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Abstract. In the equatorial Pacific, air–sea CO2 flux is known to fluctuate in response to inherent climate variability, 10 

predominantly the El Niño–Southern Oscillation (ENSO). For both investigation of the response of the carbon cycle to 

human-induced radiative perturbations and prediction of future global CO2 concentrations, representation of the interannual 

fluctuation of CO2 fluxes in Earth system models (ESMs) is essential. This study attempted to reproduce observed air–sea 

CO2 flux fluctuations in the equatorial Pacific using two ESMs, to which observed ocean temperature and salinity data were 

assimilated. When observations were assimilated into an ESM whose inherent ENSO variability was weaker than 15 

observations, nonnegligible correction terms on the governing equation of the equatorial ocean temperature caused 

anomalously false equatorial upwelling during El Niño periods that brought water rich in dissolved inorganic carbon from 

the subsurface layer to the surface layer. Contrary to observation, this resulted in an unusual upward air–sea CO2 flux 

anomaly that should not occur during El Niño periods. The absence of such unrealistic upwelling anomalies in the other 

ESM with the data assimilation reflects better representation of ENSO and the mean thermocline in this ESM without data 20 

assimilation. Our results demonstrate that adequate simulation of ENSO in an ESM is crucial for accurate reproduction of 

the variability in air–sea CO2 flux and hence, in the carbon cycle. 

 

1 Introduction 

Since the industrial revolution, vast quantities of greenhouse gases (e.g., CO2) have been released into the 25 

atmosphere through human activities such as fossil fuel use and land use change. Increased atmospheric CO2 concentration 

leads to global warming; however, both the oceanic and the terrestrial ecosystems absorb atmospheric CO2. Oceanic and 

terrestrial CO2 uptake constitutes one of the major processes governing the fluctuation of the global carbon cycle (Sabine et 

al., 2004; Doney et al., 2009a, 2014; Le Quéré et al., 2009, 2010, 2016). 
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The goal of the Paris Agreement is to restrict the rise of the global mean surface temperature to well below 2 °C 30 

relative to the preindustrial level. If greenhouse gas emissions continue to increase at their current rate, Earth’s surface will 

warm by 1.5 °C within ∼20 years (Intergovernmental Panel on Climate Change (IPCC), 2018). In this context, 

comprehensive understanding of the changes in the carbon cycle over previous years is essential for accurate prediction of 

the carbon cycle, including natural fluctuations, which will assist in evaluation of future CO2 emission reductions 

(Kawamiya et al., 2019).  35 

In the global climate, apart from the long-term warming trend associated with anthropogenic CO2 emissions, there 

are inherent, self-excited, internal climate variations with seasonal–decadal timescales, e.g., El Niño–Southern Oscillation 

(ENSO), Pacific decadal variability, and Atlantic multidecadal variability. The solubility of CO2 in the ocean is controlled 

both by water properties such as temperature and salinity and by biogeochemical tracers, e.g., dissolved inorganic carbon 

(DIC), transported by advection and diffusion. In addition, the air–sea CO2 gas transfer velocity is a function of wind speed. 40 

Therefore, fluctuation of the physical properties related to the internal climate variations strongly perturbs the air–sea CO2 

flux (hereafter, CO2F, positive upward). 

Observation-based studies have reached consensus that strong interannual variability of CO2F exists in some 

specific regions such as the equatorial Pacific and high latitudes of both hemispheres (e.g., Park et al., 2010; Valsala and 

Maksyutov, 2010; Landschützer et al., 2014; Rödenbeck et al., 2014). The strong variation of CO2F associated with ENSO 45 

in the equatorial Pacific has been highlighted in many previous observation-based and simulation-based studies (Keeling and 

Revelle, 1985; Feely et al., 1997, 1999; Jones et al., 2001; Obata and Kitamura, 2003; McKinley et al., 2004; Patra et al., 

2005). In the equatorial Pacific during El Niño periods (warm sea surface temperature), dissolved inorganic carbon (DIC) 

concentration in the surface waters and CO2F decrease because of reduced upwelling of cold DIC-rich deep water (Feely et 

al., 2004; Doney et al., 2009a, 2009b). Le Borgne et al. (2002) estimated that upwelling of DIC-rich subsurface water 50 

accounts for up to 70% of CO2F variation in the equatorial Pacific, while the other 30% is attributable to the variation of 

wind speed and biological processes. Accordingly, to estimate and predict fluctuations of CO2 uptake by the global ocean on 

timescales of several years, it would be informative to consider first the fluctuations in the equatorial Pacific associated with 

ENSO. 

Focusing on CO2F fluctuations associated with ENSO in the equatorial Pacific, Dong et al. (2016) analyzed the 55 

results of the Earth system models (ESMs) that participated in the Coupled Model Intercomparison Project (CMIP) Phase 5 

(CMIP5; Taylor et al., 2012), which contributed to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on 

Climate Change (Intergovernmental Panel on Climate Change (IPCC), 2013). They showed that only some ESMs could 

reproduce the observed anticorrelated relationship between sea surface temperature (SST) and CO2F. For reliable prediction 

of future CO2 uptake on seasonal–decadal timescales, it would be preferable to employ an ESM capable of capturing this 60 

anticorrelated relationship between SST and CO2F. 

For prediction of future physical states, previous studies used data assimilation systems to merge oceanic 

observational and/or reanalysis data for initialization of a physical climate model to the current phase of the internal climate 
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variations. Variety of data assimilation techniques has been adopted, ranging from simple nudging technique (e.g., Behringer 

et al., 1998; Ji et al., 1998; Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009; Sugiura et al., 2009; Mochizuki 65 

et al., 2010; Tatebe et al., 2012) to more complex and computationally demanding techniques such as four-dimensional 

variational method or ensemble Kalman filter (e.g., Kalman, 1960; Sasaki, 1969, 1970; Evensen, 1994; Hunt et al., 2004; 

Kalnay et al., 2007; Yang et al., 2013). Furthermore, through incorporation into ESMs, the application of data assimilation 

systems has been expanded to include biogeochemical properties, e.g., CO2F monitoring, phytoplankton biomass monitoring, 

and marine resource management (Brasseur et al., 2009; Tommasi et al., 2017a, 2017b; Park et al., 2018). Li et al. (2016, 70 

2019) studied the predictability of CO2F fluctuations of the global ocean by initializing ESMs with a data assimilation 

system. However, they only compared the results of the initialized models with those of models with and without a data 

assimilation system. The reproducibility of the observed anticorrelated relationship between SST and CO2F associated with 

ENSO, which is one of the most characteristic features in temporal global CO2F variations, was not discussed 

comprehensively.  75 

In this study, as a first step toward predicting fluctuations in atmospheric CO2 concentration, we assimilated 

observed ocean data into two ESMs and evaluated historical fluctuations of CO2F in the equatorial Pacific. One ESM had a 

physical core where the ENSO amplitude is about half the observed value, whereas the other improved ESM showed ENSO 

variation that is more realistic (Watanabe et al., 2010; Watanabe, M. et al., 2011). In this study, nudging technique is 

employed. The technique is relatively simple compared to more elaborate ones such as ensemble Kalman filter and four-80 

dimensional variational method, but is widely used for decadal prediction of physical (Keenlyside et al, 2008; Pohlmann et 

al., 2009; Mochizuki et al., 2010; Tatebe et al., 2012) and biogeochemical (Li et al., 2016, 2019; Sospedra-Alfonso and Boer, 

2020) states. Positive aspects of nudging technique include its readiness to examine the effects of introducing data 

assimilation on physical processes. Through comparison of the results produced by the two ESMs both with and without the 

data assimilation, we clarified the key to accurate reproduction of the CO2F fluctuations associated with ENSO. However, 85 

spatiotemporal observations of DIC concentration are insufficient for use in the assimilation; therefore, this study used ocean 

physical objective analysis data. This remainder of this paper is organized as follows. Sect. 2 provides a brief description of 

the models used in this study, and the derived results are presented in Sect. 3. Finally, a short discussion and a summary are 

presented in Sect. 4. 

 90 

2 Methods 

2.1 Model Description 

This study used two ESMs, i.e., the MIROC-ESM, referred to hereafter as OLD (Watanabe, S. et al., 2011) and the 

MIROC-ES2L, referred to hereafter as NEW (Hajima et al., 2020). The former is an official model of CMIP5, while the 

latter is newly developed for CMIP Phase 6 (CMIP6; Eyring et al., 2016). The physical core model of OLD is MIROC3m, 95 
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while that of NEW is MIROC5.2, which represents a minor update of MIROC5 by Watanabe, M. et al. (2010; 2011). The 

horizontal resolution of the atmospheric component of OLD (NEW) has T42 spectral truncation (i.e., approximately 300 km) 

with 80 (40) vertical levels up to 0.003 hPa (3 hPa). In OLD, the longitudinal grid spacing of the oceanic component is 

approximately 1.4°, while the latitudinal grid intervals vary gradually from 0.5° at the equator to 1.7° near both poles. There 

are 44 vertical levels, the lowermost of which is located at the depth of 5300 m. The oceanic component of NEW has a 100 

horizontal tripolar coordinate system. In the spherical coordinate portion south of 63°N, the longitudinal grid spacing is 1°, 

while the meridional grid spacing varies from approximately 0.5° near the equator to 1° in mid-latitude regions. There are 63 

vertical levels, the lowermost of which is located at the depth of 6300 m. 

In this study, embedded in both ESMs was the same simple scheme for ocean data assimilation, which comprised 

an incremental analysis update (IAU; Bloom et al., 1996; Huang et al., 2002). In the IAU, during the analysis interval from t 105 

= 0 to t = τ, the governing equation including a correction term for temperature and salinity (X) is written as follows: 

 "#
"$
= adv. + diff. + 𝐹 + (

)
Δ𝑋,,	       (1)	

where adv. is the advection term, diff. is the diffusion term, F is the surface flux term, and the final term on the right-hand 

side is the correction term with α as a constant, and ΔXa as the analysis increment. The analysis increment is calculated from 

ΔXa = Xa(0) − X(0), where Xa(0) is the analysis and X(0) is the model first guess at t = 0; this term is held constant during the 110 

analysis interval. Following Tatebe et al. (2012), we employed values of τ ＝ 1 d and α ＝ 0.025. The monthly objective 

analysis data of ocean temperature and salinity (Ishii and Kimoto, 2009) were interpolated linearly to form daily analysis 

data, Xa. Hereafter, the OLD (NEW) model embedded with the IAU scheme is called OLD-assim (NEW-assim). 

OLD and NEW were integrated for spinup under preindustrial forcing until reaching an equilibrium state. Then, a 

set of historical runs with external forcing based on observations from 1850 through to 2005 (i.e., the end year of the 115 

historical run in CMIP5) was conducted. Note that OLD and OLD-assim (NEW and NEW-assim) were driven with CMIP5 

(CMIP6) forcing. Data assimilation started at 1946 to reflect the time span of observed ocean data. The model results from 

1961–2005 were used for analysis. There were three ensemble members for each run of OLD/NEW and OLD/NEW-assim.  

 

2.2 Estimating pCO2 change at the sea surface 120 

CO2F depends on the difference in CO2 partial pressure between the sea and the air, i.e.: 

 CO2F = 𝐾(pCO6 − pCO689:)(1 − 𝛾),       (2) 

where pCO2 (pCO2air) is the CO2 partial pressure in the sea (air), γ is the fraction of sea ice, and 𝐾 = 𝑘𝛼 is the CO2 gas 

transfer coefficient, where k represents the CO2 gas transfer velocity (Wanninkhof, 1992, 2014) and α represents the 

solubility of CO2 in seawater (Weiss, 1974). The CO2 gas transfer velocity k is a function of wind speed and the Schmidt 125 

number (Wanninkhof, 1992). This study investigated the reproducibility of the anticorrelated relationship between CO2F and 

SST and therefore the direction of the flux is important. As K does not affect the direction and the flux variation due to 
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ENSO has larger amplitude in terms of pCO2 than pCO2air (Dong et al., 2017), the direction of flux is governed by the 

variation in pCO2. Consequently, we evaluated the pCO2 change at the sea surface in the equatorial Pacific.  

Seawater pCO2 values depend on temperature (T), salinity (S), DIC concentration, and total alkalinity (Alk); 130 

therefore, the change of pCO2 can be expanded as follows: 

 𝛥pCO6 =
ABCDE
AF

𝛥T + ABCDE
AH

𝛥S + ABCDE
AJKC

𝛥DIC + ABCDE
ANOP

𝛥Alk + Res.,   (3) 

where Res., which includes second-order terms (Takahashi et al., 1993), was estimated as ΔpCO2 – (∂pCO2/∂T)ΔT – 

(∂pCO2/∂S)ΔS – (∂pCO2/∂DIC)ΔDIC – (∂pCO2/∂Alk)ΔAlk in this study. In Sect. 3, we first evaluate the CO2F and pCO2 

fluctuations in the equatorial Pacific in both NEW-assim and OLD-assim, and we calculate each term in Eq. (3) for each 135 

model. 

 

3 Results  

3.1 CO2 flux and pCO2 anomaly in Niño3 region 

The time variations in the Niño3 region (5°S–5°N, 90°–150°W) of both SST (hereafter, NINO3-SST) and CO2F 140 

(hereafter, NINO3-CO2F) simulated with OLD-assim (NEW-assim) are shown in Figure 1a (Figure 1b). The correlation 

coefficient between NINO3-SST and NINO3-CO2F in NEW-assim (OLD-assim) is –0.41 (0.44). It suggests that the 

observed anticorrelated relationship is captured well in NEW-assim but not in OLD-assim. Dong et al. (2016) showed that 

OLD could capture the observed anticorrelated relationship between SST and CO2F in the equatorial Pacific; however, 

OLD-assim could not reproduce this relationship. 145 

As the direction of CO2F is determined mainly by pCO2 at the sea surface (see Eq. (2)), we further estimated each 

term in Eq. (3) for each model output (Figure 2). We estimated ΔX (X = pCO2, T, S, DIC, or Alk) in Eq. (3) as X regressed 

on the NINO3-SST averaged over the entire Niño3 region, while ∂pCO2/∂X was estimated based on the climatological 

annual mean T, S, DIC, and Alk at the sea surface within the Niño3 region in each model. In OLD, the impact of the change 

in DIC concentration (i.e., the absolute value of (∂pCO2/∂DIC)ΔDIC) is larger than that of the change in CO2 solubility due 150 

to temperature increase (i.e., (∂pCO2/∂T)ΔT) and thus ΔpCO2 becomes negative during El Niño periods. However, in OLD-

assim, (∂pCO2/∂T)ΔT is larger than in OLD and the absolute value of (∂pCO2/∂DIC)ΔDIC is smaller, resulting in positive 

ΔpCO2 during El Niño periods. In NEW and NEW-assim, the absolute value of (∂pCO2/∂DIC)ΔDIC is large, causing 

negative ΔpCO2. As noted in Sect. 1, previous studies (Le Borgne et al., 2002; Feely et al., 2004; Doney et al., 2009a, 

2009b) showed that variability in upwelling during ENSO events dominates equatorial Pacific CO2F through its regulation 155 

of DIC. In the following, we discuss the temperature and upwelling velocity changes during El Niño periods along the 

Equator.  
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3.2 DIC and upwelling changes in OLD and OLD-assim 

Here, we analyze the model results of both OLD-assim and OLD. A cross section of the monthly ocean 160 

temperature anomaly regressed onto NINO3-SST along the Equator within the Pacific is presented in Figure 3, together with 

the climatological annual mean depths of the 18, 20, and 22 °C isotherms. Here, monthly temperature anomalies were 

calculated with respect to the 1971–2000 monthly mean climatology. In comparison with observations (Figure 3c) (Ishii and 

Kimoto, 2009), the climatological mean state of OLD shows an equatorial thermocline that is more diffuse than observed. In 

addition, the temperature increase during El Niño periods in OLD is smaller (Figure 3a). The standard deviation of NINO3-165 

SST in OLD was calculated as 0.43 °C, i.e., approximately half that derived from the COBESST2 dataset (0.71 °C) (Ishii et 

al., 2005; Hirahara et al., 2014). Our result is consistent with Meehl et al. (2001), who reported that a climate model with a 

climatological mean state of a diffuse equatorial thermocline showed a smaller increase in SST during El Niño periods. The 

process of strengthening or weakening of the upwelling that passes through the thermocline is important for SST fluctuations 

associated with ENSO. When the thermocline is diffuse, the temperature difference between the top and bottom of the 170 

thermocline is reduced, and the effect of the upwelling passing through the thermocline on SST fluctuation is diminished. 

We estimated the strength of this feedback in OLD. For this purpose, we evaluated the westerly wind anomaly in 

the equatorial central Pacific as the zonal wind anomaly at 10 m height above the sea surface within the Niño4 region (5°S–

5°N, 160°E–150°W) (hereafter, NINO4-U10) (Guilyardi et al., 2009). Similarly, we calculated the vertical velocity at the 

depth of the oceanic thermocline (often measured by the depth of the 20 °C isotherm (e.g., Lengaigne et al., 2012; Li and Xie, 175 

2014)) averaged over the Niño3 region (hereafter, NINO3-WO). Then, the wind feedback (vertical velocity feedback) was 

computed as the regression of NINO4-U10 over NINO3-SST (m s–1 °C–1) (regression of NINO3-WO over NINO3-SST (m 

s–1 °C–1)). The black cross in Figure 4 shows the strength of the wind and vertical velocity feedbacks evaluated from OLD. 

The wind (vertical velocity) feedback of 0.46 m s–1 °C–1 (–0.49 × 10–6 m s–1 °C–1) indicates positive feedback (an enhanced 

warm SST anomaly). However, this wind feedback is less than half that evaluated from the JRA55 reanalysis wind dataset 180 

(Kobayashi et al., 2015) and the COBESST2 dataset (Ishii et al., 2005; Hirahara et al., 2014), i.e., 1.02 m s–1 °C–1 (thin 

dashed line in Figure 4). 

Cross sections of the monthly upward water velocity and DIC concentration anomalies along the Equator regressed 

onto NINO3-SST in OLD without assimilation are shown in Figure 5a and 5b, respectively. The weak ENSO signal in the 

zonal wind in OLD (Figure 4) leads to a decrease in water upwelling of just 10−6 m s−1 in the equatorial Pacific (Figure 5a). 185 

Although the ENSO signal in OLD (without assimilation) is weak because of weakened upwelling of subsurface DIC-rich 

waters (Figure 5a), the DIC concentration of the surface waters decreases (Figure 5b). This is consistent with Dong et al. 

(2016), showing that OLD is able to reproduce qualitatively the anticorrelated relationship between temperature and DIC 

concentration. 

We investigated the correction in temperature due to the data assimilation (temperature increment, the final term 190 

on the right-hand side of Eq. (1)) and the fluctuations in vertical velocity and DIC concentration in OLD-assim. The monthly 
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mean temperature increment, vertical velocity, and DIC concentration along the Equator regressed onto NINO3-SST are 

shown in Figure 6a–c, respectively. As the temperature increase during El Niño periods in OLD is smaller than observed 

(Figure 3a and 3c), data assimilation causes the water temperature to increase by 0.16 × 10–6 °C s–1 at the depth of the 

thermocline (the depth of the 20 °C isotherm) in the eastern equatorial Pacific (Figure 6a). The wind feedback in OLD-assim 195 

is 0.49 m s–1 °C–1 (red cross in Figure 4), which is the same as in OLD; however, the strong heating causes upwelling of 

DIC-rich waters in the subsurface layers (Figure 6b). The positive value of vertical velocity feedback in Figure 4 indicates 

enhancement of subsurface cold water upwelling and weakening of the SST increase. This unrealistically prevents El Niño 

from developing fully. This upwelling also causes the DIC concentration in the surface layer to increase (Figure 6c), leading 

to positive correlation between SST and CO2F (Figure 1b), contrary to observations. 200 

 

3.3 DIC change in NEW and NEW-assim 

Here, we analyze the model results of NEW and NEW-assim, which capture the observed anticorrelated 

relationship between NINO3-SST and NINO3-CO2F (Figure 1b). 

A cross section of the monthly mean water temperature regressed onto NINO3-SST along the Equator in NEW is 205 

shown in Figure 3b. Compared with OLD (Figure 3a), a stronger fluctuation of water temperature is observed in NEW. The 

standard deviation of NINO3-SST is 1.14 °C. Note that this value is larger than both that in OLD (0.43 °C) and that derived 

from the COBESST2 dataset (0.71 °C). 

As mentioned in Sect. 3.2, El Niño is associated with both a westerly wind anomaly in the central equatorial 

Pacific and a vertical velocity anomaly in the eastern equatorial Pacific. The wind feedback in NEW of 0.90 m s–1 °C–1 210 

(black circle in Figure 4) is much larger than in OLD (0.46 m s–1 °C–1). We also note that this is comparable with that 

evaluated from the JRA55 reanalysis (Kobayashi et al., 2015), i.e., 1.02 m s–1 °C–1. Thus, based on the fluctuations in water 

temperature and wind speed, it can be said that ENSO reproducibility in NEW is better than in OLD. 

A cross section of the monthly vertical velocity anomaly regressed onto NINO3-SST in NEW is shown in Figure 

7a. The stronger ENSO signal in the zonal wind in NEW in comparison with OLD causes greater decrease in upwelling of 215 

approximately 5 × 10–6 m s–1. The vertical velocity feedback is estimated as −0.47 × 10–6 m s–1 °C–1 (black circle in Figure 4). 

A cross section of the monthly DIC concentration anomaly regressed onto NINO3-SST is shown in Figure 7b. Owing to the 

westerly wind anomaly and the decrease in upwelling, NEW is able to reproduce the realistic decrease in DIC concentration 

during El Niño periods.  

Here, we investigate the model results of NEW-assim. The monthly temperature increment, vertical velocity, and 220 

DIC concentration anomalies along the Equator regressed onto NINO3-SST in NEW-assim are shown in Figure 8a–c, 

respectively. The large absolute value of the temperature increment is found only in surface layers with temperatures >22 °C, 

whereas that in the thermocline between the isotherms of 18 and 22 °C is merely 0.06 × 10–6 °C s–1 (Figure 8a), i.e., much 

smaller than in OLD-assim (0.16 × 10–6 °C s–1; Figure 6a). In NEW-assim, the wind feedback of 0.93 m s–1 °C–1 (red circle 
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in Figure 4) is of similar magnitude to that in NEW (0.90 m s–1 °C–1). The westerly wind anomaly in NEW-assim leads to 225 

decrease in upwelling of subsurface waters along the Equator (Figure 8b), and the vertical velocity feedback of –0.47 × 10–6 

m s–1 °C–1 is again of similar magnitude to that in NEW. The finding that the wind and vertical velocity feedbacks in NEW-

assim act in a manner consistent with NEW indicates that ocean data assimilation does not cause spurious 

upwelling/downwelling in NEW-assim. The diminished upwelling in NEW-assim leads to decrease in the DIC concentration 

(Figure 8c), resulting in the anticorrelated relationship between SST and DIC concentration. 230 

 

4 Discussion and Summary 

The equatorial Pacific is the region where most prominent interannual variability of CO2F can be seen (e.g., Park 

et al., 2010; Valsala and Maksyutov, 2010; Landschützer et al., 2014; Rödenbeck et al., 2014). In this research, the same 

simple data assimilation scheme is incorporated into two ESMs, OLD in which the ENSO amplitude is about half the 235 

observed value and NEW with improved reproducibility of ENSO. The correlation between SST and CO2F in the equatorial 

Pacific is consistently represented only in the case where the ocean temperature and salinity observations are assimilated into 

NEW. Response of the equatorial trade wind to the observed SST was significantly weaker than observed in OLD with the 

data assimilation, which cannot support the development of the equatorial subsurface temperature variations during El Niño 

periods with comparable amplitude in observations. Instead, relative importance of the correction term on the governing 240 

equation of the ocean temperature, which is introduced in the data assimilation procedure, becomes nonnegligible, and 

advection-diffusion balance of the temperature is biased with respect to model’s physical nature. Resultant spurious 

equatorial upwelling of subsurface DIC-rich water to the surface layer works to increase the surface DIC concentration 

during El Niño periods, and thus, unrealistic upward CO2F occurs in the case where the data assimilation is incorporated 

into OLD. We conclude that faithful representation of the processes in the equatorial climate system is crucial for improved 245 

initialization and subsequent prediction in marine ecosystem modeling. 

Focusing on the CO2F fluctuations associated with ENSO in the equatorial Pacific, Dong et al. (2016) analyzed 

the results of the CMIP5 ESMs. They showed that only a portion of CMIP5 ESMs (including OLD) could reproduce the 

observed anticorrelated relationship between SST and CO2F. Bellenger et al. (2014) evaluated the reproducibility of ENSO 

in the CMIP5 models. They reported that most CMIP5 climate models and ESMs underestimate the amplitude of the wind 250 

stress feedback by 20%–50%, and that only 20% of CMIP5 models have relative error within 25% of the observed value. 

Our study indicated that reliable future prediction of CO2F in the equatorial Pacific would benefit from faithful reproduction 

of  wind feedback in ESMs that is sufficiently strong to capture the anticorrelated relationship between SST and CO2F, even 

with data assimilation.  

In this study, as a first step toward predicting fluctuations in atmospheric CO2 concentration, we discussed 255 

fluctuations in CO2F attributable directly to ENSO. It is also known that CO2F fluctuates in association with Pacific decadal 
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variability (Valsala et al., 2012) and Atlantic multidecadal variability (Breeden and McKinley, 2016). In addition, land–air 

CO2 flux also fluctuates in association with ENSO (Eldering et al., 2017). The reproducibility of fluctuations in CO2F in 

other regions as well as those of land–air CO2 flux remains a topic for future research. 

 260 
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 465 

 
Figure 1. Time variations of the ensemble mean sea surface temperature (SST; blue line) and air–sea CO2 flux (CO2F, positive 
upward; red line) in the Niño3 region (5°S–5°N, 90°–150°W) simulated with (a) OLD-assim and (b) NEW-assim. Values plotted 
are the one-year running mean and shading shows the standard deviation. 
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 470 

 

 
Figure 2. Each term in Eq. (3) evaluated in NEW-assim, NEW, OLD-assim, and OLD. ΔX (X = pCO2, T, S, DIC, or Alk) in Eq. (3) 
is estimated as X regressed onto NINO3-SST, and ∂pCO2/∂X is estimated with the climatological annual mean T, S, DIC, and Alk 
at the sea surface within the Niño3 region in each model. 475 
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Figure 3. Cross sections along the Equator of monthly water temperature anomaly in (a) OLD, (b) NEW, and (c) derived from the 
observational dataset by Ishii and Kimoto (2009), each regressed onto NINO3-SST. Contour interval is 0.1 °C. Solid lines show the 
climatological annual mean depths of the 18, 20, and 22 °C isotherms. 480 
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Figure 4. Relationship between the wind (u10) feedback and the vertical velocity (wo) feedback in OLD (black cross), OLD-assim 
(red cross), NEW (black circle), and NEW-assim (red circle). Wind feedback (vertical velocity feedback) was computed as the 
regression of NINO4-U10 over NINO3-SST (m s−1 °C−1) (regression of NINO3-WO over NINO3-SST (m s−1 °C−1)). Thin dashed 485 
line shows wind feedback evaluated from the JRA55 reanalysis wind dataset (Kobayashi et al., 2015) and the COBESST2 dataset 
(Ishii et al., 2005; Hirahara et al., 2014). 

 

 

Figure 5. Cross sections along the Equator of monthly (a) upward velocity and (b) DIC concentration anomalies with OLD, each 490 
regressed onto NINO3-SST. Contour interval is 0.5 × 10−6 m s−1 in (a) and 2 µmol L−1 in (b). 
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Figure 6. Cross sections along the Equator of (a) water temperature increment, (b) upward velocity, and (c) DIC concentration 
with OLD-assim each regressed onto NINO3-SST. Contour interval is 0.02 × 10−6 °C s−1 in (a), 0.5 × 10−6 m s−1 in (b), and 2 µmol 495 
L−1 in (c). 
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Figure 7. As Figure 5 but for NEW. 

 500 
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Figure 8. As Figure 6 but for NEW-assim. 
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