% high-intensity (with average level of �5 dB) scatterers, and additive

noise (10-dB SNR), following four different calculation methods and appro-

priate offset compensations (Table I).

FIG. 8. Histogram of the backscatter amplitude PDF for data recorded over

a homogeneous sandy seabed with additive noise and sparse scatterers [Fig.

7(b)]. The black line shows the underlying Weibull PDF with parameters

½a;b� simulating the seafloor substrate backscattering without noise and

without diffusers. The gray line depicts one statistical realization of the

PDF. The light gray line shows the PDF plus a random noise of 10-dB

SNR. The histogram bars show the final samples, which include both addi-

tive noise and contributions of high-intensity scatterers.

FIG. 10. Correlation between the substrate b (from the population) and the

estimated b (from the samples). This simulation was done for 500 samples

and for a¼ 0.2. Without scatterers, the estimated b agrees with the substrate

b (0.0% line). However, in the presence of scatterers (with average level of

�5 dB), the estimated b becomes systematically lower that the substrate b,

and the offset appears to be directly proportional to the density of high-

amplitude scatterers.
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follow the same PDF as the average of squared amplitudes,

so it should be shifted by a statistical offset (Table I).

Nevertheless, the actual difference between these two aver-

ages is not consistent and is not predictable, depending on

the noise level, the number of high-amplitude scatterers, and

the underlying distribution. Again, the estimation errors are

maximal for low backscatter values.

The average of dB values does not follow the same

PDF as the average of squared amplitudes, so it also needs

to be shifted by a statistical offset (Table I). Again, the

actual difference between these averages is not consistent

and is not predictable, depending on the underlying distribu-

tion, the noise level, and the number of scatterers (black and

white patterned curve). However, this average is seldom

more than 2.5 dB away from the true value. The estimation

errors have a weak dependence on backscatter values.

Finally, the median calculation method (approach #4)

appears to be preferable. The median is a robust measure-

ment weakly affected by the additive noise level, neither by

the number of scatterers nor by the number of samples

FIG. 11. Map showing the location of the two studied areas at the mouth of

the Amazon River, at a water depth of approximately 100 m. The two areas

are detailed in Figs. 12 and 13.

FIG. 12. Analysis of backscatter distributions for data using an EM710 MBES (90 kHz) in an area with interpretation of coral structures either present (a)

(gray area) or absent (b) (white area). The graphs on the bottom show the measured histograms (gray bars) and the adjusted probability density distributions

(continuous black curves). Scale for backscatter mosaics and insets: from white/0 dB to black/�40 dB. The axes’ coordinates are in WGS-84 UTM 23 N

projection.
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(continuous black curve). Similarly, the median result must

be shifted by an offset to estimate the correct distribution

mean. However, this offset is only dependent on the under-

lying distribution (Rayleigh for time series samples or log-

normal for beam-averaged backscatter; see Table I).

Using the median values indirectly removes the outliers

from the observed distributions, in a way that practically

excludes the contribution of high-amplitude scatterers from

the analysis. The remaining acoustic values will then reflect

only the substrate contribution. Once the substrate has been

defined, we can compare the relative density of scatterers in

adjacent areas by accounting for the difference of the initial

distribution and the distribution without the outliers. This

technique can be used to detect and quantify the relative

number of high-amplitude scatterers (spatial density).

Figure 9 also shows that the median is a very robust

estimator for the a parameter. Even with fewer samples, we

could still get a reasonable estimation for the central value.

On the other hand, the estimation of the b parameter is more

unstable and demands a large number of samples for a reli-

able estimation. Even if a large number of samples is avail-

able, the estimated b will still be biased by the presence of

scatterers, as shown in Fig. 10 below. High-amplitude scat-

terers, even in small amounts, can distort the PDF toward an

exponential distribution, with a clear effect of lowering the

estimated b. This observation strengthens the argument that

a smaller b parameter can be regarded as evidence of the

presence of scatterers.

IV. REMOTE CHARACTERIZATION OF HIGH-
AMPLITUDE SCATTERERS

To test the suitability of the analysis of high-amplitude

scatterers for the remote characterization of the seafloor, we

processed some MBES acquisition lines acquired at the

mouth of the Amazon River in the context of the LEPLAC

project (Mohriak and Torres, 2017). This project was con-

ducted by the Brazilian Navy with the purpose of establish-

ing the outer limits of the legal Brazilian continental shelf,

in accordance with the criteria established by Article 76 of

the United Nations Convention on the Law of the Sea

(UNCLOS). For this purpose, MBES data were acquired at

the Brazilian continental shelf (using a Kongsberg EM710

at 90 kHz), slope, and rise (using a Kongsberg EM122 at

12 kHz, data not addressed here). Figure 11 shows the two

areas at the Brazilian continental shelf that were selected for

the analysis. These two areas are detailed in Figs. 12 and 13.

Figure 12 shows an area in the mouth of the Amazon

River, at a water depth of approximately 100 m mapped

with an EM710 MBES. The acquisition lines cross a sharp

change in sedimentary facies, one with rhodoliths [facies

(a)] and the other without rhodoliths (b). The gray polygon

in this figure delimits an area where coral structures were

previously mapped (Amado-Filho et al., 2012; Moura et al.,
2012). One histogram was prepared for each area [(a) and

(b)] using all backscatter samples registered as beam time

series (snippets), restricted to grazing angles from 60� to

85�, as this angular interval is more sensitive to interface

backscatter. The mean backscatter level of area (b)

(a¼�15 dB) is much higher than the value of area (a)

(a¼�22.8 dB). On the other hand, the shape of the distribu-

tion is closer to Rayleigh (b ¼1.94) in area (b) but shows

greater distortion toward an exponential distribution in (a)

(b¼ 1.53). This distortion is explainable by the presence of

high-amplitude scatterers in the histogram, similar to what

is shown in the theoretical histogram shown in Fig. 8. For

the area (a), note the difference between the measured

histogram (gray bars) and the adjusted distribution (black

continuous lines) at the highest intensity values (as shown in

Fig. 8).

To estimate this difference observed at high-intensity

values, we introduce a new parameter d defined as the per-

centual number of samples above the adjusted Weibull dis-

tribution (continuous black line in Fig. 8) divided by the total

number of samples. For area (a), the d parameter is 2.9%,

while in area (b), d is only 0.4%. The d parameter shows a

good correlation with the spatial density of high-amplitude

scatterers. In this particular case, the high-amplitude scatter-

ers correspond to the presence of rhodoliths.

The gray polygon depicted in Fig. 13, also at the mouth

of the Amazon River (location map in Fig. 11), shows an

area where sediments with more than 50% of carbonates

were mapped (Amado-Filho et al., 2012; Moura et al., 2012).

This area was also surveyed with a Kongsberg EM710

MBES (90 kHz). The acquisition line shows a rich change in

texture on the ocean floor. Six sonar images with various tex-

tures are detailed at the top of Fig. 13, showing different den-

sities, spacing, and size of the rhodolite beds. The histograms

of these textures (Fig. 14) show similar a parameters (approx-

imately �20 dB), in contrast with the different levels of mean

backscatter perceived in Fig. 13. The mean backscatter levels

FIG. 13. Acquisition line 168, using a Kongsberg EM710 at 90 kHz. Note

the ubiquitous presence of rhodoliths along the line, although with different

spatial densities and distributions. It is possible to differentiate six distinct

seafloor textures (labeled 1–6) along this line. The axes’ coordinates are in

WGS-84 UTM 23 N projection.
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perceived in the image insets are a result of a mosaicking

procedure that accounts for all acquired backscatter samples

in the area, including samples returned from the substrate as

well as samples returned from high-amplitude scatterers.

Thus, areas with higher density of rhodoliths would show

higher levels of mean backscatter. On the other hand, the a
parameters appear to be related only to the substrate, which

indicates that the six areas could share the same substrate, but

with different densities of rhodoliths. The six areas have b
parameters on the order of 1.8. This deviation of b toward

values lower than 2.0 is linked to the presence of high-

amplitude scatterers. Note the consistent difference between

the measured histogram (gray bars) and the adjusted proba-

bility distribution (continuous back lines) for higher ampli-

tude values. This difference is captured by the d parameter

varying from 2.5% to 4%, indicating increasing densities of

high-amplitude scatterers (rhodoliths). By analyzing the six

insets in Fig. 13, it can be seen that the d differences increase

while the b parameters decrease (for b values smaller than 2)

and that this behavior could be linked to the increasing spatial

density of high-amplitude scatterers, a fact that should be fur-

ther investigated.

V. CONCLUSIONS

Acoustic backscatter recorded by MBESs, if properly

processed and interpreted, is an important source of infor-

mation for remote seafloor characterization. An important

step for such analyses is to recognize that the acoustic back-

scatter is a random variable following an underlying PDF. It

was observed that the raw (unprocessed) time series samples

follow a Rayleigh distribution; the beam-averaged backscat-

ter values (one mean value per beam) follow a lognormal

distribution; and samples resulting from a higher order of

processing, including mosaics, tend to follow a Gaussian

distribution. This behavior appears to be independent of the

sonar frequency (at least in the frequency range considered

here, from 90 to 400 kHz) and to have a weak dependence

on the angle of incidence. This paper proposes the use of a

Weibull distribution that will adjust amplitude distribution

regardless of the level of processing, which is reflected on

the b shape parameter. A b parameter greater than 2 indi-

cates higher levels of data processing, filtering, and averag-

ing; the higher the level of processing, the more the PDF

will depart from Rayleigh and will be close to a Gaussian

distribution (b value increasing from 2.0 to 3.6).

FIG. 14. Statistical analysis of the backscatter values obtained on the six areas defined in Fig. 13. For each area, the gray bars show the measured histogram,

and the black continuous lines show the adjusted Weibull PDF. The tables show the model parameters a and b of the fitted PDF and the difference d. Note

that the six areas have a parameters close to �20 dB and b parameters on the order of 1.8. The percentage differences d between the gray bars and black con-

tinuous lines for higher amplitude values may be related to the presence and density of high-amplitude scatterers (rhodoliths). The image insets show the

assembled backscatter mosaic for each area (scale: from white/0 dB to black/�40 dB).
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At all processing stages, the mean BS is the average of

the squared amplitudes. However, the calculating scheme

actually used to obtain this mean BS value can lead to

inconsistencies. Indeed, some discrepancies reported in the

BS calculated with different processing software suites are

likely to be explained by the applied calculating scheme.

The more consistent and stable way of calculating the mean

BS of a set of amplitude values is to get the median value

and then correct it for the appropriate statistical offset

(Table I). These results are easily usable for practical appli-

cations. In this respect, they have been presented as recom-

mendations to users of MBES backscatter data in the

framework of the GeoHab specialized working group

(Fonseca et al., 2019) to improve the consistency and reli-

ability of the results processed and intercompared by this

community.

This paper has also presented a processing scheme that

can separate the contributions of the sediment substrate

from the contributions of high-amplitude scatterers. The

shape of the backscatter PDF is significantly distorted in the

presence of high-amplitude scatterers on the seafloor so that

the calculated BS values will relate neither to the substrate

(lower-amplitude samples) nor to the scatterers (high-ampli-

tude samples). With the proposed method of adjusting a

Weibull distribution, the statistical analysis can be used to

separate the two contributions and to detect the presence

and spatial density of scatterers. The parameter a from the

adjusted Weibull distribution relates to the mean backscatter

intensity of the substrate, without the scatterers. The param-

eter b relates both to the presence of scatterers and to the

level of processing and averaging of the data. A b value

smaller than 2 indicates that the PDF is changing from

Rayleigh distribution toward an exponential distribution,

due to the presence of high-amplitude scatterers. Finally, the

d parameter can conveniently quantify the level of contribu-

tions from the scatterers.
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