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Abstract :   
 
The Southern Ocean plays a key role in ocean atmosphere carbon dioxide fluxes. Estimation of carbon 
exchanges between ocean and atmosphere must rely on accurate estimations of primary productivity 
which require measurements of phytoplankton concentration within the water column. In this paper, we 
are interested in relationships between primary productivity and light in the Antarctic ocean. The originality 
of this work is twofold. Starting from physical hypothesis, a statistical model is constructed for the 
prediction of Chlorophyll a (Chl a) profiles where light profiles are used as a covariate. Taking into account 
of the functional nature of the data, solutions are proposed to estimate continuous vertical profiles from 
discrete data sampled by elephant seals equipped with a new generation of oceanographic tags. 
Bootstrapped prediction intervals show a good quality of prediction of Chl a profiles, giving access to the 
shape of the profiles along depth and to the submesoscale structure of phytoplankton within the euphotic 
layer of the Southern Ocean. 
 
 

Highlights 

► Prediction of Chlorophyll-a profiles is achieved in Antarctic ocean. ► A functional linear model is 
constructed using light curves as covariate. ► The predictive capabilities of the model associated to 
confidence intervals show that it is possible to predict Chlorophyll-a at fine scale. ► Chlorophyll-a 
prediction at fine scale highlights sub-mesoscale variations. 
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1. Introduction

Marine phytoplankton contributes to roughly half of the biosphere's pri-
mary production and therefore represents a vital link between living and
inorganic stocks of carbon (Behrenfeld et al., 2006). But there is con�icting
evidence on how this biological productivity will respond to global warming
and climate change, particularly in the Southern Ocean, which plays an es-
sential role in the carbon cycle. In that context, the measurement of Chl a
concentration in the waters of the Southern Ocean is a crucial indicator of
the amount of phytoplankton and of the spatial and temporal variability of
primary productivity (Behrenfeld and Falkowski, 1997) and must enable a
better quanti�cation of CO2 �uxes.

However, the understanding of both the primary production variability
and its spatial structure at submesoscale is hampered by the lack of in situ ob-
servations. Furthermore, the degree of con�dence for observations of primary
production derived from satellite-based estimates of phytoplankton biomass
is still open to debate, especially with regard to the Southern Ocean (Guinet
et al., 2013b). There is evidence of major limitations regarding the use of
satellite assessment of primary production within the Southern Ocean. Satel-
lites scan the sea surface, while deep �uorescence maxima can be found at
depths of 40 and 75m within the frontal zone of the Antarctic Circumpolar
Current (Queguiner and Brzezinski, 2002). Primary production cannot be
properly assessed due to persistent cloud cover that precludes satellite detec-
tion of ephemeral phytoplankton blooms (Arrigo et al., 1997; Buesseler and
Boyd, 2003). A better description of spatial (horizontal and vertical) and
temporal (seasonal, inter-annual) distribution of phytoplankton is therefore
essential to understand how primary production within the Southern Ocean
and therefore CO2 �uxes will respond to climate change.

Phytoplankton concentration is generally quanti�ed through active mea-
surement of Chl a �uorescence. However few autonomous platforms such as
ARGO �oats or gliders are used to collect this data in the ocean especially
(Fedak, 2013).

In recent years, a number of broad ranging deep diving marine predators
have been equipped with electronic tags to investigate their foraging ecology
and sample in situ oceanographic variables over broad sectors of the ocean
(Charrassin et al., 2008; Boehlert et al., 2001; Fedak et al., 2002; Block et al.,
2002; McMahon et al., 2005; Biuw et al., 2007; Charrassin et al., 2008).
Oceanographic variables sampled with animal-borne electronic tags include
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temperature and salinity, and more recently �uorometers were integrated in
order to obtain along with temperature and salinity simultaneous estimates
of Chl a in the water column as experienced by pelagic animals (Xing et al.,
2012; Guinet et al., 2013b).

However due to high energy requirement only few pro�les can be sampled
daily. Recently, using Southern elephant seals simultaneously equipped with
a �uorometer and a light logger, Jaud et al. (2012) showed that light at-
tenuation was strongly correlated with Chl a concentration measured by the
�uorometer within the euphotic layer. In a pioneering work, Teo et al. (2009)
using the bio-optical model of Morel (1988) demonstrated that in situ Chl
a concentration pro�les estimated from �uorescence measurements could be
estimated from monitoring light level and depth data collected by electronic
tags.

The proportionality of Chl a and �uorescence is known to be modulated
by the taxonomic composition and physiological acclimation mechanisms es-
sentially related to light. Among the physiological acclimation mechanisms
a�ecting the �uorescence-Chl a relationship, there is the depression of the
�uorescence signal in surface waters during daylight and especially at maxi-
mum solar elevation. The so-called �uorescence quenching is the most obvi-
ous phenomena (Marra, 1997; Holm-Hansen et al., 2000; Xing et al., 2012).
Fluorescence quenching does indeed represent a collection of di�erent photo-
protective mechanisms to avoid photodamage under excessive sunlight energy
(Kiefer, 1973; Maxwell and Johnson, 2000).

To our understanding, the �uorescence pro�les collected in Teo et al.
(2009) were not quenching-corrected and this could have resulted in an un-
derestimation of Chl a concentration within the �rst 30 to 60 m of the water
column from the �uorescence measurements. This, plus other factors such
as the presence of non-phytoplanktonic particles such as zooplankton which
might contribute to light attenuation, could explain the poor performance of
the prediction of the Chl a pro�les from light data under certain conditions,
and Teo et al. (2009) recognized the need to improve their method.

Following up these two studies, we propose to construct a functional lin-
ear model in order to predict in situ Chl a concentration pro�les using light
pro�les as a predictive variable. Compared to the previous studies, the orig-
inality of this work is to include into the model the functional nature of the
data. Indeed, the dataset used to construct the model has been sampled by
elephant seals equipped with tags. In the course of an elephant seal trajec-
tory, each data pro�le arrives as a discrete set of observations of light and
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�uorimetry sampled at varying depths. The �rst section of this paper is
devoted to problems of data sampling with marine mammals for light and
Chl a variables. As for the bio-optical model described in Teo et al. (2009),
the construction of the linear functional model starts from the Beer-Lambert
relationship de�ned by Bouguer (1729) which links the light absorption to
properties of an homogeneous environment. This is the objective of the sec-
ond section : bring the construction of the statistical model by linking Chl
a pro�les to light pro�les under more realistic assumptions than those of
Beer-Lambert. We will focus more particularly on the fact that the model
is constructed using the derivative of log light pro�les. This section also in-
cludes technical solutions for parameters estimation, construction of observed
pro�les from elephant seals dataset, including constraints over the shape of
pro�les, construction of bootstrap prediction intervals and measures of model
accuracy. The third section present the main results. The paper is endded
with a brief discussion.

2. Elephant seal Dataset

In October 2009, at the beginning of the austral spring, 3 post-breeding
Southern elephant seal females from Kerguelen Island were anesthetized by
intravenous injection of tiletamine and zolazepam 1:1 to be �tted with a
Satellite Relayed Data Logger sampling pressure, temperature, salinity and
�uorescence (CTD-Fluo SRDL afterward) -developed by the Sea Mammal
Research Unit, St Andrews University, Scotland, in collaboration with the
Centre d'Etudes Biologiques de Chizé- combined with an MK9 (Wildlife
Computer, USA) time depth recorder (TDR) glued on the back of the CTD-
Fluo SRDL next to the �uorometer with both the �uorometer and light sensor
facing backward. The location of the light sensor at the back or at the front
of the satellite does not change the relationship between light and �uores-
cence as mentioned in Jaud et al. (2012). The package was then glued on the
fur of the Southern elephant seal's head using a two component industrial
epoxy (Araldite AW 2101).

Through the whole post breeding foraging trip, �uorescence was gener-
ally measured twice a day from the CTD-Fluo tags while light and pressure
was monitored continuously at 2 hz by the logger. The CTD-Fluo SRDL
included a Keller type pressure sensor (series PA7 0 to 2000 dbar ± 1 dbar),
a fast response Platinum Resistance Thermometer (PRT) (-5◦C to 35◦C ±
0.005◦C, 0.7 seconds response time), an induction conductivity sensor devel-
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Figure A: Paths of the three elephant seals. Starting from and turn back to Kerguelen
Islands (center), animals turn back to land after a journey of 3 months, with Antarctic
continent at the bottom (green: path 1, black: path 2, red: path 3).

oped by Valport (UK, range: 0 to 80 mS cm−1, accuracy: better than 0.02
mS cm−1), and a Cyclops 7 �uorometer from Turner Design with a dynamic
range set between 0 to 5µg of Chl a (chl-a.L−1). The MK9 TDR loggers
were set to sample depth (0 to 1500 ± 1 meter), water temperature (-40◦C
to +60◦C ± 0.1◦C) and light (5.10−2 W.cm−2 to 5.10−12 W.cm−2 in blue
Wavelength) every two seconds. The MK9 integrated light sensor was tested
under laboratory condition and was found to exhibit its highest sensitivity
at 465 nm, with a mean sensitivity range of 405− 480 nm (Vacquié-Garcia,
2014). The wavelength correspond to blue light. Blue light is the least water
attenuated wavelength, and therefore the blue light is able to reach greater
depth encompassing the whole euphotic layers. A complete description of
these tags is available in Boehme et al. (2009). Light values are converted

6



inboard via a log treatment to reduce the light measurements to a 3 digit
value.

Before deployment on Southern elephant seals, each CTD-Fluo SRDL was
calibrated at sea during the BOUSSOLE campaign (Guinet et al., 2013b) by
comparison with in situ measurement from Niskin bottles. A coe�cient was
calculated for each tag to convert the �uorescence values to an actual Chl a
concentration.

When CTD-Fluo SRDL were deployed on elephant seals, Chl a concen-
tration (µg.l−1) derivated from �uorescence measurements was assessed con-
tinuously at a two second sampling rate for the last 180 meters of the ascent
phase of the dive. The depth of 180m was selected as the threshold because it
encompasses the euphotic layer, which is generally close to 150m. Each pro-
�le, transmitted via the ARGOS system, consists of a maximum of eighteen
sections of ten meters. The average �uorescence value is associated with the
median depth of each segment (-5 to -175m). About two �uorescence pro�les
are sampled and transmitted daily by these tags via the ARGOS system.
Temperature and salinity were treated similarly for the �rst 180m, and six
measurements were made at depths exceeding 180 to ensure that the best
reconstruction of the high resolution temperature and salinity pro�le might
also be transmitted.

Daylight �uorescence pro�les are a�ected by quenching, de�ned as photo-
inhibition due to an excess of light, resulting in an arti�cial deep maximum
Chl a concentration. In well mixed waters representing about 84% of avail-
able pro�les, the �uorescence pro�les obtained during daylight hours were
post-processed to correct the quenching e�ect according to Xing et al. (2012).
Daylight pro�les obtained in well strati�ed water (less than 20%) were ex-
cluded from the analysis as quenching could not be corrected accurately
under these conditions (Xing et al., 2012). Processed Chl a data including
the 3 individuals (tags 11259, 11260 and 11263) used in this study are freely
downloadable at doi:10.7491/MEMO.1 (Guinet et al., 2013b).

The 3 tags were recovered in January 2010 at the beginning of the austral
summer when Southern elephant seal females came back to Kerguelen Island
to moult and MK9 pressure and light data were downloaded.

In this study, only complete Chl a pro�les (i.e. 18 data points) were
used for a better estimation and smoothing of Chl a pro�les. So, among the
436 Chl a pro�les sampled, 407 were included and among them we selected
those sampled only during daylight hours with a sun angle greater than 20◦

degrees above the horizon to match them to the corresponding the light data
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Figure B: Examples of light and Chl-a raw data sampled on the path of the elephant seal
number 1. The objective is to construct matched observed pro�les using these pointwise
observations.

pro�les sampled during the ascent phase. A complete data set is composed
of n = 208 pairs of Chl a and light data pro�les (Tab. A).

3. Statistical methods

3.1. Constructing the functional linear model

Let C(z) be the Chl a variable and L(z) the light variable. These vari-
ables are functions with argument z ranging from subsurface Zm = 5m to
maximum depth ZM = 175m in the interval [Zm;ZM ]. We wish to investigate
to what extent Chl a pro�les can be predicted from information contained
in light pro�les using a collection of pairwise functions (Li, Ci), i = 1, . . . , n.
This sample of observed pro�les must be constructed from pointwise data
sampled by the elephant seals.
Usually, a light pro�le in a homogeneous and weakly concentrated liquid
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ARGOS Number of Total number of Number of
number elephant registered Chl a pro�les considered

seal with 18 observations Chl a pro�les
11260 1 142 73
11263 2 148 73
11259 3 117 62

Table A: Di�erent elephant seals with number of available pro�les. The last column is the
number of Chl a pro�les with 18 observations sampled during daylight hours.

medium is constructed using the Beer-lambert equation (Bouguer, 1729).
The intensity of light is supposed to decrease exponentially in accordance
with depth following the relationship

L(z, λ) = L0(λ) ∗ exp(−q(λ) ∗ z)

where L is the light intensity, z is depth, λ is a wavelength, L0 represents
the light intensity at the surface, and q is the light attenuation coe�cient.
Remind that in our case, only the blue wavelength has been sampled. Then,
considering a �xed value of λ (blue wavelength in this study), this last equa-
tion is the solution of the following ordinary di�erential equation

dL

dz
(z) = −qL(z), L(z = Zm) = L0.

The Beer-Lambert assumptions suggest that the pro�le of Chl a concentra-
tion is constant alongside depth. In �rst approximation, it can be considered
that the Chl a concentration is independent from depth and proportional to
the coe�cient q such that

C(z) ∝ q.

However, both for light and Chl a, the hypothesis are in contradiction with
the observations of the water column (Fig. B). Light pro�les do not decrease
exponentially with depth and Chl a pro�les are not linear with depth.
One way to release the hypothesis of homogeneous environment to broader
assumptions is to consider that the coe�cient of light attenuation is depend-
ing with depth. This implies that the Chl a concentration is proportional to
q(z) i.e.

C(z) ∝ q(z)
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and also that the light attenuation is solution of the following di�erential
equation

dL

dz
(z) = −q(z)L(z), L(z = Zm) = L0.

The solution of the last equation is given with

L(z) = L0 exp

(
−
∫ z

Zm

q(s)ds

)
, L(z = Zm) = L0, (1)

which is a monotonic function : the light decreases as depth increases. Taking
the derivative of that solution in logarithmic scale, we obtain

L′(z) =
d log(L(z))

dz
= q(Zm)− q(z),

the derivative of the log-light is then proportional to the attenuation coe�-
cient q(z). As C(z) ∝ q(z) and L′(z) ∝ q(z), one can properly assume that
C(z) ∝ L′(z).

The most simple linear model that can be constructed to predict the Chl
a functional variable with L′(z) used as a covariate reads

C(z) = α + βL′(z) + ε(z),

where α and β are real parameters that must be estimated with the sample,
and ε(z) is a remainder. A more general version of this simple model can
be constructed by considering possible variations of parameters α and β
alongside the depth :

C(z) = α(z) + β(z)L′(z) + ε(z).

However, this model only considers interactions between variables at the
same depth. From a predictive point-of-view, it can be relevant to construct
a more �exible model which gives predictions of the Chl a at depth z by
using the information of the whole curve L′. For that purpose, we consider
the following linear functional model

C(z) = α(z) +

∫ ZM

Zm

β(s, z)L′(s)ds+ ε(z). (2)

10



The bivariate coe�cient β(s, z) can be interpreted for a �xed value of
z as a loading function which gives the ability to take into account cross-
dependencies between Chl a and light at di�erent depths. The coe�cient
α(z) is a function that acts as an intercept. The last term ε(z) is considered
as a random error term. The properties of such a model and di�erent ways to
estimate the parameters have already been studied in Ramsay and Silverman
(2005) and related references therein. In this study, both coe�cients α(z)
and β(s, z) are estimated using the data samples at hands (see Appendix A).
The advantage of such a model is that it includes the more simple versions
of the linear model presented above but allows more �exibility if required.

3.2. Constructing Chl a and light pro�les

Consider a sampled pro�le of variable C which arrives as p discrete obser-
vations (zj, cj), j = 1, . . . , p. We wish to reconstruct this unknown observed
pro�le C(z) using th pointwise observations (Fig. B). One way to proceed is
to consider that an observed pro�le C(z) is expressed as a linear combination
of known basis functions φk, k = 1, . . . , K such that

cj = C(zj) + εj =
K∑
k=1

akφk(zj) + εj.

The deterministic part C(z) =
∑K

k=1 akφk(z) of the data is entirely deter-
mined by the coe�cients ak which are estimated when minimizing the sum
of squares of the errors εj. In our case, releasing all assuptions on the shape
of the curve, we choose a B-spline basis, which is de�ned as a piecewise poly-
nomials of order 4 where the coe�cients are computed when minimizing the
penalized cost function

1/p

p∑
j=1

(cj − C(zj))2 + θ

∫
(C ′′(u))

2
du.

The smoothing parameter θ gives the trade-o� between smoothness of the
curve (norm of its second derivative) and the data �tting (Fig. C). The
smoothing parameter θ and the number K of basis functions can be cho-
sen by cross-validation (Craven and Wahba, 1979; Hosseini-Nasab, 2012).
Once the polynomial regression is achieved for both observed variables L
and C, we dispose of a sample of matched functions {(Li, Ci), i = 1, . . . , n}
for Chl a pro�les and for light pro�les. Each of these functions are entirely
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determined by the knowledge of their coe�cients when expanded into the
basis. The advantage of considering a smoothing spline basis expansion is
that the derivative of any curve can be explicitly calculated, some required
constraints (positivity, monotony, ...) can be included as well. We will show
in the following section how to proceed in order to select the right number of
basis functions and to impose monotony constraints for light pro�les �tting
as suggested by equation 1.
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Figure C: Examples of Chl-a and light pro�les �tted with 5 or 20 basis functions, with
derivatives of light pro�les. Red curves show �ts with 5 basis functions, and blue curves
represent �ts with 20 basis functions. The more the basis functions number increase, the
more the �t is accurate. For light pro�les �ts, monotony constraints have been taken into
account.

3.3. Prediction errors

Once the dataset of pro�les constructed, parameters α and β of model 2
can be estimated following the procedure in appendix A. Considering a light
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pro�le L(z) and the derivative of its logarithm L′(z), the functional linear

model gives a Chl a predicted curve denoted by Ĉ such that

Ĉi(z) = α̂(z) +

∫ ZM

Zm

β̂(s, z)L′i(s)ds.

where α̂ and β̂ are parameter estimations. The predictive capabilities of the
model can be measured with the integrated mean squared error

SSE =
1

n

n∑
i=1

∫ ZM

Zm

(
Ci(z)− Ĉi(z)

)2
dz.

In the following, we will use expressions derived from this quantity in order
to select the right number of basis functions and to test if di�erences appear
between data sampled by di�erent animals.

3.3.1. Choosing the right number of basis functions

Leave-one-out cross validation method is used to �nd the right number of
basis functions for �tting Chl a pro�les and light pro�les from raw data (Ref.
Efron and Tibshirani, 1990). Consider data from a unique elephant seal de-
noted as e. Consider the observed sample of size ne {(Li, Ci), i = 1, . . . , ne}.
These pro�les have been constructed with K basis functions for the func-
tions Ci and M basis functions for pro�les Li using the raw data. Let
SSECV (K,M) be the mean prediction error integrated alongside depth and
de�ned as

SSECV (K,M) =
1

ne

ne∑
i=1

∫ ZM

Zm

(
Ci(z)− Ĉ(−i)(z)

)2
dz.

The curve Ĉ(−i) is the prediction of the observed pro�le Ci when the estimated

parameters β̂(−i)(s, z) and α̂(−i)(z) of the functional linear model have been
computed using the whole set of observations except observation (Li, Ci).
The computation of SSECV (K,M) can be achieved for various values of
pair (K,M) giving rise to a graph such as in Fig. D. The right number of
basis functions is provided by the pair (K?, L?) which minimizes the cross-
validated prediction error SSECV (K,M).
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3.3.2. Cross validated prediction between animals

Once the number of basis functions has been selected, the whole set of n
matched observed pro�les is constructed. Using that curves, the parameters
of the functional linear model 2 are estimated. This model can then be used
to give prediction of a Chl a pro�le using the corresponding light pro�le.
It can be interesting to assess error variance of prediction between animals.
Consider again the elephant seal e and estimate the parameters of a linear
model 2 using the ne pro�les (Li, Ci) , i = 1, . . . , ne. Prediction error can be
computed using the n− ne remaining pro�les from other elephant seals such
that

SSEe =
1

(n− ne)

n−ne∑
j=1

∫ ZM

Zm

(
Cj(z)− Ĉ(e)

j (z)
)2
dz,

where Ĉ
(e)
j is the predicted Chl a pro�le using the linear model whose pa-

rameters have been estimated with data from elephant seal e.

4. Results

Cross validation indicated globally that only �ve basis functions are re-
quired for both Chl a and light pro�les to get a minimum error between the
�t and the prediction of Chl a pro�les (Fig. D). We applied the functional
linear model alternately on 207 light pro�les selected to compute at the same
time prediction intervals by bootstrap (see paragraph 3.4.).

Several examples of results are represented in Fig. E. The �rst eight
graphics (Fig. E.1 to Fig. E.8) show well predicted Chl a pro�les. Black
curves (�tted pro�les) and red curves (predicted pro�les) have the same shape
and amounts of Chl a predicted by the functional linear model every depth
match fairly well to raw observations.

Two types of prediction problems can be distinguished. Firstly, there
are prediction problems at surface or in depth (Fig. E.9 and Fig. E.10). In
most cases, but not always, a poor reconstruction of Chl a concentration es-
timated from light data tends to overestimate Chl a assessed from the light
data compared to the �uorescence method. This pattern is likely to be the
consequence of greater light attenuation. Particles in suspension in the wa-
ter column other than phytoplankton can contribute to light attenuation,
e.g. inorganic particles such as CDOM and also zooplankton. Furthermore,
�uorescence in itself is only a proxy of phytoplankton concentration and
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Figure D: Errors between the �t and the prediction of Chl a pro�les, according to basis
function number used to �t Chl a and light pro�les, for each elephant seal. We can see
that �ve basis functions are required to adjust Chl a and light pro�les for mammal 1
because minimum error is of value 12 (1). For elephant 2 (2), four basis functions for Chl
a and six basis functions for light pro�les are su�cient. Finally, only four basis functions
for each category for elephant 3 are required (3).

�uorescence response is known to vary with phytoplankton species and phys-
iological state (Xing et al., 2012). Phytoplankton species di�er widely in
their size and shape. Therefore, for a given Chl a concentration estimated
from the �uorometer, we may expect a variation in the light attenuation
factor according to phytoplankton species. A comparison with data of high
resolution measurement of ocean colour from PHYSAT which distinguishes
the dominant phytoplankton groups within a given area (Alvain et al., 2005)
could be used in the future to assess the e�ect of phytoplankton species on
light attenuation. As coastal areas were excluded from our study, we believe
that turbidity had a limited e�ect on the light attenuation coe�cients we
calculated.
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Secondly, pro�les can be badly predicted all along depth with a high
prediction error. Predicged pro�les can be either of very di�erent shape
(Fig. E.11) or the whole predicted curve is shifted from the observed pro�le
even if the shape has been kept (Fig. E.12). This last problem refers to an
o�set problem: when the sensor does not measure Chl a, it returns to 0.
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Figure E: Examples of prediction of Chl a pro�les. Red curves show pro�les reconstructed
from measurements, and black curves represent pro�les predicted with the fully functional
linear model. Pro�les 1, 2, 3, 4, 9 and 12 were taken on the path of the elephant seal
number 1; pro�les 5, 6, 7, 10 and 11 were recorded on the elephant seal number 2, and
pro�le 8 is taken on the number 3.

A measure of goodness of �t can be assessed by constructing a coe�cient
of determination. For each pair of pro�les, de�ne

R2
i = 1−

1
n

∫ (
Ci(z)− Ĉi(z)

)2
dz

1
n

∫ (
Ci(z)− Ci(z)

)2
dz

where Ci(z) is a �tted Chl a pro�le, C(z) the mean function of the sample
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{C1, · · · , Cn} de�ned as

C(z) =
1

n

n∑
i=1

Ci(z)

and Ĉi(z) the predicted Chl a pro�le for observation Ci(z). This quantity
ranges from 0 to 1 and has no unit.

Fig. F displays boxplots of R2
i between the predicted and observed Chl a

pro�les for each elephant seal path (1, 2 and 3). Higher values indicate that
the model �ts the data better. More than 50% of 73 pairs of pro�les have
a R2 above 0.71 for seal 1. For seal 2, 50% of 73 pairs of pro�les have a R2

above 0.52. Equally, on the third, 50% of 62 pairs of pro�les have a R2 above
0.52.

However, following the last de�nition of the R2
i negative values can occur

if the total variance is smaller than the sum of the predicted squared errors.
This indicates that the hypothesis of the functional model do not apply for
these observations. Then, eight pairs have negative values (-0.008, -0.07, -
0.13, -0.23, -0.43, -1.13, -2.15, -21.77) for path. 1. There are twenty-six pairs
of pro�les with a negative R2 with values ranging between -0.09 and -14.96
for path. 2. Finally, path. 3 gave thirteen pairs with a negative R2 value
(-0.0001, -0.11, -0.52, -0.71, -0.06, -0.11, -0.03, -0.08, -1.07, -0.31, -0.17, -0.12,
-0.31). These ill-predicted pro�les often appears in cases where observations
of Chl a are close to zero.

The values of the R2
i are also a�ected when prediction error is estimated

between animals but the R2
i stays globally high for path 1 and path 2 (not

presented here).
As the prediction errors for predicted Chl a pro�les are fairly good, the

functional linear model can be used to predict Chl a concentration in areas
where no amount of Chl a was measured. Fig. G.1 and Fig. G.2 show ex-
amples of predicted Chl a pro�les on two di�erent days. Consecutive light
�tted Chl a pro�les reveals a high degree of temporal and therefore spatial
variability. The mean travel distance between dives is 1.4 ±0.8 km (range
0.08-5.4 km). Wide variations in Chl a concentration are detected at the
scale of 2 to 3 dives corresponding to a sub-mesoscale spatial variation (i.e.
3 to 5 km) of the phytoplankton. Smaller scales are likely to occur as in a
few instances, wide variations in Chl a concentration are detected between
consecutive dives (Fig. G).
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Figure F: Boxplots of R2 between reconstructed and predicted Chl a pro�les for each path
of elephant seal (1, 2 and 3). The best goodness of �t concerns the �rst elephant, with a
median R2 equals to 0.93 (1).

5. Discussion

The �rst objective of this work was to assess the quality of the pre-
dicted Chl a pro�les from light data by comparing them with quenching
corrected �uorescence pro�les (Xing et al., 2012) simultaneously measured
by the SRDL CTD-Fluo tags and which were quenching corrected (Guinet
et al., 2013b). The second objective was to predict Chl a pro�les from light
data for each dive occurring during daylight hours throughout the path fol-
lowed by the Southern elephant seals to infer change in Chl a concentration
at sub-mesoscale.

The proposed functional linear model, constructed from physical assump-
tions, was well suited to predict Chl a pro�les from the derivative of log-light
pro�les and to infer changes in Chl a concentration at �ne-scale. This pre-
diction is done for each dive occuring during daylight hours along paths of
Southern elephant seals. The reconstruction of Chl a pro�les from light
measurements (Teo et al., 2009) and more particularly the question of the
accuracy of such reconstructions was raised in Jaud et al. (2012). The pro-
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Figure G: Two examples of prediction of Chl a concentration in a range between two
mesured Chl a pro�les. This prediction highlights sub-mesoscale variations. The more
color is red, the more Chl a concentration is high.

cedure is based on (i) a basis function expansion, and (ii) a fully functional
linear model. Chl a and light pro�les are reconstructed as continuous curves
using projection in basis functions, and the fully functional linear model can
be used to predict functional Chl a pro�les from derivative of functional light
pro�les.

This method can be applied under similar conditions in other contexts. To
apply our procedure, we need available light measurements recorded between
the surface and the depth to which the Chl a data interest us, and absorption
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coe�cients. Data can be recorded with tags �xed on marine mammals or
with drifting buoys, for example. We can take into account a light pro�le as
long as the di�erence of light measurements between the pro�le surface and
the pro�le deep maximum (180 meters) is su�cient. If this is not the case,
prediction of Chl a functional pro�les may not be accurate because light data
are zero since they are as recorded at night. However, in our study, only Chl
a pro�les recorded during daylight hours were analyzed. To account for Chl a
pro�les registered by night, we propose to develop in future an interpolation
using kriging methods when data are curves (Nerini et al., 2010).

In this article, we consider a fully functional linear model where both the
response C and the explanatory variable L are functions. Teo et al. (2009)
used in their study a modi�ed version of the bio-optical model developed
by Morel (1988). This bio-optical model allows only the use of data at the
same depth s = z. With a fully functional linear model, we can predict Chl a
concentration at di�erent depths s and z, and at the same time. However, the
fully functional linear model takes into account only one explanatory variable,
although in theory one can use several. In our case, temperature or salinity
pro�les could be added in this model to have more information on mixed
layers which is of critical importance in controlling the vertical distribution of
phytoplankton, and therefore may help in assessing more precisely the depth
of rupture point in Chl a concentration within the water column (Boyd,
2002; Chiswell, 2011; Taylor and Ferrari, 2011). So to incorporate other
explanatory variables in our model, one have to generalize to the multivariate
case.

The method is implemented with parameter value 4 for the order of splines
and 5 for number of basis functions. Computation by cross-validation of the
optimum number of basis functions to use showed us that the use of only
�ve basis functions is enough to minimize the prediction error. However, this
number is optimum in our case, but it can be di�erent to �t other pro�les
of physical data such as temperature. This highlights the need to choose
this number by a calculation method adaptable to any kind of pro�le. If
we increase the order of splines and/or number of basis functions, there is a
risk of over-�t curves on data. Furthermore, in order to make the derivative
positive, we imposed a monotonic smoothing on functional light pro�les.
This method doesn't have to be applied to another kind of data, such as
temperature or salinity, because it is speci�c to the decrease of light data
when Southern elephant seal goes deep in the water.

Concerning prediction intervals bootstrap, there is still room for improve-
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ment. These intervals seem a little tight around a predicted Chl a pro�le.
This is due to the fact that prediction was made pro�le by pro�le. Further-
more, if basis functions are not correctly adjust data (see Discussion above),
intervals do not contain �tted Chl a pro�les.

The measurement devices and sensors may be subject to bias and mea-
surement errors. In an attempt to correct instrument bias and calibration
issues, the data day have been pre-processed before analysis. Data were cor-
rected for the o�set (which is a problem of shifting the origin) and for the
quenching (a process which decreases the �uorescence intensity). This pre-
treatment has a relative in�uence on the Chl a pro�les adjustment. Some
instrument bias corrections can be made before analysis, but for others, there
would be very probably an advantage to making them at the same time as
the smoothing and adjustment.

In some cases, Chl a pro�les can be a�ected by quenching e�ect. This
results from a planktonic reaction which disturbs the �uorescence measure-
ments. Light data could help to correct �uorescence pro�les a�ected by
quenching e�ect, especially in strati�ed waters, where this cannot be achieved
by pro�le-by-pro�le quenching correction (Xing et al., 2012). In fact, light
attenuation data are only dependent on the presence of phytoplanktonic par-
ticles, not dependent on their physiological state and thus are not a�ected
by the quenching e�ect.

In-situ high spatial resolution of vertical pro�les of phytoplankton con-
centration provided by the Southern elephant seals from light attenuation
pro�les combined with remotely sensed ocean colour and sea surface tem-
perature images represent a signi�cant contribution in assessing the (sub-
)mesoscale spatial structuration of areas of ecological importance within the
Kerguelen Region. The simultaneous collection of information on Southern
elephant seals foraging success assessed from head mounted accelerometers
(Gallon et al., 2012; Guinet et al., 2013a) with concomitant �ne scale oceano-
graphic variables including the spatial distribution of phytoplankton should
provide new insight into the spatial structuring of the prey �eld in relation
to the oceanographic landscape at (sub-)mesoscale.
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Appendix A. Parameters estimation for functional linear model

with functional covariate

Suppose that we dispose of n pairs {(Li, Ci) , i = 1, . . . , n} which de�ne
a set of matched curves sampled from functional variables L and C. We
suppose that these functions belong to L2 [0;Z] the space of square integrable
functions de�ned on the bounded interval [0;Z]. This functional space is
equipped with the inner product 〈·, ·〉 and norm ‖·‖. We consider a functional
regression model in which the function L (s) , s ∈ [0, Z] is used as a covariate
to explain the variation of the response curve C (z) , z ∈ [0, Z]. The most
general version of a functional linear model using a functional covariate is
given by

C = α +B (L) + ε

where the intercept α (z) is a functional parameter and B is a linear operator
such that

B (L) (z) =

Z∫
0

β (s, z)L (s) ds.

The kernel of the operator B is a bivariate function β (s, z) that acts as
a regression coe�cient. It potentially gives the in�uence of L (s) on C (z)
at any value of z. The functional remainder ε gives the error between the
model and the function C. The coe�cients α and β must be estimated using
the sample at hands.

The search for estimates of α̂ and B̂ is achieved when minimizing the
expectation of the quadratic error

SSE (α,B) = E
(
‖ε‖2

)
.

The solution of that minimization problem leads to the normal equations for
the functional linear model{

VLB = VLC
α = µC −B (µL)

(A.1)

where functions µL and µC are expectations of variables L and C respec-
tively, VL is the variance-covariance operator for variable L and VLC is the
cross-covariance operator between variables L and C. Empirical versions of
estimators for both covariance operators and for mean functions are com-
puted from the sample {(Li, Ci) , i = 1, . . . , n} as
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V̂L = 1

n

∑n
i=1 (Li − µ̂L)⊗ (Li − µ̂L)

V̂LC = 1
n

∑n
i=1 (Li − µ̂L)⊗ (Ci − µ̂C)

µ̂L = 1
n

∑n
i=1 Li

µ̂C = 1
n

∑n
i=1Ci

where the tensor product of two elements X and Y of L2 [0;Z] is the
rank one operator such that [X ⊗ Y ] (f) = 〈X, f〉Y for all f ∈ L2 [0;Z].

The straightforward estimators B̂ of B and α̂ of α are obtained by replacing
empirical estimators in (A.1) such that{

V̂LB̂ = V̂LC
α̂ = µ̂C − B̂ (µ̂L)

.

One way to achieve the above calculus of is to decompose both L (z) and
C (z) as a linear combination of known basis functions. With this decom-
position, the problem of estimation, including the calculus of the inverse of
V̂L, can then be handled as a known multivariate problem, working on the
coe�cients of the basis decomposition (He et al., 2010). [inclure plus de
détails].

Appendix B. Bootstrap pointwise prediction intervals

Once the parameters have been estimated, the functional linear model
gives a predicted value of the response curve at depth z such that

Ĉi (z) = α̂ (z) +

∫ Z

0

β̂ (s, z)Li (s) ds

where α̂ and β̂ are the functional parameters estimated using the initial
sample {(Li, Ci) , i = 1, . . . , n} constructed with their right number of basis

functions. Denote ε̂i (z) = Ci (z) − Ĉi (z) the estimated residuals at �xed
depth z. The forecast of an independent observation Cn+1 (z) is then

Ĉn+1 (z) = α̂ (z) +

∫ Z

0

β̂ (s, z)Ln+1 (s) ds.

A bootstrap replication of the initial observations and a future value are
given by the pairs {(Li, C?

i ) , i = 1, . . . , n+ 1} such that

C?
i (z) = α̂ (z) +

∫ Z

0

β̂ (s, z)Li (s) ds+ ε?i (z)
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for i = 1, . . . , n and

C?
n+1 (z) = α̂ (z) +

∫ Z

0

β̂ (s, z)Ln+1 (s) ds+ ε?n+1 (z)

where ε?1 (z) , . . . , ε
?
n (z) and ε

?
n+1 (z) are obtained by sampling with replace-

ment from the empirical distribution of the pointwise residuals

F̂z (x) = # {ε̂i (x) ≤ z} /n.

Let α̂? and β̂? be the estimated parameters using the bootstrap sample
B = {(Li, C?

i ) , i = 1, . . . , n} and de�ne the prediction error

e?n+1 (z) = C?
n+1 (z)−

[
α̂? (z) +

∫ Z

0

β̂? (s, z)Xn+1 (s) ds

]
which has distribution G?

t (·;n+ 1). The pointwise bootstrap γ-prediction
interval of observation Yn+1 (z) is given with

I(B)
γ (z;n+ 1) =

[
Ĉn+1 (z) +G?−1

z ((1− γ) /2;n+ 1) , Ĉn+1 (z) +G?−1
z ((1 + γ) /2;n+ 1)

]
where G?−1

z (·;n+ 1) is the quantile function that gives the (1− γ) /2 lower
quantile and the (1 + γ) /2 upper quantile (0 ≤ γ ≤ 1).

The distribution of the prediction errors is then simulated using boot-
strapped errors obtained by sampling the empirical distribution function F̂z
in place of Fz and using α̂ and β̂ as true coe�cients of the regression instead
of α and β. The estimation of a prediction interval can then be repeated for
any value of depth z to form the functional prediction envelope (Fig. C).

In our case, the covariate is the derivative of log-L.
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