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Abstract. Marine dimethyl sulfide (DMS) is important to
climate due to the ability of DMS to alter Earth’s radi-
ation budget. Knowledge of the global-scale distribution,
seasonal variability, and sea-to-air flux of DMS is needed
in order to improve understanding of atmospheric sulfur,
aerosol/cloud dynamics, and albedo. Here we examine the
use of an artificial neural network (ANN) to extrapolate
available DMS measurements to the global ocean and pro-
duce a global climatology with monthly temporal resolution.
A global database of 82 996 ship-based DMS measurements
in surface waters was used along with a suite of environ-
mental parameters consisting of latitude–longitude coordi-
nates, time of day, time of year, solar radiation, mixed layer
depth, sea surface temperature, salinity, nitrate, phosphate,
and silicate. Linear regressions of DMS against the environ-
mental parameters show that on a global-scale mixed layer
depth and solar radiation are the strongest predictors of DMS.
These parameters capture ∼ 9 % and ∼ 7 % of the raw DMS
data variance, respectively. Multilinear regression can cap-
ture more of the raw data variance (∼ 39 %) but strongly un-
derestimates DMS in high-concentration regions. In contrast,
the artificial neural network captures ∼ 66 % of the raw data
variance in our database. Like prior climatologies our results
show a strong seasonal cycle in surface ocean DMS with
the highest concentrations and sea-to-air fluxes in the high-
latitude summertime oceans. We estimate a lower global sea-
to-air DMS flux (20.12± 0.43 Tg S yr−1) than the prior es-
timate based on a map interpolation method when the same
gas transfer velocity parameterization is used. Our sensitiv-
ity test results show that DMS concentration does not change

unidirectionally with each of the environmental parameters,
which emphasizes the interactions among these parameters.
The ANN model suggests that the flux of DMS from the
ocean to the atmosphere will increase with global warming.
Given that larger DMS fluxes induce greater cloud albedo,
this corresponds to a negative climate feedback.

1 Introduction

Dimethyl sulfide emitted from the surface ocean is the ma-
jor precursor for aerosol sulfate in the marine atmosphere.
These aerosols play a significant role in the climate system
both directly, through aerosol radiative effects, and indirectly,
through their role as cloud condensation nuclei and influence
on cloud radiative properties (Andreae and Rosenfeld, 2008).
Assessing the impact of dimethyl sulfide (DMS) on global
climate requires an understanding of the seawater DMS dis-
tribution and the factors controlling variability on a variety
of spatial and temporal scales. Dimethyl sulfide is produced
in surface waters, mainly via enzymatic cleavage of the bio-
genic compound dimethyl sulfoniopropionate (DMSP; Ste-
fels et al., 2007). The abundance of DMS in surface wa-
ters is a function of numerous factors controlling production
and loss rates, as well as pathways of both DMSP and DMS
(Simó, 2001; Toole and Siegel, 2004; Galí et al., 2015). De-
veloping mechanistic and predictive models of surface ocean
DMS is challenging due to limitations of the existing obser-
vational database and process rate measurements.
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Given the biogenic origin of DMS, early efforts focused
on the relationship between DMS and Chl a (a proxy for
biomass). Positive correlations between DMS and Chl a have
been reported on basin scales (e.g., Andreae and Barnard,
1984; Yang et al., 1999). However, this positive correlation
disappears when more data are used. Kettle et al. (1999)
found no significant relationship between DMS and Chl a
based on the global DMS dataset available at the time. The
weak relationship may be caused by the so-called “summer
DMS paradox”, which describes a phenomenon in which
the annual maximum of the surface DMS concentration is
commonly detected in summer when Chl a is at its annual
minimum in midlatitude and subtropical low-latitude waters
(Simó and Pedrós-Alió, 1999). Kettle et al. (1999) also tested
linear regression models on a compilation of data, including
sea surface salinity and temperature, nitrate, silicate, phos-
phate, and Chl a. The authors then concluded that no simple
algorithm based on linear regression could be used to create
monthly DMS fields, indicating that more complex mecha-
nisms can control surface DMS concentrations.

Simó and Dachs (2002) achieved a strong linear relation-
ship between heavily binned/averaged DMS and mixed layer
depth (MLD) when Chl a /MLD≥ 0.02, as well as a loga-
rithmic relationship between DMS and Chl a /MLD when
Chl a /MLD< 0.02. Vallina and Simó (2007) found a linear
relationship between DMS concentration and solar radiation
dose (SRD) in the coastal northwestern Mediterranean. They
conducted a global-scale study by dividing the ocean into 10◦

latitude by 20◦ longitude boxes and correlating SRD and the
box-averaged DMS concentration. A strong linear relation-
ship was detected in this filtered dataset. Derevianko et al.
(2009) reexamined the relationship between SRD /MLD and
DMS concentration by using 1◦ by 1◦ bins and found that
only a small fraction (14 %) of the DMS variance was cap-
tured by a linear model based on SRD or MLD. These au-
thors also pointed out that the previously identified strong re-
lationship between MLD /SRD and DMS “results from the
reduction in the total variance in the data due to binning”
(Derevianko et al., 2009).

Prognostic models have also been used to obtain clima-
tological DMS distributions. In these models, phytoplank-
ton are divided into different groups based on their ability
to produce DMSP, the precursor of DMS. For example, di-
atoms produce less DMS than coccolithophores and Phaeo-
cystis (e.g., Bopp et al., 2003; Vogt et al., 2010; Gypens et al.,
2014). Elliott (2009) implicitly incorporated Phaeocystis in
a model by assuming that DMS yields are simply related to
temperature. The work of Wang et al. (2015) explicitly in-
corporated Phaeocystis into the Biogeochemical Elemental
Cycling (BEC) model and included DMSP production from
each phytoplankton group, along with DMS leakage path-
ways from algal cells (grazing, lysis, and exudation). Despite
this level of modeling detail, there are still large discrepan-
cies between the model simulations and in situ measurements
(Tesdal et al., 2016). Le Clainche et al. (2010) suggested that

Figure 1. Model versus observation plots on a logarithmic scale:
(a) multilinear regression model; (b) artificial neural network
model. The color indicates the fraction of the joint distribution ex-
plained as a percentile that falls within a region of concentration
space.

environmental conditions should be included in future model
development because DMS cycling depends strongly on phy-
toplankton dynamics.

The DMS climatologies used in most climate models were
obtained by extrapolating observed DMS to the global ocean
using objective analysis schemes (Kettle et al., 1999; Lana
et al., 2011). In those climatologies, observational data were
first binned and averaged into 1◦ by 1◦ grid squares, which
were then grouped into 57 static biogeographic provinces
according to Longhurst (2007). Many provinces lacked ad-
equate data to create a reliable climatology (Fig. A1 in the
Appendix). In those situations, they first generated an an-
nual cycle with monthly means for each province. Tempo-
ral interpolations were used to fill the monthly gaps if there
were enough data to create a robust annual mean. Otherwise,
weighted interpolation from neighboring provinces was used
to fill the remaining gaps. Major gaps remain in the obser-
vational database for wintertime in the high latitudes of both
hemispheres.

Machine learning is being increasingly used in oceanog-
raphy and geoscience studies (Bergen et al., 2019). For ex-
ample, Roshan and DeVries (2017) applied an artificial neu-
ral network (ANN) to extrapolate observed dissolved organic
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carbon (DOC) to the global ocean. Rafter et al. (2019) used
an ensemble of neural networks to study oceanic δ15N distri-
bution. ANNs have also been used to study DMS on regional
scales (e.g., Humphries et al., 2012). The popularity of ma-
chine learning partially stems from one of its inherent ad-
vantages: it can detect nonlinear relationships that traditional
linear regression models are unable to capture. In this study,
we explore the relationships between DMS and environmen-
tal parameters using a machine-learning method. Such rela-
tionships are hard to detect using traditional linear regression
methods, because environmental parameters do not directly
influence DMS concentration. They control the distribution
of marine algae that determines the distribution of DMSP (a
precursor of DMS) and its conversion to DMS (Kiene et al.,
2000; Simó, 2001). The objective of this paper is to discover
the relationships between DMS and environmental variables,
with the goal of constructing a novel monthly-resolved DMS
climatology.

The paper is organized as follows. We begin by explor-
ing the relationships between DMS concentration and vari-
ous environmental parameters taken one at a time using lin-
ear regression. We then do a stepwise multilinear regression
to create a reference model to which we compare our neu-
ral network model results. Lastly, we train an ANN using
DMS measurements and environmental parameters. With the
trained networks, we extrapolate the sparse measurements
globally to obtain gridded fields of monthly DMS distribu-
tions and sea-to-air DMS fluxes.

2 Materials and methods

2.1 Data sources and cleaning

Surface ocean DMS data were obtained from the Global
Surface Seawater DMS Database (Pacific Marine Environ-
mental Laboratory, PMEL; last access: 1 May 2020) and
from the North Atlantic Aerosols and Marine Ecosystems
Study (NAAMES) (Behrenfeld et al., 2019) (Table A1). In
total, there are 93 571 valid measurements (PMEL: 86 785;
NAAMES: 6786) after removing ultralow (< 0.1 nM) and ul-
trahigh (> 100 nM) DMS measurements according to Galí
et al. (2015). The number of measurements used are sub-
stantially more than the 47 313 used by Lana et al. (2011).
The Global Surface Seawater DMS Database also includes
some ancillary in situ data, such as DMSP (4620), Chl a
(PMEL: 11 491; NAAMES: 6750), sea surface temperature
(SST; PMEL: 81 069; NAAMES: 6786), and salinity (SSS;
PMEL: 77 209; NAAMES: 6786). In situ SST and SSS were
used if available. If not, monthly climatology data from other
sources (Table A1) were used to fill the gaps. SeaWiFS Chl a
data (monthly average, Level 3-binned, spatial resolution of
9.2 km, last access: 1 May 2020) from December 1997 to
March 2010 were matched to DMS data according to coordi-
nates and sampling date. We compared PMEL in situ Chl a

to SeaWiFS Chl a, which are well correlated on a logarith-
mic scale (R2

= 0.64) with a slope of 0.67 and an intercept of
−0.06, [log(ChlSeaWiFS)= 0.67log(Chlin situ)−0.01], which
means that on a logarithmic scale SeaWiFS Chl a concentra-
tions are on average ∼ 30 % lower than those of in situ Chl a
concentrations. This is possibly because SeaWiFS Chl a is
calibrated based on high-performance liquid chromatogra-
phy (HPLC)-determined Chl a (Morel et al., 2007), which
on average is ∼ 40 % lower than that determined using the
fluorometric method (Sathyendranath et al., 2009). Unfortu-
nately, there is no flag in the database showing how Chl a
was determined. For consistency, we use only Chl a data re-
trieved from SeaWiFS in the following multilinear and net-
work models.

SeaWiFS photosynthetically available radiation (PAR) and
diffuse attenuation coefficient for downwelling irradiance at
490 nm (Kd490) (monthly average, both are L3BIN with
spatial resolution of 9.2 km, last access: 1 May 2020) from
September 1997 to August 2010 were matched with DMS ac-
cording to coordinates and sampling date. Mixed layer depth
climatologies were obtained from the MIMOC climatology
(Schmidtko et al., 2013). Sea ice cover was from a simulation
with the ocean component of the Community Earth System
Model (CESM) forced with a repeating 30-year cycle (1980–
2009) of NCEP reanalysis datasets (Wang et al., 2019). The
output was averaged into a monthly climatology and was
used as part of the air–sea gas exchange calculations. Nutri-
ent data (nitrate, phosphate, and silicate) from World Ocean
Atlas (WOA2013, Garcia et al., 2013) were also included in
the multilinear regression and neural network analyses, since
they can exert influence on phytoplankton distribution and
thus influence DMS production (Wang et al., 2015; Archer
et al., 2009). The ancillary data are then matched with DMS
data according to sampling location and time of year.

The entire dataset is subjected to another round of quality
control following Galí et al. (2015). Specifically, coastal data
with salinity lower than 30 and samples with sampling depth
greater than 10 m were removed. Additionally, data with
extremely low nutrient concentrations (e.g., dissolved inor-
ganic phosphate (DIP)< 0.01 µM, dissolved inorganic nitrate
(DIN)< 0.01 µM, SiO4 < 0.1 µM) or low Chl a concentra-
tions (Chl a < 0.01 mg m−3) were also removed because (a)
the low concentrations are below traditional method detec-
tion limits and (b) they cause the data distributions to be
severely left skewed, which significantly affects the perfor-
mance of an ANN model.

2.2 Linear regressions

Linear regression models are conducted on three sets of data
to diagnose the predictive skill of each ancillary variable. As
a first step, we restrict the regression model to the PMEL
datasets where both DMS and the predictor variable are si-
multaneously available. This selection process yields a to-
tal of 10 404 pairs for Chl a and DMS, 4061 pairs of total
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Table 1. Results of linear regression models. The R2 values are for log-transformed and normalized data as described in the text.

In situ data PMEL PMEL+NAAMES

Parameter R2 Slope No. R2 Slope No. R2 Slope No.
DMSPt 0.41 0.77 4061 – – – – – –
Chl a 0.21 0.43 10 404 0.09 0.30 81 767 0.09 0.29 88 516
MLD – – – 0.06 −0.25 81 646 0.07 −0.26 88 214
PAR – – – 0.07 0.26 82 137 0.09 0.29 88 923
SST ∼ 0 −0.01 69 196 0.02 −0.12 82 770 0.01 −0.12 89 556
SSS ∼ 0 −0.08 69 196 0.01 −0.10 82 759 0.02 −0.13 89 545
DIP – – – 0.01 0.11 81 868 0.02 0.12 88 654
DIN – – – 0.01 0.10 79 083 ∼ 0 0.09 85 865
SiO4 – – – 0.04 0.19 81 813 0.04 0.20 88 599

DMSP (DMSPt) and DMS, 69 197 pairs of SST and DMS,
and 85 150 pairs of SSS and DMS, respectively. In a second
step, we conduct regression models on combined PMEL and
NAAMES data. Since almost all NAAMES samples are ac-
companied by in situ measurements of Chl a, SSS, and SST,
the data pairs increased to 17 153 pairs for Chl a and DMS,
75 983 pairs of SSS and DMS, and 91 936 pairs of SST and
DMS, respectively. In a third step, to keep Chl a data sources
consistent as described previously, we use satellite Chl a; the
other unmeasured predictors (i.e., MLD, PAR, DIN, DIP, and
silicate (SiO4), SST, and SSS) are filled in using monthly cli-
matology data from the previously cited sources. DMSPt is
not included, because there is no observation-based climato-
logical dataset to fill the missing values.

To reduce the dynamic range, we log-transform the DMS,
DMSPt, Chl a, MLD, DIP, DIN, SiO4, and SST after conver-
sion to absolute temperature to avoid losing data with tem-
peratures below or equal to 0 ◦C. The corresponding predic-
tors are then standardized to their z score, Z ≡ (C−C)/σ ,
where C is predictor’s concentration, C is the mean of the
variables, and σ is the standard deviation of the variables.
MATLAB’s polyfit function is applied to each pair to fit
a first-degree polynomial, i.e., a linear regression.

2.3 Multilinear regression

We begin by applying a stepwise multilinear regres-
sion model to the environmental data using MATLAB’s
stepwiselm function. In a first test, we consider a to-
tal of eight potential DMS predictors: PAR, MLD, Chl a,
SSS, SST, DIN, DIP, and SiO4. In a second test, we combine
the above eight potential parameters with sampling location
and time parameters (Eqs. 1–3). The multilinear regression
model and the following ANN model require that the predic-
tor fields be available for every DMS data point so we fill
missing values in the environmental dataset with climatolog-
ical data. We eliminate DMS measurements that are under
ice cover, leaving us with 82 996 DMS measurements with a
complete set of predictors.

The in situ sampling times (months and hours) were con-
verted to periodic functions using sine and cosine functions
to address the data continuity issue, such that in a diurnal
or seasonal cycle the start (0th hour or January) and the end
(24th hour or December) of a cycle share the same properties
but are numerically different. The coordinate space notations
have a similar issue in the longitudinal direction. The con-
versions are conducted according to Gade (2010) and Gregor
et al. (2017) as follows:[

H1
H2

]
=

[
cos(hour 2π

24 )

sin(hour 2π
24 )

]
, (1)[

M1
M2

]
=

[
cos(month 2π

12 )

sin(month 2π
12 )

]
, (2) L1

L2
L3

=
 sin(lat π180 )

sin(lon π
180 )cos(lat π180 )

−cos(lon π
180 )cos(lat π180 )

 . (3)

A Bayesian information criterion (BIC) of 0.01 is used as a
criterion for accepting or rejecting a predictor, which means
that predictors are removed if they induce a BIC increase of
more than 0.01.

2.4 Artificial neural network (ANN)

To assess the possibility that a nonlinear model might provide
better prediction, we train artificial neural networks (ANNs)
using the Keras deep-learning toolbox in Python. DMS
concentration along with the eight environmental predictors
(PAR, MLD, Chl a, SSS, SST, DIN, DIP, and SiO4) are log-
transformed. The predictors’ dynamic ranges are then con-
strained to the [−1,1] interval using a min–max normaliza-
tion, i.e.,Cnorm ≡ (C−Cmin)/(Cmax−Cmin), whereCmin and
Cmax are the minimum and maximum values in the data C,
respectively.

The dataset is then separated into three sets: training, in-
ternal testing, and external validating sets. Data from each
of the fourteen 1◦ latitude bands (64–65◦ N, 54–55◦ N, 44–
45◦ N, 34–35◦ N, 24–25◦ N, 14–15◦ N, 4–5◦ N, 4–5◦ S, 14–
15◦ S, 24–25◦ S, 34–35◦ S, 44–45◦ S, 54–55◦ S, 64–65◦ S)
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are left out for internal testing (9084 points). Data from
each of the fifteen 1◦ latitude bands (69–70◦ N, 59–60◦ N,
49–50◦ N, 39–40◦ N, 29–30◦ N, 19–20◦ N, 9–10◦ N, 1–0◦ S,
9–10◦ S, 19–20◦ S, 29–30◦ S, 39–40◦ S, 49–50◦ S, 59–60◦ S,
69–70◦ S) are left out for external validation (10 870 points).
The remaining data (63 042 points) are used to train the neu-
ral network. The data are split into the above sets manually
rather than automatically. This is because data collected from
the same cruise are highly intercorrelated. The common prac-
tice of shuffling and randomly splitting the data produces an
overfitted model because the validating data can be predicted
using near-neighbor values. This kind of apparent skill does
not generalize to regions with large data gaps, which we need
for constructing a robust climatology. We also manually ad-
just the hyper-parameters (dropout ratio, hidden layers, num-
ber of nodes, etc.) using the data that have been manually
divided into training, internal testing, and external validation
subsets. After obtaining a satisfactory combination of those
hyper-parameters (as discussed below), we fix them and fine-
tune the network using all available data.

The network has one input layer with input nodes corre-
sponding to the number of predictors, two dense hidden lay-
ers with 128 nodes each, and one output layer with one node
corresponding to the predicted logarithm of DMS concentra-
tion. To avoid overfitting, we add two dropout layers with a
dropout ratio of 25 % after each hidden layer. We also ap-
ply a L2 kernel regularizer for each hidden layer with the
regulation parameter value set to 0.001. When the network
is trained, the mean squared error of the internal validation
data is monitored, and the training is stopped when there is
no error reduction in 10 epochs. An epoch consists of one
forward pass and one backward pass of all the training ex-
amples. Only the best model with the lowest validation mean
squared error is saved. We tested different network setups –
the current setting achieves goodness of fit but avoids over-
fitting.

2.4.1 Parameter selections

The 15 predictors (8 environmental predictors and 7 time and
coordinate signatures) were tested separately. In the first set
of tests, we use only time and location parameters. In the
second set of tests, we run a series models that examine every
possible combination of the eight environmental parameters
(a total of 255 combinations). The models are then ranked
according to the root mean square error of the validation data.

2.4.2 Monthly climatology

To obtain monthly DMS climatologies, we interpolate the
corresponding predictor variables (PAR, MLD, Chl a, SSS,
SST, DIN, DIP, and SiO4) onto a 1◦ by 1◦ grid. Coordinates
and target months are transformed accordingly. We then ap-
ply the top 10 (Sect. 2.4.1) trained networks to obtain DMS
monthly concentrations. Monthly results from 10 models are

then used to produce the final monthly climatology and to
analyze uncertainties.

2.5 Sea-to-air flux

Air–sea gas transfer is estimated using the following bulk
formula:

F =Kw(Cw−Ca/H), (4)

where F is sea-to-air gas exchange flux, Ca and Cw are
bulk air and bulk water gas concentrations, and Kw (cm h−1)
is the overall gas transfer velocity, expressed in waterside
units (Liss, 1974).Kw reflects the combined resistance to gas
transfer on both sides of the interface, as follows:

1/Kw = 1/kw+ 1/(Hka)), (5)

where H is the dimensionless (gas/liquid) Henry law con-
stant, and ka and kw are gas transfer velocities in air and sea-
water. DMS in the surface ocean is strongly supersaturated
with respect to that in the overlying atmosphere (Cw� Ca),
which simplifies the flux Eq. (4) to

F =KwCw. (6)

For this study we used two parameterizations for Kw.
The Goddijn-Murphy et al. (2012) parameterization (here-
after GM12) is based on regressions between satellite-based
wind speed observations with shipboard in situ measure-
ments of DMS gas transfer velocities using eddy covariance.
The GM12 parameterization forKw normalized to a Sc num-
ber of 660 is

Kw,660 = 2.1U10− 2.8, (7)

where U10 is a vector of wind speed (m s−1) at 10 m above
sea surface. Negative Kw,660 values produced at low wind
speeds are set to zero. We also utilized the Nightingale
et al. (2000) (hereafter N00), which is based on shipboard
3He/SF6 dual-tracer experiments. Their parameterization for
waterside-only DMS gas transfer velocity at a Schmidt num-
ber of 660 (κw,660) is calculated as follows:

kw,660 = (0.222U2
10+ 0.333U10)(ScDMS/600)−0.5, (8)

where ScDMS is calculated as a function of temperature after
Saltzman et al. (1993). A total transfer velocity is obtained
from N00 as follows:

Kw,660 = kw,660(1− γa), (9)

where γa is the atmospheric gradient fraction given by γa =

1/(1+ ka/αkw,660) (McGillis et al., 2000). Air-side DMS
transfer velocity is given as ka = 659U10(MDMS/MH2O)

−0.5,
where MDMS and MH2O are the molecular weights of DMS
and water, respectively (McGillis et al., 2000).
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Figure 2. Parameter sensitivity tests on raw and binned data.
(a) Root mean square error on a logarithmic scale for the model
trained using raw data; (b) root mean square error on a logarith-
mic scale for the model trained using binned data . The time and
location parameters are tested separately without combining with
environmental parameters as shown in the upper panel, (I) with
only location parameters; (II) with location and day-of-year param-
eters; and (III) with location, day-of-year, and time-of-day parame-
ters. The model with three location parameters (I) has a root mean
square error on a natural logarithmic scale of ∼ 0.83, which de-
creases to ∼ 0.65 by adding sampling day-of-year parameters (II)
but increases to∼ 0.67 by adding time-of-day parameters (III). We,
therefore, do not include time-of-day parameters in the following
tests. We tested every combination of the eight parameters (PAR,
MLD, SST, SSS, Chl a, DIP, DIN, and SiO4), which in total are
255 tests.

DMS fluxes were calculated using surface ocean DMS
concentrations from the ANN results and a satellite-based
wind speed climatology (Table A1 and Fig. A2). Because
the N00 parameterization was calibrated using in situ wind
speeds and has a nonlinear quadratic dependence on wind
speed, the use of monthly mean wind speeds will intro-
duce errors. To reconcile the differences between in situ
wind speeds and monthly mean wind speeds, a correc-
tion is applied according to Simó and Dachs (2002) by as-
suming that instantaneous wind speeds follow a Rayleigh
distribution. Eq. (8) thus becomes kw,660 = [0.222η20(1+
2/ξ)+ 0.333η0(s)](ScDMS/600)−0.5, where η2

= 4U2
10/π ,

s = (1+ 1/ξ ), and ξ = 2 for the Rayleigh distribution (Liv-
ingstone and Imboden, 1993). Ice fraction data are from the
CESM simulation monthly climatology. DMS fluxes from
ice-covered regions are set to zero, although DMS concen-
tration in or below sea ice is not necessarily zero.

Figure 3. Comparisons of monthly mean DMS concentrations to
previous studies (Simó and Dachs, 2002; Vallina and Simó, 2007;
Lana et al., 2011; Galí et al., 2018). L11, SD02, and VS07 are self-
explanatory. GSM-KD, CHL-KD, GSM-ZLEE, and CHL-ZLEE
are the four model results from Galí et al. (2018).

3 Results and discussion

3.1 Linear regressions

The linear regression coefficients and R2 values are summa-
rized in Table 1. For the test using in situ measurements,
DMS and DMSPt show the strongest positive correlation
with an R2 value of 0.41 (n= 4061). Galí et al. (2018) re-
ported a slightly higher R2 value (0.42) with fewer data
points (n= 3637). It is not surprising to find the strong re-
lationship between total DMSP (DMSPt) and DMS, since
DMS derives from the enzymatic cleavage of DMSP (Ste-
fels, 2000; Stefels et al., 2007). Since DMSP is directly
produced by phytoplankton and does not undergo sea-to-
air gas exchange, it is relatively easy to parameterize in a
biogeochemical model (Galí et al., 2015). The strong rela-
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Table 2. Annually averaged zonal mean DMS flux (Tg S yr−1) for this study (W20), Lana et al. (2011) (L11), Simó and Dachs (2002)(SD02),
Vallina and Simó (2007) (VS07), and Galí et al. (2018) (Gali18) for their four parameterization models. L11, SD02, VS07, and Gali18 are
computed with the Nightingale et al. (2000) parameterization of the piston velocity (N00). Flux in this study is calculated using both the
Nightingale et al. (2000) (N00) and the Goddijn-Murphy et al. (2012) (GM12) parameterizations. Uncertainties are estimated based on the
top 10 models with different parameterizations. Error bars correspond to ±1σ .

Latitude L11 (N00) SD02 (N00) VS07 (N00) Gali18 (N00) W20 (N00) W20 (GM12)

90–80◦ N 0.00 0.00 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
80–70◦ N 0.08 0.04 0.02 0.02± 0.00 0.05± 0.01 0.04± 0.01
70–60◦ N 0.19 0.11 0.06 0.09± 0.01 0.13± 0.01 0.11± 0.01
60–50◦ N 0.78 0.52 0.30 0.38± 0.04 0.45± 0.03 0.35± 0.03
50–40◦ N 1.16 1.01 0.81 0.73± 0.08 0.79± 0.06 0.60± 0.05
40–30◦ N 1.39 1.64 1.85 1.18± 0.07 1.13± 0.05 0.90± 0.04
30–20◦ N 1.43 1.89 2.84 1.33± 0.02 1.29± 0.05 1.07± 0.04
20–10◦ N 2.60 2.79 4.29 1.96± 0.07 2.12± 0.09 1.68± 0.07
10–0◦ N 2.91 2.64 3.55 1.66± 0.03 2.11± 0.10 1.79± 0.08
00–10◦ S 2.90 2.40 3.54 1.84± 0.01 2.23± 0.13 1.91± 0.11
10–20◦ S 3.42 2.64 4.35 2.05± 0.02 2.41± 0.13 1.93± 0.11
20–30◦ S 2.91 2.26 3.74 1.87± 0.02 1.93± 0.12 1.56± 0.10
30–40◦ S 2.91 2.42 3.00 2.19± 0.08 2.20± 0.19 1.71± 0.14
40–50◦ S 2.70 2.19 2.18 2.07± 0.14 2.19± 0.16 1.51± 0.11
50–60◦ S 1.67 1.00 0.10 0.76± 0.07 1.01± 0.07 0.67± 0.05
60–70◦ S 0.18 0.08 0.08 0.04± 0.00 0.09± 0.01 0.06± 0.01
70–80◦ S 0.00 0.00 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
80–90◦ S 0.00 0.00 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Total 27.23 23.64 31.59 18.18± 0.52 20.12± 0.43 15.89± 0.34

tionship between DMS and DMSP points toward a potential
way to model marine seawater DMS. McParland and Levine
(2019) developed a mechanistic model that related intracellu-
lar DMSP concentration to environmental stress and coupled
the model with the MIT ecosystem model (DARWIN) to esti-
mate global ocean DMSP distribution. Galí et al. (2015) first
applied a remote sensing algorithm to obtain a DMSP clima-
tology, from which they predict DMS climatology through
an empirical relationship with PAR (Galí et al., 2018).

The second strongest predictor is in situ Chl a (R2
= 0.21,

n= 10 404), which is slightly higher than that by Galí et al.
(2018), who reported an R2 value of 0.20 (n= 8141). The
positive correlation between Chl a and DMS is possibly due
to the fact that the precursor of DMS, namely DMSP, is bio-
genic. However, when we test the relationship on satellite-
based climatological Chl a, it becomes weaker (PMEL,
R2
= 0.09, n= 81 767; PMEL+NAAMES R2

= 0.09, n=
88 516). The weaker relationship can be caused by (1) greater
variance in the larger dataset (81 767 vs. 10 404); (2) mis-
match between satellite derived Chl a concentrations and an-
alytical Chl a concentrations; and (3) the in situ Chl a sam-
ples in PMEL database collected mainly in highly productive
regions (Galí et al., 2018), whereas the relationship between
Chl a and DMS negatively correlated in oligotrophic oceans
over the seasonal cycle (Galí and Simó, 2015).

When tested against climatological data with gaps filled
in, PAR has the strongest correlation with DMS (PMEL:

R2
= 0.07, n= 82 137; PMEL+NAAMES:R2

= 0.09, n=
88 923), with a positive correlation slope. Climatological
MLD is the second strongest predictor (PMEL: R2

= 0.06,
n= 81 646; PMEL+NAAMES: R2

= 0.07, n= 88 214) of
raw DMS data, with a slope of −0.25 for PMEL and −0.26
for PMEL and NAAMES combined data.

3.2 Multilinear regression

A multilinear regression model that uses a combination of
predictors or product of predictors has a higher predictive
ability than a linear regression model. For example, a mul-
tilinear regression model using eight environmental parame-
ters has an R2 value of 0.28, which is higher than that of any
of the linear models. By adding time and location param-
eters, the R2 value increases to 0.39 (n= 82 996, Fig. 1a).
The results emphasize the importance of including time and
location information in the model. Sampling time and lo-
cation are useful predictors, especially when the output has
strong seasonality such as DMS. Given a location and sam-
pling time, the model roughly predicts the level of DMS
concentrations (e.g., high-latitude DMS concentrations are
higher in summer than in winter). However, it is apparent that
the multilinear regression model significantly underestimates
high DMS concentrations. The generally low correlation co-
efficient hinders the possibility of reliably extrapolating the
model to the global ocean.
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Figure 4. Comparisons of zonally mean DMS concentrations to previous studies (Simó and Dachs, 2002; Vallina and Simó, 2007; Lana
et al., 2011; Galí et al., 2018). L11, SD02, and VS07 are self-explanatory. GSM-KD, CHL-KD, GSM-ZLEE, and CHL-ZLEE are the four
model results from Galí et al. (2018).

3.3 ANN

Figure 1b displays the correlation between DMS observa-
tions and ANN predictions. Compared to simple linear and
multilinear regression models, ANN captures much more of
the observed DMS variance (R2

= 0.66, n= 82 996). Com-
pared to previous extrapolations (Kettle et al., 1999; Lana
et al., 2011), the ability of the ANN to build a nonlinear rela-
tionship between DMS and environmental predictors allows
it to capture more of the variance. The ANN model can also
incorporate sampling time and coordinate signals present in
the data (see below). As a result, the extrapolation obtained
from the ANN considers the relationships with geographical
and temporal neighbors.

From traditional linear or multilinear models, one can eas-
ily determine which parameter is a strong predictor and how
a predictor influences the state variable (e.g., the correlation
between DMSP and DMS). An ANN model is much more
complex: it adjusts weights of each node that connect inputs
and outputs. The relationship between inputs and outputs is
therefore much more subtle, and that is why ANN models
are generally referred to as a “black box”. In this study, we

design experiments that help open this black box and reveal
parameters that drive surface ocean DMS distributions.

As shown in Fig. 2, without using any environmental pa-
rameters, sampling location and date alone can explain 44 %
of the validation data variance (RMSE= 0.65 on a natural
logarithm scale). Time of day can be another possible predic-
tor if DMS concentration varies diurnally. However, adding
time of day to the model increases RMSE slightly (Fig. 2a).
Galí et al. (2013c) studied diel cycle at the Mediterranean
Sea and Sargasso Sea. Among their four experiments (three
in the Mediterranean Sea and one in the Sargasso Sea) regu-
lar diel variation was observed at only one experiment in the
Mediterranean Sea in the summer season, with the highest
DMS values observed at midnight and the lowest values at
midday. In all the other experiments, diel variations for both
DMS and DMSPt pools were small. Gross community DMS
production during the daytime was 2 to 3 times higher than
that in the nighttime, but the high DMS production was com-
pensated for by greater photochemical and microbial con-
sumption (Galí et al., 2013c). The balance between DMS
production and consumption appears to dampen DMS diel
variation. This may explain why adding time parameters does
not improve the ANN model’s predictive ability.
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Figure 5. Monthly DMS concentration (nM) estimated based on artificial neural networks.

Adding environmental parameters can further improve the
model performance; however, different parameter combina-
tions show different predictive abilities. Among the top 10
models ranked according to RMSE of validation data

(PAR + MLD + SSS + SST, MLD + SST,

SSS + SST+ DIP + Chl a,MLD + SST + DIP,
PAR + MLD + SSS + SST + SiO4 + DIP,
PAR + MLD + SST + SiO4,MLD + SSS + DIP,
PAR + MLD + SST + Chl a,PAR + MLD + SST
+ SiO4 + DIP, SSS + SST + SiO4 + Chl a),

9 models have SST; 8 models have MLD; 5 models have
PAR, SSS, and DIP; 4 models have SiO4; and 3 models have
Chl a as a predictor, and none of the models have DIN as
a predictor. Section 3.7 shows the results of a series of sen-
sitivity tests that demonstrate how each of those parameters
influences the DMS distribution.

3.4 Binned data versus raw data

Simó and Dachs (2002) obtained high R2 values be-
tween DMS concentration and the ratio of Chl a to MLD
(Chl /MLD) when Chl /MLD is greater than or equal to
0.02, as well as between DMS concentration and ln(MLD)
when Chl /MLD is less than 0.02. We tried exactly the same
model on raw PMEL data with in situ Chl a measurements
and climatological MLD and found that both correlations
between DMS and Chl /MLD (n= 4921, R2

=∼ 0.1) and
between DMS and ln(MLD) (n= 5978, R2

=∼ 0) are sta-
tistically insignificant. To reduce interannual variability, we
binned in situ Chl a and DMS into a monthly 1◦× 1◦ grid,
retested the above model on the binned data, and found that
the correlations are still statistically insignificant.

Vallina and Simó (2007) reported an R2 of 0.95 (n= 14)
between DMS concentration and SRD. We applied the same
linear regressions on both raw data and monthly 1◦×1◦ data,
and found no significant correlations between DMS and SRD
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Figure 6. Distributions of monthly mean DMS and Chl a concen-
trations for Northern Hemisphere and Southern Hemisphere gyres
(NH and SH respectively). The gyres are defined as regions between
30◦ and the Equator where annually mean DIP concentration is be-
low 0.2 µM. Monthly mean concentrations are normalized to the
range of 0 to 1.

as calculated according to Vallina and Simó (2007):

SRD= SI ·
1

Kd490 ·MLD
(1− e−Kd490·MLD), (10)

where SI is shortwave irradiance (W m−2), which is con-
verted from PAR according to Galí and Simó (2015).

Compared to Simó and Dachs (2002) and Vallina and
Simó (2007), we used significantly more data points. For ex-
ample, in this study, there is a total of 10 899 DMS measure-
ments accompanied with simultaneous Chl a measurements
versus 2385 data points used in Simó and Dachs (2002), as
well as 83 152 (DMS, MLD) pairs in this study versus 26 400
in Vallina and Simó (2007). Another noticeable difference
between the current study and previous analyses is that both
Simó and Dachs (2002) and Vallina and Simó (2007) binned
the data into large longitude and latitude grids. By doing so,
the raw data variance is greatly reduced.

Binning data will necessarily result in the loss of informa-
tion. A lot of information is associated with sampling loca-
tion and date as shown in Fig. 2a. By binning the data into
a monthly 1◦× 1◦ grid, the number of data points decreases
from 82 996 to only 9018; sampling date features (365) will
be averaged to 12 months, and coordinate combinations will

be averaged from 87 332×87 332 to 180◦×360◦, which rep-
resents a substantial loss of information. For ANN models,
using fewer data points can lead to overfitting. For exam-
ple, the averaged RMSE on a natural logarithm scale for the
10 best ANN models is 0.608 for the validating dataset and
0.600 for the training dataset when using the unbinned data,
whereas the RMSE is 0.655 (validating) and 0.635 (training)
for the model constructed using the binned data (See Fig. 2b).

3.5 DMS distributions

Northern Hemisphere and Southern Hemisphere monthly
mean DMS concentrations are plotted along with results
from previous studies (Simó and Dachs, 2002; Vallina and
Simó, 2007; Lana et al., 2011; Galí et al., 2018) (Fig. 3a).
Overall, all models show similar seasonal patterns with the
highest concentrations in summer and the lowest concentra-
tions in winter. Our predictions are highly consistent with
the products derived from satellite data reported by Galí
et al. (2018), who used an optimized relationship between
DMS, DMSPt, and PAR to obtain DMS climatology from
satellite-retrieved PAR and DMSPt fields (Galí et al., 2015).
In the Northern Hemisphere, the algorithms by Simó and
Dachs (2002) (SD02 hereafter) and by Vallina and Simó
(2007) (VS07 hereafter) generate higher concentrations and
a smaller seasonal amplitude. From zonal average plots
(Fig. 4), it is clear that the elevated monthly means from
SD02 are caused by high concentrations in high-latitude
oceans, whereas high monthly means of VS07 are caused by
high DMS concentrations in low and middle latitude. High
DMS concentration in high-latitude summer (SD02) is driven
by a shoaling of the MLD caused by high freshwater con-
tent (Galí et al., 2018), while high DMS concentrations at
low/middle latitude (VS07) are driven by a strong solar radi-
ation dose, which is a joint effect of shallow MLD and strong
irradiance.

L11 stands out in the Southern Hemisphere monthly mean
plot (Fig. 3b), with the highest mean concentrations in Jan-
uary and December, when DMS concentrations are∼2 times
higher than other model predictions. Galí et al. (2018) iden-
tified five shortcomings associated with the direct interpola-
tion method employed by Lana et al. (2011). All shortcom-
ings concern the nature of in situ DMS data, including the
right-skewed distribution, lack of spatial and temporal cov-
erage, lack of duplicate measurements, and sampling bias
towards DMS-productive conditions. Because of the spar-
sity and skewed distribution, the interpolation/extrapolation
method broadcasts small-scale features to large scales (Tes-
dal et al., 2016). This is especially true for the month of Jan-
uary and December when the elevated L11 monthly means
were mainly driven by a small amount of extremely high
DMS measurements (> 40 nM) near the Antarctic continent.
On the other hand, empirical models including the ANN
model used in this study rely on environmental parameter
climatologies to obtain the DMS climatology. Extreme con-
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Figure 7. Monthly DMS flux (µmol S m−2 d−1) calculated based on DMS climatology estimated from the ANN model and Goddijn-Murphy
et al. (2012) flux parameterization.

ditions are smoothed out in climatological data, e.g., in the
DMS database the 99th percentile of in situ Chl a concentra-
tion is 12.58 mg m−3, whereas it is only 6.85 mg m−3 in the
SeaWiFS climatology. When climatological data are used to
generate the DMS distribution, a smaller variance than in situ
data is expected.

Figure 5 displays monthly DMS concentration distribu-
tions predicted by the ANN. Generally, DMS concentrations
in polar regions show strong seasonality. The highest DMS
concentrations are in summer when light and temperature
are ideal for primary production. For example, in austral
summer, the Southern Ocean circumpolar regions, the Scotia
Sea, and the Ross Sea display the highest DMS concentra-
tion (> 10 nM), which gradually decreases and falls below
0.5 nM in the following months when primary production is
limited by light or low temperature. In boreal summer, DMS
concentration in the Bering Sea and Greenland Sea can ex-
ceed 20 nM.

The high DMS concentration during the summertime at
high latitudes is believed to accompany blooms of coccol-
ithophores and Phaeocystis, which are strong DMSP pro-
ducers (Neukermans et al., 2018; Wang et al., 2015). The
shoaling mixed layer depth during the summer provides fa-
vorable conditions, i.e., stable and warm, with adequate ir-
radiation for coccolithophores and Phaeocystis growth (Galí
et al., 2019). Additionally, high DMS concentrations at ice
edge zones have also been observed. These high concen-
trations are due to the release of ice algae that are prolific
DMSP producers (Stefels et al., 2012; Webb et al., 2019).
As an important cryoprotectant and osmolyte, DMSP helps
ice algae to cope with the low-temperature and high-salinity
conditions (Thomas and Dieckmann, 2002).

Another interesting region is the Pacific equatorial up-
welling region. Large-scale upwelling brings nutrient-rich
waters to the surface, which nourish highly productive phyto-
plankton communities. Overall, the seasonality in the equa-
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Figure 8. Area and month integrated DMS sea-to-air flux
(Tg S month−1) based on GM12 parameterization. Red triangles
represent monthly mean flux of the Southern Hemisphere, green
dots represent monthly mean flux of the Northern Hemisphere, and
black squares represent the global monthly mean flux. Uncertainties
are estimated based on the top 10 models with different parameter
combinations. Error bars correspond to ±1σ .

torial Pacific is weaker than that in polar regions, but there is
still a clear seasonal pattern. In the period from December to
April, the tongue with higher DMS concentration (∼3 nM)
extends to the west Pacific Ocean reaching the east coast of
Australia and the Philippine Sea. The tongue gradually re-
treats eastward in the following months. From September to
November, the tongue is constrained to the eastern Pacific
and DMS concentration falls to its lowest values (< 2.0 nM).
High DMS concentrations in the west Pacific ocean from
November to February are also predicted by Lana et al.
(2011).

The subtropical gyres show consistently low DMS concen-
trations and weak seasonal cycles throughout the year. In the
Southern Hemisphere gyres, DMS concentrations are high-
est during austral summer, when the ocean is strongly strati-
fied and local primary production is low. There are hot spots
where DMS concentration exceeds 3 nM in December and
February. DMS concentrations are generally low (≤ 1 nM)
during austral spring and winter seasons. In the period from
April to September, DMS concentrations in the South At-
lantic Gyre fall below 0.6 nM. In the Northern Hemisphere
gyres, DMS concentrations are high during the boreal sum-
mer season. Figure 6 compares monthly mean Chl a concen-
trations to DMS concentrations in the Northern Hemisphere
and Southern Hemisphere gyres. The concentrations are nor-
malized to the range of 0 to 1. It is clear that Chl a and DMS
are anticorrelated; DMS concentration peaks in the summer
season when Chl a concentration is generally low. This phe-
nomenon has previously been termed as the “summer DMS
paradox” (Simó and Pedrós-Alió, 1999). This pattern is more
apparent in the Southern Hemisphere gyres, because the ter-

restrial influence is smaller in the Southern Hemisphere than
in the Northern Hemisphere.

3.6 Sea-to-air flux

In this study, we computed monthly sea-to-air DMS fluxes
using both the GM12 and N00 gas transfer velocity param-
eterizations (Figs. 7 and 8). These yield global DMS an-
nual fluxes of 15.89± 0.34 Tg S yr−1 (GM12) and 20.12±
0.43 Tg S yr−1 (N00), respectively. The uncertainties (±1σ )
are calculated according to DMS distributions from the top
10 ANN models based on different parameter combinations.
We also calculated sea-to-air DMS fluxes using the N00 pa-
rameterization and previous DMS climatologies from Lana
et al. (2011) (L11), Simó and Dachs (2002) (SD02), Vallina
and Simó (2007) (VS07), and four from Galí et al. (2018)
(Gali18). Among those climatologies, VS07 produces the
highest annual DMS flux (31.59 Tg S yr−1); the ensemble
of Galí et al. (2018) climatologies produce the lowest flux
(18.18± 0.52 Tg S yr−1) (Table 2). Generally, our fluxes are
consistent with previous results when the same flux parame-
terization, wind speed field, sea surface temperature, and ice
coverage are used. The sea-to-air flux based on the GM12
parameterization is ∼ 24 % lower than that based on N00.

Geographically, in the high-latitude Northern Hemisphere,
sea-to-air DMS fluxes are low in boreal winter, even though
wind speeds are high. The DMS flux tends to increase in the
proceeding months and reaches a maximum in boreal sum-
mer, despite the lower wind speeds (Fig. A2). The inverse re-
lationship between wind speed and DMS flux indicates that
the high DMS flux is mainly driven by high seawater DMS
concentrations. In the Southern Hemisphere, large sea-to-air
DMS fluxes at high latitudes in austral summer are driven
jointly by high DMS concentrations and high wind speeds
(Figs. 7 and A2). The eastern tropical Pacific Ocean dis-
plays a year-round intermediate sea-to-air DMS flux. This
is mainly driven by the high DMS concentration in this re-
gion, since the wind speeds here are generally low (Figs. 7
and A2).

Figure 8 displays integrated monthly global DMS fluxes
for both hemispheres and for the global ocean based on
GM12 velocity parameterizations. Globally, DMS fluxes are
highest in the winter months (December, January, and Febru-
ary) and March, which is mainly driven by high DMS flux
in the Southern Hemisphere. There is another peak in the
months of July and August because of Northern Hemisphere
flux peaks. An interesting feature is that the Northern Hemi-
sphere peak is close to the Southern Hemisphere though and
does not reach the peak level in the Southern Hemisphere.
This is mainly because of the larger surface area in the South-
ern Hemisphere. High DMS fluxes in the Southern Hemi-
sphere have profound impact to the Earth’s climate because
there are less terrestrial and anthropogenic aerosol inputs
compared to the Northern Hemisphere.
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Figure 9. Differences of annul mean DMS concentration between perturbation models and the control model. Specific figure indexes are
listed in the figure, where Pxxx represents a perturbed model and the subscript xxx indicates which parameter is changed. CTL is the control
model that is the average of our top 10 model results (Fig. 5).

3.7 Sensitivity tests

Section 3.3 screens key parameter combinations that have
the highest prediction skill. To demonstrate how these pa-
rameters influence the predicted distribution and sea-to-air
flux of DMS, we ran a series of sensitivity tests. In each
test, we increase/decrease one environmental parameter at
a time. Fig. 9 shows annual mean differences between per-
turbed models and the control model. These sensitivity tests
show regional differences in the sign of the perturbations
anomalies. This nonlinear behavior of the ANN model is not
possible with a simple linear model.

For the temperature sensitivity test, we uniformly increase
SST by 2 ◦C for the whole ocean (Fig. 9a). Compared to the
control case, DMS concentrations are lower in most of the
low- and middle-latitude oceans and higher in high-latitude
oceans, especially in the Southern Ocean, the Bering Sea, and
the high-latitude North Atlantic Ocean. In contrast, the lin-
ear regression model shows no correlation between SST and
DMS. SST alone with date and location parameters has very
low prediction ability (ranked 244th over 255 models). When
combined with other parameters, SST helps to improve the
model performance. For example, the combination of SST
and MLD ranks second among all models.
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For the mixed layer depth sensitivity test, we decrease
MLD by 10 % to mimic the stronger stratification in a warm-
ing world (Fig. 9b). DMS concentrations increase in most
of the ocean, in line with the linear regression result. In the
PAR sensitivity test, we uniformly increase PAR by 10 %
with the expectation that light exposure will increase in the
future because of MLD shoaling (Fig. 9c). DMS concentra-
tions increase with increased PAR, in agreement with the lin-
ear regression result and also with the physiological role of
DMS. First, high radiation negatively influences the bacte-
rial population/activity, which decreases DMS consumption
(Galí et al., 2013a,b,c; Royer et al., 2016). Second, high radi-
ation promotes DMS production by inducing oxidative stress
within algal cells (Toole et al., 2006; Sunda et al., 2002;
Royer et al., 2016).

For the salinity sensitivity test, we uniformly decrease sur-
face ocean salinity by 1 psu (practical salinity unit). Simi-
lar to the temperature sensitivity result, the changes in DMS
concentration show regional variations. DMS concentrations
increase in most of the Southern Ocean, the high-latitude
North Atlantic Ocean, and the Arctic Ocean, whereas DMS
levels decrease in the eastern North Pacific Ocean, the Indian
Ocean, and South Atlantic Ocean (Fig. 9d). The linear regres-
sion model also shows that there is no significant correlation
between DMS and salinity. As in the case for temperature,
salinity works synergistically with the other environmental
parameters to predict the DMS concentration.

Figure 9e and f show the sensitivity tests for DIP and
SiO4, respectively. For these tests, we decrease DIP and SiO4
concentrations by 10 % with the expectation that increasing
ocean stratification due to global warming will decrease the
nutrient supply from the deep ocean. In certain regions, the
two nutrient perturbations have nearly opposite effects. For
example, DMS concentrations drop slightly in the western
Pacific and Indian Ocean for the DIP perturbation experi-
ment, whereas the concentrations have almost opposite pat-
terns in those regions for the SiO4 perturbation experiment.
In the eastern Pacific Ocean, the Southern Ocean, and high-
latitude North and South Atlantic oceans, reduced DIP con-
centration triggers an increase in DMS concentrations, which
might be related to nutrient stress, which can increase DMSP
production by low DMSP producers (e.g., diatoms) (McPar-
land and Levine, 2019). The increase in DMS concentration
for the SiO4 perturbation is potentially due to a regime shift
away from diatoms, which are low DMSP producers, to other
more prolific DMSP producers.

Figure 9g shows the sensitivity test for Chl a. In the test,
we decreased Chl a concentration by 10 % to mimic the de-
creased primary production caused by ocean stratification
and nutrient depletion. Overall, the most apparent changes
are in the subtropical gyres, where DMS concentrations are
lower than the control run. DMS concentrations increase in
some marginal seas and coastal oceans such as the Arabian
Sea and eastern coast of Australia. Previous studies of the re-
lationship between DMS and Chl a have produced contradic-

tory results. Strong correlations have been reported in basin-
scale studies (e.g., Yang et al., 1999). On the other hand, there
are numerous studies that observed no correlation between
DMS and Chl a (e.g., Dacey et al., 1998; Kettle et al., 1999;
Toole and Siegel, 2004). The inconsistent relationships indi-
cate the complexity of the reduced sulfur cycle.

On a global scale, the increase in temperature does not sig-
nificantly change sea-to-air flux (15.96 Tg S yr−1 compared
to 15.89 Tg S yr−1 for the control run based on GM12) be-
cause the elevated DMS concentrations in the high-latitude
oceans are compensated for by the reduced concentrations
in the low-latitude oceans. Similar to the case for the tem-
perature perturbation, the salinity perturbation has a small
effect on the sea-to-air flux of DMS (15.88 compared to
15.89 Tg S yr−1). The overall increases in DMS concentra-
tion in the MLD, PAR, and SiO4 perturbation tests lead
to increases in DMS sea-to-air flux of 0.56, 0.96, and
0.91 Tg S yr−1, respectively. The Chl a perturbation model
is the only one that shows a slight decrease in the sea-to-air
flux of DMS (15.59 Tg S yr−1 compared to 15.89 Tg S yr−1).

Of course, the ocean is a very complex system and changes
in these environmental parameters will be correlated. For
example, the projected temperature increase will lead to a
stronger surface ocean stratification that will result in shoal-
ing of MLD and reduced nutrient supplies from the deep
ocean, which together will decrease primary production in
the ocean. Based on our model results, if these effects work
jointly, the DMS sea-to-air flux will increase more than each
of the individual perturbations. Assuming that larger DMS
sea-to-air fluxes induce greater cloud albedo, then we might
expect the changes in DMS to represent a negative climate
feedback.

4 Conclusions

The artificial neural network (ANN) used in this study has
some advantages compared to the prior methods used to de-
velop DMS climatologies. Most importantly, the ANN uti-
lizes available measurements to fill regions without DMS
observations, using nonlinear relationships trained in more
data-rich regions/seasons. By contrast, objective interpola-
tion methods are spatial/temporal averages of sparse data
with a weak underlying basis in environmental variability.
As a result, the ANN approach captures significantly more
of the raw data variance than simple linear/multilinear mod-
els. Simple models achieve comparable fits only after heavily
binning the DMS observations (e.g., Simó and Dachs, 2002;
Galí et al., 2015; Vallina and Simó, 2007; Galí et al., 2018).
The ANN is computationally more expensive than the lin-
ear/multilinear models but considerably less expensive than
prognostic biogeochemical models (e.g., Vogt et al., 2010;
Wang and Moore, 2011; Wang et al., 2015). The principal
weakness of the ANN approach is that it does not easily pro-
vide scientific insight into the relationships between the pa-
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rameters. We attempted to overcome this weakness by run-
ning a series of sensitivity tests to explore how DMS concen-
tration might change in response to global climate warming.
We found that the predicted changes in DMS concentration
are almost never unidirectional in response to a change in
only one environmental parameter. This reveals the under-
lying interactions between these environmental parameters,
which a linear regression model can not achieve.

The ANN approach is a useful tool for developing trace
gas climatologies. It may also be useful as a means of assess-
ing the sensitivity of DMS to past/future changes in climate
by coupling the ANN to prognostic biogeochemical models.
Caution is warranted in the interpretation of such efforts be-
cause there is as yet no basis for assessing whether the re-
lationships obtained by training on contemporary measure-
ments apply to the past or will hold in the future. Such rela-
tionships could be investigated using paleoceanographic and
ice core data (Osman et al., 2019).

The annual sea-to-air DMS flux calculated in this study
is slightly (∼ 23 %) lower than the objective interpolation
method of Lana et al. (2011) using the same sea-to-air gas
exchange models. DMS concentrations from this study are
similar to Lana et al. (2011) where measurements are abun-
dant, so we infer that the difference is likely caused by posi-
tive bias in the objective interpolation method for data-sparse
regions/seasons.
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Appendix A:

Table A1. DMS and ancillary data sources.

Variables Sources units References

DMS1 http://saga.pmel.noaa.gov/dms/ (last access: 1 May 2020) nM Kettle et al. (1999)
DMS2 NAAMES nM Behrenfeld et al. (2019)
Chl https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/ (last access: 1 May 2020) µg L−1 NASA (2018)
MLD https://www.pmel.noaa.gov/mimoc/ (last access: 1 May 2020) m Schmidtko et al. (2013)
PAR https://oceancolor.gsfc.nasa.gov/atbd/par/ (last access: 1 May 2020) einstein m−2 d−1 Frouin et al. (2012)
WSP https://podaac.jpl.nasa.gov/dataset (last access: 1 May 2020) m s−1 NASA (2012)
SST WOA2013 C Garcia et al. (2013)
SSS WOA2013 psu Garcia et al. (2013)
DIP WOA2013 µM Garcia et al. (2013)
DIN WOA2013 µM Garcia et al. (2013)
SiO4 WOA2013 µM Garcia et al. (2013)
ICE CESM model – Wang et al. (2019)

1 Data from the online database. 2 New data from the North Atlantic Aerosols and Marine Ecosystems Study.

Figure A1. Distribution of DMS observations partitioned into each month. The color indicates DMS concentration (nM).
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Figure A2. Climatological wind speed (m s−1).
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