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Abstract :   
 
Partial clonality is widespread across the tree of life, but most population genetic models are designed for 
exclusively clonal or sexual organisms. This gap hampers our understanding of the influence of clonality 
on evolutionary trajectories and the interpretation of population genetic data. We performed forward 
simulations of diploid populations at increasing rates of clonality (c), analysed their relationships with 
genotypic (clonal richness, R, and distribution of clonal sizes, Pareto β) and genetic (FIS and linkage 
disequilibrium) indices, and tested predictions of c from population genetic data through supervised 
machine learning. Two complementary behaviours emerged from the probability distributions of genotypic 
and genetic indices with increasing c. While the impact of c on R and Pareto β was easily described by 
simple mathematical equations, its effects on genetic indices were noticeable only at the highest levels 
(c>0.95). Consequently, genotypic indices allowed reliable estimates of c, while genetic descriptors led to 
poorer performances when c<0.95. These results provide clear baseline expectations for genotypic and 
genetic diversity and dynamics under partial clonality. Worryingly, however, the use of realistic sample 
sizes to acquire empirical data systematically led to gross underestimates (often of one to two orders of 
magnitude) of c, suggesting that many interpretations hitherto proposed in the literature, mostly based on 
genotypic richness, should be reappraised. We propose future avenues to derive realistic confidence 
intervals for c and show that, although still approximate, a supervised learning method would greatly 
improve the estimation of c from population genetic data. 
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Introduction

Clonality occurs across the entire tree of life, including all kingdoms of Eukaryota (Avise & 

Nicholson, 2008; Schön, Van Dijk, & Martens, 2009; Tibayrenc, Avise, & Ayala, 2015). Most, if not 

all, clonal eukaryotic species alternate between clonal and sexual reproduction at the population scale 

over a few generations (see Box 1 for the definitions used in this work). This mode of reproduction, 

called partial clonality (PC), has been reported in a broad range of species, especially in primary 

producers, ecosystem engineers, pathogens and invasive species. Their evolutionary trajectories may 

thus have major consequences for ecosystem functioning and for human health and development 

(Schön et al., 2009; Yu, Roiloa, & Alpert, 2016). Challenging environments and the edges of species 

ranges may also favour populations able to reproduce using PC and putatively populations with higher 

rates of clonality, emphasising the importance of understanding evolutionary trajectories of PC 

species when dealing with global changes (Barrett, 2015, 2016; Tibayrenc & Ayala, 2012; Yu et al., 

2016).

Box 1: relevant definitions and concepts

Clonal reproduction

A precise definition of clonal reproduction has been historically used in population genetics, 

corresponding to “an individual produces new individuals that are genetically identical to the 

ancestor at all loci in the genome, except at those sites that have experienced somatic mutations” (as 

defined in De Meeûs, Prugnolle, & Agnew, 2007, see also Marshall & Weir, 1979). This definition 

implicitly includes reproduction through agametic tissues and apomictic parthenogenesis. 

Partial clonality

The term partial clonality (PC) refers to the reproductive system of species undergoing both clonal 

and sexual reproduction through selfing or outcrossing, or both.

Comment on the use of the terms clonality and asexuality:

In this work, we favoured the use of clonality rather than asexuality due to its etymology. Clone 

comes from the ancient Greek κλῶνος, referring to a regrowth, a root shoot or, lately, a growing A
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organic extension with new vigour (Liddell, Scott, Jones, & McKenzie, 1940). Paradoxically, 

clonality, the initial definition of which mentioned plant regrowth, seems to have been used more by 

biologists working on animals, while asexuality is more common in the plant literature.

The term asexuality is currently used beyond its initial definitions, applying to all uniparental 

reproduction with incomplete meiosis schemes, including those occurring beyond prophase I and 

resulting in higher levels of recombination (Nougué et al., 2015). In addition, a societal definition 

emerged the last few years: “a [human] sexual orientation […] not valuing sex or sexual attraction to 

others enough to pursue it” (Decker, 2015 in Bibr, 2017).

Rate of clonality

In line with the definition summarised above, the rate of clonality (here, c) corresponds to “…the 

probability of clonality versus sexual reproduction through selfing or outcrossing” (Marshall & Weir, 

1979), which in this article corresponds to the ratio of the effective number of descendants produced 

by clonality to the total effective number of descendants produced in a population (see also Balloux, 

Lehmann, & de Meeus, 2003; Berg & Lascoux, 2000).

When inferred by genotypic and genetic indices in a population sample, this rate is a proxy for the 

idealised number of descendants produced by clonality relative to the total idealised number of 

descendants produced in the population that would result in the same genotypic and genetic effects.

Despite the prevalence of PC and the potential extent of its consequences at the ecosystem 

level, the consequences of PC for the evolution of species and the ecological dynamics of their natural 

populations have been subject to little in-depth theoretical or empirical development (Yonezawa, 

Ishii, & Nagamine, 2004). This lack of development makes a substantial number of studies on 

partially clonal species confusing when analysing population genetic data and interpreting them in 

terms of demographic and evolutionary dynamics (Avise, 2015; Fehrer, 2010; Yu et al., 2016). 

Nevertheless, the effects of PC are likely to be extremely important at all spatial and temporal scales. 

For example, evolutionarily speaking, the ability of a given genotype to persist across generations 

adds a new target for natural selection, namely, the genotype (Ayala, 1998).

Three main knowledge gaps are related to PC: diagnosing it in species where its occurrence is 

not obviously inferred by classical naturalistic observations (e.g., human pathogens, in contrast to A
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rhizomatous clonal plants); quantifying its extent once a given species is determined to be partially 

clonal; and understanding its influence on the ecological and evolutionary trajectories of partially 

clonal species by investigating their population genetics. These gaps have been only partly filled 

during the past 30 years. The use of molecular markers in a population genetic framework paved the 

way for easier detection of PC (De Meeûs, Lehmann, & Balloux, 2006; Halkett, Simon, & Balloux, 

2005; Tibayrenc, Kjellberg, & Ayala, 1990) through the discrimination of clonal lineages and detailed 

analysis of the genotypic and genetic compositions of species suspected of having PC (Arnaud-Haond 

et al., 2005; Bailleul, Stoeckel, & Arnaud-Haond, 2016; Tibayrenc et al., 1990). However, 

understanding the consequences of partial clonality for the ecological dynamics and evolutionary 

trajectories of natural populations living in different environments, over different time scales, requires 

to estimate at least a rough level of clonality within such populations in the first place. And 

estimations of clonality in populations still face difficulties of implementation and lack of 

methodological recommendations that compromise any advance on those ecological and evolutionary 

topics.

The rate of clonality in natural populations may be estimated by tracking clonal spreads or 

determining groups of clones. In plants, groups of clones have sometimes been identified at local 

scales through extremely time-consuming and tedious mark-recapture studies of rhizomes (Eckert, 

2002; Marbà & Duarte, 1998). However, using this method on large spatial scales and for most 

species exhibiting PC through fragmentation or multiplication at microscopic stages is unrealistic. 

Therefore, tracking clonal spread or determining groups of clones through population genetics is the 

only solution for the vast majority of species. Unfortunately, although population genetic studies can 

illuminate the occurrence of PC in nature, no method has been developed thus far to reliably infer (or 

at least estimate) rates of clonality in natural populations using indices gathered through a classical 

one-time step sampling strategy. Two recently developed methods allow the quantification of rates of 

clonality in populations genotyped at two time steps. However, they require sampling the population 

twice at an interval of at least one generation and, more importantly, a comprehensive knowledge of 

major life history traits, such as generation time, which are seldom available except for well-known 

macroscopic species for which extensive field data have been collected (Ali et al., 2016; Becheler et 

al., 2017).A
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Most empirical studies thus infer the importance of clonal reproduction in populations using a 

one-time step sampling strategy to compute the ratio of genotypes to the number of sampling units 

(genotypic richness, ) as an estimate of clonal richness. Genotypic richness is often 𝑃𝑑 = 𝐺/𝑁

implicitly assumed to have a linear relationship with the rate of sexual reproduction  and to be 1 ― 𝑐

comparable among natural populations submitted to the same sampling strategy. Theoretical studies 

have shown the strong influence of high clonality rates (c>0.95) alone on parameters such as FIS and 

linkage disequilibrium (LD) (Balloux et al., 2003; De Meeûs et al., 2006; Navascués, Stoeckel, & 

Mariette, 2010) but no noticeable departure from expectations under purely sexual reproduction at 

lower rates of clonality. However, more recent mathematical developments have shown that, even if 

the distributions of FIS are indeed wider at high clonality rates, they are actually affected at all 

clonality rates (Stoeckel & Masson, 2014), depending on the strength of departure from equilibrium 

and genetic drift (Reichel, Masson, Malrieu, Arnaud-Haond, & Stoeckel, 2016).

This research led to a present-day paradox in the literature on PC. Many populations exhibit 

average or elevated genotypic diversity, leading several authors to conclude that these populations 

exhibit a high incidence of sexual reproduction, whereas in the same studies, consistent departures 

from Hardy-Weinberg equilibrium (HWE), when reported (which is much rarer), should have led 

them to conclude that the populations exhibit negligible sexual recombination (e.g., Orantes, Zhang, 

Mian, & Michel, 2012; Villate, Esmenjaud, Van Helden, Stoeckel, & Plantard, 2010). This paradox is 

seldom obvious because FIS values are often not reported or, if reported, are not interpreted in relation 

to clonality. In any case, part of this paradox may lie in the pervasive effect of sampling on the 

estimation of genotypic richness (Arnaud-Haond, Duarte, Alberto, & Serrão, 2007; Gorospe, 

Donahue, & Karl, 2015). These two studies demonstrated this worrying effect by using two empirical 

datasets (of seagrasses and corals) where the true rates of clonality were unknown. Assessing the 

order of magnitude of these rates thus requires further investigation.

Given the current state of knowledge, the characterisation of the genotypic (based on groups of 

clones) and genetic (based on allele and genotype frequencies at loci) compositions of populations is 

both the target and the proxy of population genetic studies aiming to understand the influence of 

clonal reproduction on the dynamics and evolution of natural populations. Reconciling the effects of 

PC on both the genotypic and genetic compositions of populations in a robust theoretical framework A
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is thus necessary to illuminate the concomitant changes in their respective estimators depending on 

the rate of clonality.

Here, we propose a simulation-based exploratory approach both to enhance our understanding 

of the consequences of clonality and to improve our ability to reliably assess its rate within natural 

populations. We aim to provide the first exploration of the effect of increasing c on the genotypic and 

genetic compositions of populations to provide baseline expectations for the composition of natural 

populations depending on the extent of clonality. We used comprehensive forward individual-based 

simulations to obtain the theoretical distribution of genotypic (genotypic richness and size distribution 

of lineages) and genetic (departure from HWE and LD) parameters describing the population 

composition at increasing rates of clonality from 0 to 1, including all populations with some clonal 

reproduction, hereafter denoted PC for brevity, ranging from partial (0<c<1) to strict clonality (c=1), 

and populations with solely sexual reproduction (c=0), hereafter denoted sexual populations. We 

explored the temporal evolution of these populations along trajectories towards equilibrium and under 

various levels of genetic drift (population sizes spanning three orders of magnitude). To move from 

insights about the expected effects of PC on natural populations towards more reproducible and 

formalised arguments, we assessed the signature of PC in the genotypic and genetic index 

distributions using a classical and robust Bayesian supervised learning method. This method allowed 

the selection of descriptors that were more clearly affected to in turn develop sound estimates of the 

extent of clonality. Finally, we tested the robustness of the method in examining the influence of 

sample size on the accuracy of estimates and proposed further improvements based on realistic 

sample sizes.

Materials and methods

Approach

PC is empirically known to affect genotypic and genetic descriptors commonly used in population 

genetic studies (Halkett et al., 2005): 1) the number of different genotypes per population, as 

characterised by the genotypic richness indices R and Pareto  (Arnaud-Haond et al., 2007), and two 𝛽

genetic indices, namely, 2) the inbreeding coefficient FIS and its moments (Balloux et al., 2003; 

Stoeckel & Masson, 2014) and 3) the LD index (Navascués et al., 2010). To date, no analytical A
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formalisation has been developed to predict the theoretical probability distributions of these 

descriptors under varying rates of clonality. We thus used simulations to i) synthesise the effects of 

varying rates of clonality on the ranges and dynamics of these genotypic and genetic descriptors, ii) 

assessed whether these descriptors allow to discriminate and quantify rates of clonality using a classic 

supervised learning method, and iii) determine which descriptors best account for specific ranges of 

rates of clonality, with the aim of providing recommendations for future analyses and interpretations.

Simulations

Theoretical results were obtained using forward individual-based simulations run over 104 non-

overlapping generations to reach quasi-stationary distributions of both genotypic and genetic 

diversity. In the initial generations, alleles at all neutral loci were randomly drawn from a uniform 

distribution (i.e., maximum genetic diversity merged at random within individuals). In these 

simulations, all diploid individuals lived in constant finite-sized populations.

Each population produced the next generation using clonal or panmictic sexual reproduction 

following a fixed rate of clonality. All hermaphrodite individuals in each generation had identical 

probabilities of being parents, in both clonal and sexual events. The probability of an individual 

parent being drawn i) to generate a clonal descendant and ii) to generate half a sexual descendant 

followed a Bernoulli scheme, with respective probabilities  and 𝑃(𝑐𝑙𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑒𝑛𝑡) =
𝑐
𝑁

, where N is the population size. In clonal reproduction, new independent 𝑃(𝑠𝑒𝑥𝑢𝑎𝑙 𝑝𝑎𝑟𝑒𝑛𝑡) =
1 ― 𝑐

2𝑁

individuals were produced as full genetic copies of their only parent, with somatic mutations 

occurring at a fixed rate of 10-6 mutations per generation per locus. This choice was driven by the 

high end of estimates of DNA polymerase mutations ranging between 10-8 and 10-9 bp/generation 

(McCulloch & Kunkel, 2008), which for a locus of 100 to 1000 base pairs would imply a mutation 

rate of 10-5 to 10-7. In panmictic sexual reproduction, new independent individuals descended from 

two parents chosen at random within the previous generation, from which the individuals inherited 

half their genomes and mutated at a rate of 10-3 mutations per generation per locus, following 

estimated mutation rates for sexual eukaryotes ranging from 10-4 to 10-7 and 10-2 to 10-5 across 

generations for single-nucleotide polymorphisms (SNPs) and microsatellites, respectively (Payseur & 

Cutter, 2006). Genomes were coded as 100 independent loci. Alleles mutated following a K-allele A
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mutation (KAM) model (Putman & Carbone, 2014; Weir & Cockerham, 1984), which has the 

advantage of simulating the behaviour of both microsatellites and SNPs well and which best 

approximates the “disturbing factor of gene frequencies” (in the sense of Wright, 1931) in finite-sized 

populations. Mutating alleles in both clonal and sexual reproduction were drawn at random from the 

respective pools of clonal and sexual offspring. In simulations, rate of clonality ( ), genetic drift (𝑐 1/𝑁

) and mutation rate (µ) were applied homogeneously across generations and loci.

To understand the effect of clonality on population genetic indices, we ran simulations with 

varying population sizes (N= 103, 104 and 105, to be studied with arbitrarily fixed mutation rates), 

rates of clonality (c=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99 and 1), and numbers of 

generations elapsed since the initial population (generations=10, 100, 500, 1000, 5000, and 10000). 

At each time step, indices were examined for the whole population (all N genotypes considered) as 

well as for subsamples without replacement of different sizes (n=10, 20, 30, 50, 100, 200, 500, and 

1000 and when population sizes allowed, n=5000, 10000, 50000, and 100000).

Each scenario was run 100 times and characterised by a set of parameters (N, c). When 

subsampling populations, we performed 10 independent resamplings of each generation and sample 

size, resulting in 1000 independent data points per set of parameters for each sample size.

Genotypic and genetic descriptors

To account for the genotypic composition and genetic state of populations, we computed two indices 

describing the number and distribution of genotypes (genotypic richness  and slope of the size 𝑅

distribution of lineages Pareto , Arnaud-Haond et al., 2007) and two genetic descriptors referring to  𝛽

intra-individual genetic variation (as the first four moments of the inbreeding coefficient  𝐹𝐼𝑆

distribution; Stoeckel & Masson, 2014) and LD (as the summarised unbiased multi-locus LD ; 𝑟𝐷

Agapow & Burt, 2001).

Genotypic richness

The R index of clonal diversity (Dorken & Eckert, 2001) was defined as follows:

equ. 1𝑅 = (𝐺 ― 1)/(𝑁𝑔 ―1)

where G is the number of distinct genotypes (genets) and  is the number of genotyped individuals.𝑁𝑔A
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Size distribution of lineages

The parameter Pareto  describes the slope of the power-law inverse cumulative distribution of the 𝛽

size of lineages (Arnaud-Haond et al., 2007):

 equ. 2𝑁 ≥ 𝑋 = 𝑎.𝑋 ―𝛽

where  is the number of sampled ramets belonging to genets containing X or more ramets in the 𝑁 ≥ 𝑋

sample of the population studied, and the parameters a and β are fitted by regression analysis.

Genetic variance apportionment

The Wright (1921, 1969) inbreeding coefficient FIS accounts for intra-individual genetic variation as a 

departure from Hardy-Weinberg assumptions of the genotyped populations. We computed one FIS 

value per population and per locus as , where  is the population probability that two 𝐹𝐼𝑆𝑙 =
𝑄𝑤,𝑙 ― 𝑄𝑏,𝑙

1 ― 𝑄𝑏,𝑙
𝑄𝑤,𝑙

homologous alleles taken within individuals are identical at locus l, and  is the population 𝑄𝑏,𝑙

probability that two homologous alleles taken between different individuals are identical at locus l. 

We computed the first four moments of the empirical FIS distribution obtained from the 10000 

independent FIS values per scenario (100 independent loci x 100 replicated simulations), i.e., the 

mean, the variance, skewedness and kurtosis of distributions of FIS as respectively noted in formulas 

and figures as , ,  and .𝑀𝑒𝑎𝑛[𝐹𝐼𝑆] 𝑉𝑎𝑟[𝐹𝐼𝑆]  𝑆𝑘𝑒𝑤[𝐹𝐼𝑆] 𝐾𝑢𝑟𝑡[𝐹𝐼𝑆]

Linkage disequilibrium between loci

LD was studied using  (Agapow & Burt, 2001). The mean correlation coefficient (r) of genetic 𝑟𝑑

distance (d) between unordered alleles at  loci ranges from 0 to 1. This metric has the advantage of 𝑛

limiting the dependency of the correlation coefficient on the number of alleles and loci and is well 

suited to studies of partially clonal populations.

equ. 3𝑟𝑑 =
𝑉𝐷 ― ∑𝑗 = 𝑛

𝑗 = 1𝑣𝑎𝑟𝑗

2∑𝑗 = 𝑛
𝑗 = 1

∑𝑘 = 𝑛
𝑘 > 𝑗

𝑣𝑎𝑟𝑗.𝑣𝑎𝑟𝑘

with  and 𝑉𝐷 =
∑ν

𝑎,𝑏 ≠ 𝑎𝐷2
𝑎,𝑏 ―

(∑𝐷𝑎,𝑏)2

ν

ν 𝑣𝑎𝑟𝑗 =
∑𝑑2 ―

(∑𝑑)2

ν

νA
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where  is the number of loci at which two individuals,  and , differ (the genetic distance between 𝐷 𝑎 𝑏

two individuals over all their loci),  is the number of different alleles between two individuals at 𝑑

locus  or locus k (for diploids,  can be 0, 1 or 2), and ν is the number of unique possible pairs of 𝑗 𝑑

individuals  and , where , within a population.𝑎 𝑏 𝑏 ≠ 𝑎

Genotypic descriptors as empirical functions of the rate of clonality

To assess the relation between c and the genotypic descriptors, we explored the mean results of 

simulations as a function of c. Depending on the shape of the curves obtained with simulated data, we 

tested the fit with basic functions (for example, simple sigmoids and exponentially decreasing 

distributions) as well as with sigmoid and parabolic curves. To assess the accuracy of our empirically 

inferred formula to describe the relationships, we computed the mean absolute error (MAE) and the 

root-mean-square deviation (RMSD) between pseudo-observed simulated values and fitted formulae. 

These two deviation measures aggregate the magnitudes of the errors of predictions into a single 

measure of predictive accuracy. This measure represents the mean deviation of predicted values with 

respect to the observed values and has the advantage of sharing the same units as the model variable 

under evaluation. Lower deviation measures indicate higher accuracy of an analytical formula in the 

prediction of data. These measures must be interpreted on the same metric as the mean value of the 

studied parameter (Piñeiro, Perelman, Guerschman, & Paruelo, 2008).

equ. 4𝑀𝐴𝐸 =
1
𝑛.∑𝑛

1|𝑦𝑠 ― 𝑦𝑓|

equ. 5𝑅𝑀𝑆𝐷 =
1
𝑛.∑𝑛

1(𝑦𝑠 ― 𝑦𝑓)2

where n is the number of pseudo-observed simulations per scenario, ys is the simulated value of the 

genotypic descriptor under consideration, and yf is the calculated value of the genotypic descriptor 

using the fitted formula.

Identifiable signals in genotypic and genetic descriptors, inferences and machine learning

Our second objective was to test for the ability of genotypic and genetic descriptors to estimate 

specific rates of clonality. These descriptors were commonly used in previous studies to roughly 

assess the importance of clonality in determining population reproductive modes, but no theoretical A
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development demonstrated the existence of identifiable signals linking rates of clonality with 

distribution variations of those indices. To assess the existence of identifiable signals in these 

descriptors and demonstrate their potential usefulness in inferring rates of clonality for one episode of 

genotyping, we used the results obtained from the simulations as classifiers to train a Bayesian 

supervised learning algorithm. We used the simulation results to compute the approximate 

nonparametric probability distributions of the genotypic and genetic descriptors (i.e., the seven 

features ) with combinations of Gaussian 𝜑7 = [𝑅,𝛽𝑝,𝑟𝑑,𝑀𝑒𝑎𝑛[𝐹𝐼𝑆],𝑉𝑎𝑟[𝐹𝐼𝑆],𝑆𝑘𝑒𝑤[𝐹𝐼𝑆],𝐾𝑢𝑟𝑡[𝐹𝐼𝑆]]
kernels under known rates of clonality, resulting in a classifier with 12 classes (one class for each rate 

of clonality to be inferred: c=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99 and 1), hereafter referred 

to as .𝐶12

𝐿(𝜑7│𝐶12) = 𝐿(𝑅,𝛽𝑝,𝑟𝑑,𝑀𝑒𝑎𝑛[𝐹𝐼𝑆],𝑉𝑎𝑟[𝐹𝐼𝑆],𝑆𝑘𝑒𝑤[𝐹𝐼𝑆],𝐾𝑢𝑟𝑡[𝐹𝐼𝑆]│𝑁,𝑐,µ)

Provided that dependencies between the seven genotypic and genetic descriptors are evenly 

distributed or cancel each other out or that their distributions sufficiently segregate over their means 

per class, we can approximate the joint probability model using the conditional independence between 

features (Hand & Yu, 2001; Webb, Boughton, & Wang, 2005; Zhang, 2004). The posterior 

probability of the ith class, given that the seven measured features are known, can be expressed as the 

product of the seven likelihoods of each feature weighted by the prior probability of the class.

 equ. 6𝑃(𝐶𝑖│𝜑7) = 𝑝(𝐶𝑖).∏7
𝑗 = 1𝐿(𝜑𝑗│𝐶𝑖)

From this joint posterior probability, we identified the maximum a posteriori (MAP) to discern 

the class (“rate of clonality” and “population size” pair) most likely to explain the measured features.

equ. 7𝑀𝐴𝑃 = argmax
𝑖 ∈ {1,…,12}

[𝑝(𝐶𝑖).∏7
𝑗 = 1𝐿(𝜑𝑗│𝐶𝑖)]

We assumed a uniform distribution prior, i.e., equiprobability for each class , to 𝑝(𝐶𝑖) = 1/12

place the algorithm in an initial state of complete ignorance of the likely values that the two 

parameters might take.

We built training and test databases of 100 and 30 replicates per rate of clonality and 

population size pair, respectively. We explored by cross-validation whether there were enough 

identifiable signals in the features of our classifier  to infer the true rates of clonality with values of 𝐶12A
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population genotypic ( ) and genetic ( ) indices alone and in combination. Posterior 𝑅,𝛽𝑝 𝐹𝐼𝑆,𝑟𝑑

distributions of the thirty test pseudo-observed datasets per rate of clonality and population size pair 

were combined to plot the results.

Results

We first explored the results at equilibrium to understand the influence of clonality on R, Pareto β, LD 

measured as ṝd, and the mean, variance, skewness and kurtosis of FIS at three population sizes (N=105, 

Figure 1; N=103, Figure S1a and N=104, Figure S1b). We then examined the dynamics of the 

parameters along generations before equilibrium to determine the effect of clonality at different time 

steps and to quantify the time needed to converge towards stationary values (Figures 2 and S2). We 

assessed which genotypic and genetic parameters produced the most identifiable signal, allowing 

accurate inferences (Figures 3, S3 and S4). Finally, we approached the issue of sampling size to 

determine its effects on the accuracy of estimates for datasets obtained from natural populations 

(Figures 4 and S2).

Genotypic richness and the distribution of clonal size at equilibrium under an increasing rate of 

clonality

In terms of genotypic diversity, our results showed a clear, progressive, and even stepwise decrease 

with increasing rates of clonality (Figures 1 and S1).

When genotyping the entire population, the relationship between R and c (Figure 3) does not 

follow a linear trend, such as , as might have been assumed in some previous studies. We 𝑅 = 1 ― 𝑐

found that the relationship is best modelled by  (equ. 8, N=100000: MAE=0.011 and 𝑅 = 1 ― 𝑐2

RMSD= 0.020 for ). The same equation fits the simulation results regardless of the 𝑅 = 0.69

population size, with slightly larger deviations at smaller population sizes, as expected with an 

increasing strength of genetic drift (N=10000: MAE=0.013 and RMSD= 0.021 for ; N=1000: 𝑅 = 0.70

MAE=0.029 and RMSD= 0.041 for ), but still providing an accurate approximation.𝑅 = 0.71

The curve describing the evolution of the parameter Pareto  in the power-law distribution of 𝛽

clonal sizes depending on the rate of clonality shows a slightly more complex pattern. The curve has 

the typical shape of a sum of two sigmoid curves with three sub-domains delimited by two inflection A
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points (Figure 1). Very low levels of clonality (0<c<0.1) lead to maximum Pareto -values, which 𝛽

depend on the population size (approximately 8 for N=100 individuals to 15 for N=100000 

individuals). For these distinct initial values of c, the curves show an extremely similar shape 

regardless of population size, with a marked sigmoid shape of Pareto -values declining from 𝛽

approximately 8 (value corresponding to high richness and evenness; Arnaud-Haond et al., 2007) at 

c=0.1 to nearly 0 for c=1. Interestingly, the value =2 is reached for clonal rates of approximately 0.8 𝛽

to 0.9 for all population sizes. Between clonal rates of 0.2 and 0.9, the decline in  is nearly linear and 𝛽

flat for all population sizes. For N = 100000, the sum of two fitted sigmoid curves produces the 

following equation:

 (equ. 9, MAE=0.30 and RMSD= 0.40 for );β =
337335

1 + 𝑒16 × (𝑐 + 0.65) +
5

1 + 𝑒6.8 × (𝑐 ― 0.80) 𝛽 = 4.66

for ,𝑁 = 10000

 (equ. 10, MAE=0.27 and RMSD= 0.36 for ); andβ =
506607

1 + 𝑒9.8 × (𝑐 + 1.12) +
4

1 + 𝑒8.3 × (𝑐 ― 0.81) 𝛽 = 3.94

for ,𝑁 = 1000

 (equ. 11, MAE=0.32 and RMSD= 0.40 for ).β =
5.6

1 + 𝑒5 × (𝑐 ― 0.58) +
3.8

1 + 𝑒50 × (𝑐 ― 0.19) 𝛽 = 3.63

Genetic composition of populations under an increasing rate of clonality

In contrast to the genotypic results but in agreement with previous studies on populations at 

equilibrium with realistic mutation rates (Balloux et al., 2003; Navascués et al., 2010; Stoeckel & 

Masson, 2014), all mean genetic indices are nearly unaffected until the rate of clonality reaches 0.95 

(Figures 1 and S1). In fact, only a slightly larger variance, exemplified at smaller population sizes, can 

be observed at c=0.9 for FIS and its moments and for . The effects of c on genetic parameters are 𝑟𝑑

thus limited to extreme c values.

When the rate of clonality reaches 0.99, values of FIS are slightly negative, a situation 

perceptible mostly in a small population (N=1000, Figure S1a). The three deeper moments of FIS 

distributions, however, show values strongly departing from zero. At this high rate of clonality, LD 

very slightly departs from 0 for large population sizes (N≥10000) and then shows extreme values at 

c=1 (  of approximately 0.8 and 0.6 for N=10000 and 100000, respectively). Interestingly, small 𝑟𝑑

populations including less than 1000 individuals show a modest (mean value of approximately 0.06) A
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but noticeable departure from 0 as well as large variance at c=0.99, whereas  returns to zero (in fact 𝑟𝑑

to a very slightly negative value) at c=1, with a more limited variance. This unexpected behaviour 

occurs because clonality, by increasing the number of generations to reach the genotype frequencies 

expected under Hardy-Weinberg assumptions, makes genetic drift the main driver of genetic diversity 

(Reichel et al., 2016; Rouger, Reichel, Malrieu, Masson, & Stoeckel, 2016). In strictly clonal small 

populations containing 1000 individuals, the number of genets after 10 000 generations ranged from a 

minimum of 91 to a maximum of 102, with a median of 97. Populations were then dominated by one 

main multi-locus genotype (MLG), and the remaining MLGs were scarcely represented (two or three 

copies each), appearing as derived from the main one only through somatic mutations. These 

populations thus consist of the same multi-locus lineage (MLL) characterising the genet, i.e., the 

ensemble of ramets issued from the same event of sexual reproduction (Arnaud-Haond et al., 2007). 

MLGs mostly diverge from each other by 1 to a maximum of 16 alleles (median=2) over a total of 

200 alleles per MLG. The  values are thus driven by the random association of the few alleles 𝑟𝑑

recently appearing by mutation in an overdominant clonal lineage fixed by genetic drift. MLGs 

differing by very few loci imply that  tends to zero and that  tends to non-zero positive values 𝑉𝐷 𝑣𝑎𝑟𝑗

at each locus  (in equation 3).𝑗

Evolution of parameters when moving towards equilibrium

For c ≤0.99, the maximum number of generations required to reach the stationary mean value of the 

genotypic descriptors was several tens to several hundreds (Figures 2 and S2). For the genetic indices, 

a nearly stable mean value was observed beginning in generation 100, with very small fluctuations. 

Strictly clonal populations (c=1) differed: their genotypic parameters also reached a steady value 

early, but their genetic parameters continued to evolve for 10000 or more generations. These 

simulation results are in line with results obtained with mathematical assessments (Reichel et al., 

2016): the farther the population is from its equilibrium, the faster it converges towards the 

equilibrium values. The trajectory then slows down as the values approach those expected at 

equilibrium. Mathematical analysis predicted that the equilibrium values would be asymptotically 

reached after a maximum convergence time that depended on the relative strength of clonality, 

genetic drift and mutation.A
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Identifiability of genotypic and genetic signals using machine learning

Supervised machine learning, as expected, delivers estimates consistent with the variations of 

genotypic and genetic diversity observed above with increasing c when all genotypes in the 

population are known (Figures 3 and S3). Genotypic indices allow such a reasonable estimate of c 

throughout its range, while genetic parameters allow such reasonable estimate only for very high 

values. Genotypic parameters evolve gradually with high accuracy of the estimated c based on R and 

a slightly wider but still rather precise distribution when based on an intermediate Pareto . In 𝛽

contrast, but logically (as the mean values of genetic parameters are nearly unaffected by increasing 

clonality until extreme rates are reached; Figures 1 and S1), machine learning produced a wide 

distribution of estimates around simulated values of c up to c=0.6 for FIS and c=0.9 for . This 𝑟𝑑

distribution, however, is not entirely flat, and although c estimates are poor at modest rates of 

clonality, they become precise near values of c between 0.7 and 0.99.

Based on supervised machine learning, the variance in FIS was the most identifiable signal 

among the studied genetic parameters for estimating rates of clonality (Figure S4), and contain more 

identifiable signals than  in the range of The mean and variance of FIS values even 𝑟𝑑 0 < 𝑐 < 0.9. 

show rather accurate inferred rates of clonality from c=0.7 to c=1. The variance in FIS was the best 

predictor for c<0.5 but produced an error of . Using all moment values of FIS and , the ± 0.3 𝑟𝑑

supervised learning algorithm groups the strength of these parameters, increasing the precision to 

quantitatively infer c. Rates of clonality from c=0.7 to c=1 were inferred with no error; from c=0.4 to 

c=0.7, with low error ( ); and from c=0 to c=0.4, with larger errors ( ).± 0.1 ± 0.3

Taken together, the genotypic and genetic parameters thus complement each other to properly 

estimate c, with the first allowing very precise estimates of c up to 0.95, where the latter become 

useful and precise. The combination of genotypic and genetic parameters should thus be considered to 

precisely estimate the whole range of possible rates of clonality in natural populations, although 

genotypic parameters a priori appear to be the most important to retain across the widest range of 

possible c values. Theoretically, a combination of R and (variance in) FIS would be best for obtaining 

a good estimate of c for any natural population when no a priori information on its extent is available.
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Subsampling

The inference method described above assumes that all individuals from the in silico population have 

been sampled and genotyped. When subsampling is applied in a realistic manner (i.e., mimicking the 

subsampling level of most studies in molecular ecology), however, real issues emerge in terms of 

parameter accuracy and with consequences on the estimates of c.

Genetic parameters (which proved to be less informative for assessing the clonal rate) were 

nearly unaffected by realistic sample sizes, whereas genotypic parameters (which were most 

informative) were considerably overestimated when using realistic sample sizes, leading to a gross 

underestimate of c from real datasets collected from natural populations. This situation remained 

nearly unchanged when subsampling was performed before the population reached equilibrium (see 

Figure S2). The R parameter is so susceptible to sampling bias that a sampling effort of 50 units, 

consistent with many works studied thus far, including ours, cannot reliably estimate an R value lower 

than 0.9, with the exception of highly clonal populations (c>0.8). A correct and unbiased estimate of 

R can be achieved only by genotyping the entire population (Figures 4 and S2). Interestingly, the 

variance in FIS computed from samples of the populations provided more identifiable signals of rates 

of clonality at all populations sizes than genotyping all individuals. However, away from equilibrium, 

the variance in FIS became less informative than that obtained at equilibrium (Figure S2).

Discussion

This work sheds new light on the precise influence of PC on the genotypic and genetic composition of 

natural populations, allowing the identification of the most accurate parameters that should 

theoretically be used to estimate c under a wide range of conditions. Nevertheless, the results also 

clearly demonstrate that the most useful parameters describing genotypic diversity, namely the R and 

Pareto β, are seriously affected by sampling density. This questions our ability to detect clonality by 

using one temporal sample in large populations and the possibility to quantitatively infer rates of 

clonality only based on genotypic diversity.

These findings stimulate new interpretations of some published data and perspectives on 

improvements that are required to further understand the dynamics and evolution of the broad range 

of species exhibiting PC.A
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Parameters most influenced by c and the consequent accuracy of inferences based on these 

parameters

The index R (clonal richness) is widely used to assess the level of clonality within natural populations, 

especially in correlation with environmental drivers, to decipher the impacts of ecological features on 

PC (McMahon et al., 2017). Using entire populations, we empirically formalised the mathematical 

relationship between c and the genotypic richness indices R and (Figures 1 and S1). The 𝛽 

relationship with R is not linear (as sometimes seemingly assumed in the literature) but follows 𝑅 =

 (with  being a small, positive, almost zero random error depending on the strength of 1 ― 𝑐2 ± 𝜀 𝜀

genetic drift). Clonal evenness, represented by Pareto  is also not a linear function of c. Instead, 𝛽,

Pareto  follows a custom sigmoid curve with three domains (ranging from c  [0, 0.15], [0.15, 0.9] 𝛽 ∈

and [0.9, 1]), with the first and last showing a strong decrease in Pareto  with increasing c. In 𝛽

contrast, in the smooth linear domain ranging from c~0.15 to c~0.9, the relationship is almost 

horizontal, suggesting limited changes in genotypic evenness in populations with balanced amounts of 

sexual and clonal events.

In contrast, and in agreement with previous findings (Balloux et al., 2003; De Meeûs et al., 

2006), the genetic parameters are, on average, largely unaffected below extreme rates of clonality 

(c<0.95). However, the variance in FIS and  hints at PC and should theoretically allow the 𝑟𝑑

estimation of its extent under a high prevalence of clonality (c≥0.95; Figures and S1). Clonality 

releases the constraint imposed by sexuality on genotype frequencies to remain around Hardy-

Weinberg proportions, which in turn increases the range of possible values for the genetic indices. 

This effect results in a broader distribution of genetic indices with a larger variance and unusual 

shapes, despite nearly unaffected mean values. Partial clonality thus on average impacts more the 

genotypic than the genetic composition of populations, as it strongly influences the targets of natural 

selection (i.e. the genotypes as well as the alleles; Ayala 1998), the vectors of migration and the long-

term retention of polymorphism. Besides, at the scale of one population, it will cause very different 

dynamics of genotype frequencies, with wider stochastic variations than those obtained in fully sexual 

populations with also putative evolutionary consequences.
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Logically, genetic parameters reach their equilibrium value with lower temporal variation and 

faster than genotypic indices, even at small population sizes (N≤1000 in our simulations). Although 

they are poorly informative regarding c below extreme values, accounting for genetic indices may 

limit the risk of misinterpretation when estimating c not at equilibrium.

As a consequence, genotypic and genetic parameters appear to be complementary in terms of 

the estimation of c. Genotypic parameters are helpful for all values of c <0.95 when populations are at 

equilibrium of evolutionary forces. Contrastingly, genetic parameters are more accurate for estimating 

the incidence of clonality in populations out of equilibrium and for discriminating among high values 

of c as a longer time is needed to reach equilibrium when c increases (Reichel et al., 2016).

Detecting clonality under realistic sampling conditions

Based on our results, clonal richness (R) and clonal evenness (Pareto ) are highly sensitive to 𝛽

sampling. Even using relatively large sample sizes (from 100 to 500 individuals) leads to deeply 

biased estimates of the true R and  and thus c values. R is always greatly overestimated, by some 𝛽

orders of magnitude more than previously demonstrated with empirical datasets for which the rates of 

clonality remained unknown (Arnaud-Haond et al., 2007; Gorospe et al., 2015), and except in nearly 

strictly sexual populations,  was also greatly overestimated (for ). Genotypic descriptors 𝛽 c ≥ 0.1

computed from realistic sample sizes may be informative, yet only for extremely small population 

sizes (N≤1000 individuals in the case of our simulations). Contrastingly, for larger population sizes 

genotypic descriptors computed with realistic sample sizes result in extreme underestimation of the 

rates of clonality (see below) or even in overlooking the occurrence of PC (i.e., considering the 

species as strictly sexual). Unfortunately, parameters based on genotypic diversity have been 

massively used thus far for detecting PC or appraising the extent of c. These results thus question the 

conclusions hitherto proposed when assessing the occurrence or even sometimes the extent of 

clonality based only on genotypic indices. 

In contrast, the distribution moments of FIS and mean LD for common sample sizes (more 

than 20 individuals) produced values consistent with those obtained by genotyping the whole 

population. From our results, when analysing samples from populations with more than 1000 

individuals, we recommend to use those robust-to-sampling genetic indices to detect a signature of a A
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high prevalence of clonality (c≥0.95) and compare clonality estimates from multiple populations, 

rather than interpreting R values alone. Moreover, in cases where a R value conflicts with negative FIS 

(associated to large variance) and significant LD, it would be advisable to trust genetic indices as our 

results clearly show a higher incidence of gross overestimates of true R values. 

The worrying limitation of detecting clonality based on repeated genotypes recalls, for 

example, the results recently reported by Dia et al. (2014) for a unicellular phytoplankton species 

involved in harmful algal blooms (HABs), Alexandrium minutum. This species, which causes 

paralytic shellfish poisoning (PSP), shows an alternation between clonal (during the bloom) and 

sexual phases. Dia et al. (2004) sampled populations throughout the bloom (clonal) events, during 

which they grew from being nearly undetectable to exhibiting a concentration of 104 to 105 cells per 

litre. Of the more than 1000 strains cultivated, 265 were fully genotyped, among which no replicated 

genotypes were found, driving the estimate of clonal diversity to R=1. Without extensive knowledge 

of the biology of this species, clonality would not have been diagnosed on the basis of this sampling, 

which raises questions regarding the occurrence of clonality. Unfortunately, no FIS values could be 

reported in this study because only the haploid phase was sampled, and the LD detected suggested the 

occurrence of recombination. However, according to these results, genetic descriptors allow the 

detection or estimation of clonality when its prevalence is extreme: the results by Dia et al. (2014) 

thus mainly suggest that the clonal rate during the bloom event did not exceed 0.95 in the few 

previous generations, still leaving great uncertainty as to the prevalence of sexual or clonal 

reproduction in this species. Blooms of phytoplankton often develop over a very short time window 

and are supposed to involve mitotic divisions of cells. Strategies to sample their often-colossal 

population sizes, and confront genetic inference of their reproductive modes with other sources of 

information - harder to obtain in such microorganism populations than for macroorganisms (Krueger-

Hadfield & Hoban 2016)- are still in need to be defined. Due to those difficulties and biased measures 

of genotypic diversity in populations, early genetic studies may thus have led to misconclusions about 

the prevalence of sexual reproduction for such species, as previously proposed by Krueger-Hadfield et 

al. (2014) on populations of Emiliania huxleyi. 

Most target species in the literature, including clonal plants and invasive and pathogenic 

species, exhibit extremely large population sizes, thus raising serious questions regarding our ability A
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to detect clonality based on realistic sample sizes, let alone infer its importance. The importance of 

sample size is reflected in the guidelines provided by the pioneering work of Tibayrenc et al. (1991), 

who listed 8 criteria to detect clonality, among which fixed heterozygosity, deviation from HWE and 

LD were expected to be important to diagnose clonality. Nevertheless, these criteria would apply only 

to diploid species with extreme rates of clonality, excluding haploid lineages and diploid species with 

c<0.95.

One may consider the way clonal replicates spatially disperse to better estimate the effect of 

the joint incidence of the sampling density and scale of dispersal of clones. Indeed, it drives the scale 

of spatial autocorrelation of genotypes compared to the grain size of sampling and impacts the ability 

of a given strategy to detect the true proportion of clonal replicates, which in turn, conditions the 

conclusion on the importance of sexual versus clonal reproduction. Along a continuum of dispersal 

from microorganisms such as unicellular algae and flying aphids to clonal plants with strong 

rhizomatic connections and ramets more often clumped than dispersed, the spatial autocorrelation of 

clones increases, as does the ability of a given sampling strategy to reveal clonal replicates at equal 

sampling densities. As a consequence, at the first end of this continuum, where spatial dispersal is not 

limited (as is the case for A. minutum), genotypic parameters alone may not be informative on the 

existence or extent of clonality except for nearly strictly clonal organisms such as the human pathogen 

Trypanosoma cruzi. Such power would be gained as the spatial distance of clonal dispersal becomes 

lower than the sampling mesh size (for an example of the influence of sampling strategy in corals, see 

Gorospe et al., 2015; see Riginos, 2015 for a comment), and clonal replicates would become 

decreasingly randomly diluted at large population sizes and across vast spatial scales.

Quantifying clonality or merely evaluating its extent: how wrong can we be?

In many studies, R may reflect the orders of magnitude separating sample size and population size 

(sometimes together with the clonal size and/or clumping of clonal replicates) rather than the 

prevalence of sexual reproduction. As illustrated in this work, even moderate values of R under our 

usually very small sampling densities (several tens of sampling units in populations bearing one 

hundred thousand to millions of them) may thus suggest a high prevalence of clonal reproduction. 

Some examples exist in the literature in which only a good knowledge of species biology prevents A
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misleading conclusions based on values of genotypic diversity. These examples indicate the need to 

be very careful in interpreting genotypic parameters alone in the numerous cases where no such 

extensive knowledge of the species studied exists. An enlightening case is the study by Orantes et al. 

(2012) on aphids reproducing through cyclical parthenogenesis. Eight populations of Aphis glycines 

were sampled at two time steps corresponding to the early season, when sexual reproduction arises at 

rather small population sizes, and the late season, after a demographic explosion of populations under 

full clonality. Against all expectations based on a presumed relationship between R and c and ignoring 

the effect of sampling density, Orantes et al. (2012) found lower genotypic diversity during the season 

of sexual reproduction (average R of 0.85, average Pareto  of 2.9) than during the later season of β

pure clonality (average R of 0.97, average Pareto  of 4.2), i.e.,  and . β 𝑅𝑠𝑒𝑥𝑢𝑎𝑙 < 𝑅𝑐𝑙𝑜𝑛𝑎𝑙 𝛽𝑠𝑒𝑥𝑢𝑎𝑙 < 𝛽𝑐𝑙𝑜𝑛𝑎𝑙

Without knowledge of the cycle and a good understanding of the effect of population versus sample 

size, a higher rate of sexual reproduction in the late season could have been inferred. However, using 

the guidelines we aimed to develop here, R would mostly signal the significance of clonality and call 

for careful screening of genetic parameters. In fact, departure from HWE in this study confirms the 

complementarity of genotypic and genetic parameters by supporting the prevalence of clonal 

reproduction across the cycle, with mean FIS values of -0.21 and -0.24 in the earlier and later season, 

respectively, suggesting a more important influence of clonality in the later season, with a lower mean 

and larger variance. Similar patterns have been found in multiple studies on cyclical parthenogenetic 

species (e.g., Gilabert, Dedryver, Stoeckel, Plantegenest, & Simon, 2015; Loxdale et al., 2011). 

Another example is a highly clonal root-sucking nematode, Xiphinema index, which shows mid-range 

R values (0.16 to 0.39); however, negative mean FIS values with large variance in agreement with LD 

values suggest a rate of clonality exceeding 0.95 in all these populations, which had better agree with 

a knowledge of the species biology (Villate et al., 2010).

In fact, revising the numerous data acquired on clonal plants, including seagrasses, in light of 

the present results reveals very frequent negative FIS values, suggesting a much higher contribution of 

clonality than previously thought (Evans et al., 2014; Sinclair, Krauss, Anthony, Hovey, & Kendrick, 

2014; Stoeckel et al., 2006) on the basis of their average R values (see Arnaud-Haond, Stoeckel, & 

Bailleul, 2020 for a meta-analysis). Unfortunately, FIS is often neglected in ecological studies, 

possibly due to difficulties in disentangling the influence of technical shortcomings such as null A
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alleles from true impacts of reproductive mode (such as selfing). In the seagrass literature, for 

example, moderate levels of R have led some authors to propose that sexual reproduction has a high 

incidence and may thus contribute greatly to recombination and dispersal through seed production 

(McMahon et al., 2017). The joint re-analysis of R and FIS values and their correlation can illuminate 

likely extreme but overlooked clonal rates (also see Arnaud-Haond, Stoeckel, & Bailleul, 2020). 

Although we seldom found this type of interpretation combining genotypic and genetic parameters in 

the literature, this approach has been used by some authors, such as Ali et al. (2014, also see the 

references above), to infer the importance of long-term clonality.

Interestingly, it has been shown that CloNcaSe, a method based on repeated genotypes alone 

(Ali et al., 2016), can deliver incorrect inferences, likely due to this subsampling effect on R. For a red 

alga (Gracilaria chilensis) maintained through strict clonality for generations in cultivated 

populations, R values of 0.2 to 0.23 lead CloNcaSe to infer a ĉ=0.82, while ClonEstiMate, a second 

method based on transition probabilities of genotype frequencies (Becheler et al., 2017), correctly 

infers a ĉ=1. Similarly, an aphid population sampled when mostly clonal lineages can be found due to 

their biology (Rhopalosiphum padi, Halkett, Kindlmann, Plantegenest, Sunnucks, & Simon, 2006) has 

an R of 0.89, leading CloNcaSe method, based on repeated genotypes, to infer a ĉ=0.68, while 

ClonEstiMate better inferred a ĉ=0.9.

Revising estimates of clonality in natural populations is particularly important because 

present-day interpretations, often mostly focusing on R, are likely to grossly underestimate its extent. 

A vast body of literature exists on the relationship between genotypic diversity and the resistance or 

resilience of populations, as demonstrated in experimental studies (Hughes & Stachowicz, 2004; 

Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Reusch & Lampert, 2004; but see Massa, 

Paulino, Serrão, Duarte, & Arnaud-Haond, 2013). Severe overestimation of genotypic diversities may 

thus have led to strongly misleading conclusions as to the resilience of the studied populations, 

enhanced by their supposedly high R value, as well as to their ability to rely on dispersal of seeds due 

to recurrent events of sexual reproduction (Kendrick et al., 2012, 2017; McMahon et al., 2017). A 

case-by-case re-evaluation is thus needed to determine what may hold true for some species, 

depending on their life history traits (particularly longevity and turnover), but be completely incorrect 

for others.A
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Conclusion

To conclude, our results showed a large impact of PC on the genotypic composition of natural 

populations across the whole spectrum of all possible rates of clonality, supporting its strong 

influence on the tuning of evolutionary forces acting on these populations at different spatial and 

temporal scales, even at low values of c, as conjectured by Lewis (1987). By affecting the main path 

of emergence of new variants (somatic mutations rather than recombination), the targets of natural 

selection (“… the entity that persists and evolves is the clonal lineage…”; Ayala, 1998) and the level 

of genetic diversity involved in migration, and the influence of genetic drift (through the potentially 

much longer-term retention of polymorphism; Reichel et al., 2016; Yonezawa et al., 2004; and the 

present results), PC has the potential to profoundly influence both the short-term dynamics and the 

evolutionary trajectories of natural populations, even at a modest rate of clonality. Unravelling the 

occurrence of clonality and understanding its extent are thus of paramount importance for interpreting 

the demography, ecology and evolution of the vast number of (possibly including some that often 

remain undiagnosed) partially clonal species across the tree of life.

Unfortunately, given the present state of knowledge and existing analytical tools, the 

possibilities of inferring the rates of clonality using one episode of population genotyping are remote. 

Our results also clarify the paradox of the often reported (but also often overlooked) observations of 

high genotypic diversities together with significant heterozygote excess. Those two results indeed 

appeared as antagonist, since high genotypic diversity suggested significant rates of sexual 

reproduction while heterozygote excess supported nearly strict clonality (Dia et al., 2014; Orantes et 

al., 2012). Many partially clonal organisms studied to date may rely on a much higher prevalence of 

clonal reproduction than initially thought, but clonal richness in these organisms may be 

overestimated due to the limited sampling power at hand. This work thus calls for a reappraisal of 

previously published data and conclusions on a broad range of clonal organisms. Perspectives on how 

to infer the importance of clonality using one episode of genotyping may, however, exist and can be 

summarised with the following guidelines:

1) PC can be detected or quantified with the usual sampling power and existing methods, mostly 

when the rate of clonality exceeds 95%.A
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2) Departure from HWE towards heterozygote excess, particularly together with a large variance 

in FIS across loci, indicates the occurrence and likely prevalence of clonality.

3) The joint examination of genotypic and genetic descriptors is often necessary to detect PC, as 

previously recommended for human pathogens (Tibayrenc et al., 1991; see also Tibayrenc & 

Ayala, 2012), but seldom followed in ecological studies

4) Considering both families of parameters may help better estimate the extent of clonal 

reproduction but may require accepting a large uncertainty, particularly when the rate of clonal 

reproduction is not very high.

5) As it is expected to be impacted by clonality, FIS should not be used:

a- for the estimation of psex (as initially offered by Douhovnikoff & Dodd, 2003 and relayed by 

Arnaud-Haond et al., 2007), as it may be in most cases due to clonality rather than non-

random pairing of gametes.

b- when filtering next-generation sequencing (NGS) data based on possible PC (perhaps not as 

strictly). Such filters, failing to fit in the case of partial PC, would lead to at best a very large 

number of informative loci being discarded and at worst complete ignorance of the occurrence 

of PC in the dataset.

c- to detect technical artefacts such as null alleles and correct data or select loci using models 

based on pure sexuality, including those implemented in software, such as Micro-Checker 

(Van Oosterhout, Hutchinson, Wills, & Shipley, 2004).

6) Finally, our simple machine learning approach based on simulation results suggests that such a 

dedicated method, provided it could benefit from improved databases corresponding to the 

broadest possible range of scenarios, would greatly improve our ability to infer the extent of 

clonality. Indeed, we observed a faint but identifiable signature of c below 95% in the second 

and further moments of FIS, and to a lesser extent in rd. They are thus poorly identifiable 

through human eyes, but our first approach shows they can be identified and interpreted 

through such a dedicated statistical analysis. Such a development represents a promising 

avenue and will require large and versatile databases to accommodate the diversity of life 

history traits associated with clonality and subsampling to account for sampling effects.
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Figures legends

Figure 1. Distribution of parameters explored at equilibrium (104 generations of quantitatively 

homogeneous evolution since the initial random population) as a function of rates of clonality, c, at 

population size N=105 (for N=103 and N=104, see Figure S1): genotypic parameters: (a) R and (b) 

Pareto β; and genetic parameters: (c) FIS mean, (d) FIS variance, (e) FIS skewness, (f) FIS kurtosis and 

(g) linkage disequilibrium. measured as ṝd. The X-axis is linear from c=0 to c=0.9 and then non-linear 

for the last two boxes at c=0.99 and c=1.

Figure 2. Temporal evolution of each parameter at a population size of 105 individuals per 

generation, as a function of the number of generations elapsed from a fully random population at 

generation 0. Genotypic parameters: (a) R and (b) Pareto β; genetic parameters: (c) FIS mean, (d) FIS 

variance, (e) linkage disequilibrium measured as ṝd. For smaller population sizes (N=103 and N=104), 

see Figure S2 and S2b. Caution regarding interpretation: all x-axes are non-linear, and the y-axis for 

 and the mean and variance of the FIS distributions present one to two changes in scaling.𝑟𝑑

Figure 3. Machine learning inferences of c at N=105 and for each parameter used for inference: 

genotypic parameters (a) R and (b) Pareto β and genetic parameters (c) FIS and (d) ṝd, as well as (e) 

the combination of all four parameters. The inferred values are plotted against the simulated values, 

with the density gradient from black to light grey indicating the most to least likely/probable.

Figure 4. Subsampling effects on the distributions of genotypic indices (R and Pareto β) and genetic 

indices (mean and variance of the FIS distribution and LD measured as ṝd), depending on the sample 

sizes applied to the dataset, with N=105 at equilibrium (generation g=10000). For smaller population 

sizes (N=103 and N=104) and for the combined effect of subsampling and a non-equilibrium state, see 

supplementary Figure S2a and S2b. Caution regarding interpretation: all x-axes are non-linear, and 

the y-axis for  and the mean and variance of the FIS distributions presents one change in scaling.𝑟𝑑
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Figure 1: N=100 000
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