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Text S1. Background information for Self-Organizing Maps (SOMs) and Feed-26 

Forward Networks (FFNs) 27 

 28 

The purpose of the SOM-FFN method is to map sparse data, filling data gaps with the aid 29 

of better-constrained predictor data. First, we separate the ocean into clusters of similar 30 

biogeochemical and physical properties using SOMs, and second, we run an FFN in each 31 

of the clusters to approximate the non-linear best-fit relationship between the available 32 

observations of the target data (here: DIC) and a set of physical and biogeochemical 33 

predictor data. These predictor data exist as mapped (gap-filled) data at global scale, hence 34 

the approximated relationship between the target data and the predictor data can be applied 35 

where no target data exist to fill these observational gaps (Landschützer et al., 2013). The 36 

SOM-step is conducted, because the statistical relationships between the predictor and 37 

target data differ around the globe, while they should be similar within each SOM-cluster. 38 

 39 

SOMs are a form of unsupervised machine learning that is commonly used to cluster data 40 

(Kohonen, 2001, 1989). In this clustering method, we first arrange each normalized multi-41 

dimensional input variable (SST, SSS, climatological DIC; see Main Text and Table S1) 42 

as a 1D vector. The order of the 1D vector is less important as long as all multidimensional 43 

arrays are arranged in the same way. Next, we chose a number of neurons corresponding 44 

to the number of clusters we want to have. The network randomly places these neurons in 45 

a grid space, where each input vector represents one dimension. The network then identifies 46 

the Euclidean distance between the input data to these neurons. Next, the neurons are 47 

iteratively moved around in the grid space until the network has identified a set-up where 48 

the sum of the Euclidean distances between the input data and the neurons is minimal. Once 49 

this set-up is found, the input data is assigned the number of the neuron it is closest to, 50 

resulting in a 1D vector with the same length as our input variables. We then transfer this 51 

vector back to a multidimensional array (latitude, longitude, depth, and month) so that the 52 

clusters can be displayed on our multidimensional grid.  53 

 54 

The choice of the number of neurons (and therefore the number of clusters) of a SOM is 55 

somewhat subjective. Too many clusters will result in only a few observations in each 56 

cluster, while too few will create large regions with a wide range of varying properties. As 57 

the surface ocean is less uniform than the intermediate and deep ocean, we chose six 58 

clusters for the surface slab (2.5 m–500 m), and four each for the intermediate (600 m–59 

1500 m) and deep slabs (1600 m–1975 m; Fig. S1a-d, Table S1). Although the SOMs are 60 

computed for each climatological month, the clusters do not considerably change shape 61 

from one month to the next. Most clusters remain the same throughout the year, but near 62 

the cluster boundary, there is a small amount of variation in the top 200 m (Fig. S1e-f). The 63 

clusters are seasonally relatively static by design due to our weighting of the climatological 64 

DIC as a predictor variable.  65 

 66 

FFNs are a form of supervised machine learning; they can approximate nearly any 67 

continuous function and are commonly used in Earth System Science (Hornik et al., 1989). 68 

In this step, we run an FFN in each cluster separately. We first co-locate the predictor data 69 

with the target data. During the FFN training, the network establishes the statistical 70 

relationship between the target data and the co-located predictor data (see Fig. S2 for our 71 
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set-up). To do so, the predictors are connected by a transfer function to a set of neurons 72 

with random initial weights and biases at each connection. Next, these neurons are 73 

connected to the target data with a second transfer function, again with initial random 74 

weights and biases. The output of this initial set-up is a first guess estimation of the target 75 

data at the location of the observations. This output is then compared with the actual 76 

observations and the mean squared error (MSE) is calculated. This step is iteratively 77 

repeated using the Levenberg-Marquardt Algorithm that adjusts the neuron weights and 78 

biases until the MSE between the Output and the observations reaches a minimum. Next, 79 

this approximated relationship between the predictor and target data is applied to map the 80 

target data at all grid points where we have predictor data. 81 

 82 

The input array consists of the predictor data described in the Main Text and summarized 83 

in Table S1 and Fig. S2. In our set-up, we use two layers, where the first layer (in the 84 

literature referred to as the hidden layer) uses 16 neurons, which are connected to a second 85 

layer via a sigmoid transfer function. The second layer, consisting of a single neuron, uses 86 

a linear transfer function to linearly extract the hidden layer output to produce the final DIC 87 

estimate (Fig. S2). This two-layer setup enables the network to represent both linear and 88 

non-linear relationships between predictor and target data (Broullón et al., 2019; Hagan et 89 

al., 2014). The number of neurons chosen in the set-up of the FFN is related to the 90 

complexity of the data sets (Gardner and Dorling, 1998). While too few neurons result in 91 

the network not learning complex relations, too many neurons may overfit the problem 92 

(e.g., Broullón et al., 2019). We tested several set-ups and found that 16 neurons lead to 93 

the best representation of the observations.  94 

 95 

For each iteration in the training process, we use only a randomly chosen subset of the 96 

input data to train the network (the training set; here: 80% of the data), and we use the 97 

remaining data for internal validation (the validation set; here: 20% of the data). The 98 

validation set is used to stop the iterative training once the adjustment of the network 99 

weights does not improve the MSE towards the validation set. This process is often referred 100 

to as an “early-stopping approach” and ensures that the network can generalize and prevent 101 

the network from overfitting.  102 

 103 

Text S2. Smoothing and uncertainty within our method 104 

The internal validation of the SOM-FFN method is based on a randomly chosen subsample 105 

of the available observations by the network (the validation set for the early-stopping 106 

approach). Therefore, the resulting DIC fields vary slightly each time we run the network 107 

and could be biased depending on which data was chosen as training and validation data. 108 

To account for potential biases in the separation between training and validation data, we 109 

use a bootstrapping approach and run the SOM-FFN method ten times and take the mean 110 

of this ensemble, resulting in a smoother end product than a single ensemble member. We 111 

define the generalization uncertainty within the method as the standard deviation across 112 

this ensemble. We further smooth the mapped ensemble mean fields at each depth level 113 

with a filter that calculates the mean of the neighboring three grid cells in each horizontal 114 

direction (latitude and longitude). We then apply a non-linear least squares harmonic fit at 115 

each grid cell, at each depth level to smoothen the seasonal cycle.  116 
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 117 

Our final monthly climatology of the Mapped Observation-Based Oceanic DIC (MOBO-118 

DIC) is hereafter called DICMOBO. Note that our mapped estimate is not scaled to a specific 119 

year, because it is based on only 14 years of data (2004 through 2017). As our estimate 120 

represents the monthly means of these 14 years, we consider it centered around the years 121 

2010 and 2011. 122 

 123 

Text S3. Discussion on including information on the time or location as predictors in 124 

FFNs  125 

Some studies include a time-variable, such as the month of the year as a predictor in FFNs 126 

(e.g., Bittig et al., 2018; Sauzède et al., 2017). To represent the periodicity of the year, the 127 

cosine and/or sine of the time-variable is usually used (see Eq. S1 and S2 for the 128 

computation of the cosine and sine of the month of the year respectively). The same 129 

procedure is commonly used to represent the periodicity of longitude (e.g., Broullón et al., 130 

2019). 131 

 132 

cosmonth = cos 
π

n/2 
 month     (Eq. S1) 133 

sinmonth = sin 
π

n/2 
 month     (Eq. S2) 134 

 135 

where n is the number of months there are in a year (12).  136 

 137 

However, a problem arises: both the cosine and sine curve cross the x-axis twice in one 138 

cycle (Fig. S3). Hence, months that are climatologically different, are assigned the same 139 

value. For example, in the cosine curve, the 3rd and 9th month have the save value (0). 140 

Hence, in this case, March would learn from October and vice versa, although they have 141 

different values in the real world. Similarly, in the sine curve, the 6th and the 12th month 142 

have the same value (0), and so June and December would learn from each other, which is 143 

not in line with our knowledge of the seasonal cycle of carbon.  144 

 145 

During the set-up of our FFN, we analyzed what would happen if we did include the cosine 146 

and/or sine of the month of the year as predictors. Our results were considerably noisier in 147 

those set-ups and we could not reproduce the seasonal cycles. Presumably, the same 148 

problem would arise when using the cosine and/or sine of the day of the year as a predictor. 149 

Instead, the network obtains the seasonal information from the predictor (especially 150 

temperature and salinity) and can produce a seasonal cycle of DIC without being provided 151 

information about the time. Similarly, we expect the same problem to occur when using 152 

the cosine and/or sine of longitude. Our method overcomes this problem through the 153 

clustering with the SOMs before the FFN is run and so does not need explicit information 154 

on the location. Other studies have overcome this problem by feeding information on the 155 

location into the neural network using n-vector transformations of latitude and longitude 156 

(Gregor et al., 2017; Sasse et al., 2013).  157 
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Text S4. Validation tests, comparing DICMOBO with independent data 158 

Compared to mapping the surface pCO2, some additional challenges emerge when 159 

mapping the interior DIC. First, interior DIC measurements are even sparser than pCO2 160 

measurements at the surface, thus, larger spatio-temporal gaps need to be filled. Second, 161 

more potential predictors are available near the surface, for example from satellite data, 162 

than at depth. Therefore, substantial testing is required to check whether the method can 163 

be applied to map time-varying DIC fields. We test our method by comparing DICMOBO 164 

with various independent data that were not used to train the network, both observational 165 

and synthetic, as described in the following Subsections.  166 

S4.1 Global mapped annual mean climatology (Lauvset et al., 2016)  167 

We compare the annual mean of DICMOBO to the annual climatology by Lauvset et al. 168 

(2016). That product is on a 1°x1° grid and is normalized to the year 2002. To compare the 169 

two estimates, we linearly interpolate the Lauvset climatology onto the same 33 depth 170 

levels as our product (hereafter DICLAUVSET) and compute the annual mean of DICMOBO.  171 

 172 

Generally, the two estimates agree on the distribution, and the RMSE between DICMOBO 173 

and DICLAUVSET is 19.9 µmol/kg-1 and small bias of -1.5 µmol/kg-1 (negative bias indicates 174 

that our estimate is on average lower than the validation data). The isopycnals depicted in 175 

Fig. S4a,d,g demonstrate that the mean DIC profile largely follows the profile of the water 176 

masses. DICMOBO tends to have higher concentrations near the surface and lower 177 

concentrations in the interior than DICLAUVSET (Fig. S4). The former can be linked to the 178 

difference in reference year: DICLAUVSET is scaled to the year 2002, and DICMOBO is based 179 

on data after 2004, centered around the years 2010/2011. Hence, we expect that DICMOBO 180 

has more DIC near the surface than DICLAUVSET due to the accumulation of anthropogenic 181 

carbon. The expected increase in surface ocean DIC due to the atmospheric perturbation is 182 

~1.1 µmol kg-1 yr-1 or ~11 µmol kg-1 between 2002 and 2011 (following Sarmiento and 183 

Gruber, 2006). The positive differences near the surface approximately match the expected 184 

increase over one full decade: DICMOBO in the top 200 m is approximately 13 µmol kg-1 185 

higher than DICLAUVSET, indicating most of the difference between the two estimates stems 186 

from the difference in time period and the anthropogenic perturbation. 187 

 188 

In addition to this offset near the surface, our estimate in the interior (below ~200 m) is, on 189 

average, ~10 µmol kg-1 lower than DICLAUVSET, which cannot simply be explained by the 190 

difference in reference years. Furthermore, there is a striking difference between the two 191 

estimates in the Atlantic sector between ~100 m and 1000 m, where the time-average of 192 

DICMOBO is lower by ~50 µmol kg-1 than DICLAUVSET. This region of high DIC in the 193 

Lauvset product may be explained by data availability. All of the available information 194 

here stems from a single cruise (33MW19930704) as well as a few calculated DIC values 195 

(based on observed total alkalinity and pH) from cruise 74DI19980423. The DIVA 196 

mapping used by Lauvset et al. (2016) draws no other information apart from the 197 

observations directly, the correlation length scale, and the signal-to-noise ratio. The latter 198 

two are subjectively chosen, and for DICLAUVSET, the signal-to-noise ratio is such, that the 199 

observations are considered climatologically representative, and therefore, closely fit. Our 200 

method, however, takes the high DIC values in the Atlantic in combination with the 201 

additional information from the predictor data, and thus, DICMOBO might be more 202 
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representative of the true climatological state. In addition, the differences in the ocean 203 

interior could be due to the difference in the timespan. While our approach only considers 204 

measurements between 2004 and 2017, the approach by Lauvset et al. (2016) also includes 205 

measurements from earlier campaigns.  206 

 207 

S4.2 Validation with synthetic data 208 

To test how accurately our method reconstructs time-varying fields at global scale, we can 209 

turn to synthetic data. We take the model field from the biogeochemical component of the 210 

Ocean General Circulation Model HAMOCC (Ilyina et al., 2013; Mauritsen et al., 2019), 211 

which was run on a 1.5°x1.5° grid in hindcast mode with historic atmospheric forcing for 212 

the Global Carbon Budget 2018 (Le Quéré et al., 2018). We first re-grid the HAMOCC 213 

output onto the same grid and format as the observational predictor and target data 214 

(monthly means between 2004 through 2017, 33 depth levels between 2.5 m and 1975 m, 215 

1°x1° grid, from 65°N to 65°S). We call the full model field of DIC in HAMOCC hereafter 216 

DICHAMOCC.  217 

 218 

To test how well our method reconstructs the full model field, we subsample DICHAMOCC 219 

at the month and location where we have DIC observations in GLODAPv2.2019. We then 220 

use the same SOM-FFN set-up and run the method using the same predictors, but from 221 

HAMOCC, to reconstruct the DIC in HAMOCC (hereafter DICMOBO.HAMOCC). Finally, we 222 

compare DICMOBO.HAMOCC with DICHAMOCC. 223 

 224 

We are aware that the use of models to validate empirical methods has its limitations; for 225 

example, because the model field is considerably smoother than data from measurements, 226 

and because here, "synthetic observations" are the monthly mean value of the model output, 227 

and not a snap-shot measurement. Nonetheless, the test with synthetic data provides us 228 

with a way to qualitatively test our method at each grid cell, overcoming the problem of 229 

the paucity of independent in-situ validation data. 230 

 231 

Run with synthetic data, the SOM-FFN method is capable of reconstructing the mean 232 

DICHAMOCC distribution, as illustrated in Fig. S5. The differences between DICHAMOCC and 233 

DICMOBO.HAMOCC remain within 10 µmol kg-1 for the majority of the ocean and the overall 234 

RMSE between the two DIC fields is 13.8 µmol kg-1 and a bias of +1.4 µmol kg-1, 235 

strengthening our trust in the reconstructed DIC field. However, a few exceptions are 236 

visible where differences reach up to 50 µmol kg-1 in the deep Indian and Pacific Ocean, 237 

where fewer observations exist. The Indian Ocean is a region where, due to data sparsity, 238 

the uncertainty of our method is largest globally, as illustrated by the ensemble spread (Fig. 239 

2 in the Main Text). We thus link the difference here to the data sparsity and substantial 240 

spatial extrapolation in this region. The differences in the deep Pacific Ocean, however, 241 

cannot be attributed to the ensemble spread. Here, the ensemble spread is smaller than in 242 

most shallow regions and so the large differences between DICHAMOCC and 243 

DICMOBO.HAMOCC in this basin are likely linked to processes not represented in our predictor 244 

data. This illustrates again that regional uncertainties can be considerably large in our 245 

global approach. 246 

 247 



 

 

7 

 

The surface seasonal cycle of DICMOBO.HAMOCC in large scale regions remains close to the 248 

seasonal cycle of DICHAMOCC (Fig. S6), with the maximum difference between DICHAMOCC 249 

and DICMOBO.HAMOCC of 11 µmol kg-1 in the northern temperate band, where the full model 250 

field is a bit jagged, and so DICMOBO.HAMOCC is lower in boreal spring and higher in boreal 251 

summer. In the northern subtropics, DICMOBO.HAMOCC is lower than DICHAMOCC by up to 9 252 

µmol kg-1, especially in boreal autumn and winter, while in the southern subtropics, 253 

DICMOBO.HAMOCC is lower by up to 10 µmol kg-1 in austral winter. In the tropics, 254 

DICMOBO.HAMOCC agrees best with DICHAMOCC, and this is likely linked to the lack of strong 255 

variations. Overall, this test demonstrates that our method, as well as the number of 256 

available observations, are well suited to reconstruct the climatological DIC distribution, 257 

and in particular, the seasonal representation of DICHAMOCC, adding confidence to our 258 

method. The RMSE between DICHAMOCC and DICMOBO.HAMOCC at the surface is 13.0 µmol 259 

kg-1.  260 

 261 

S4.3 The seasonal cycle at time-series stations HOT and BATS 262 

We further compare our estimate with data from independent time-series sites that were 263 

not used to train the network and have a long enough record to extract the mean seasonality. 264 

Although there are many time-series stations across the globe (Bates et al., 2014; see also 265 

https://www.nodc.noaa.gov/ocads/oceans/time_series_moorings.html), only a few stations 266 

measured DIC in the upper ocean from 2004 through 2017 and at locations that are not 267 

excluded in our product (i.e., coastal regions and latitudes poleward of 65°). The time-268 

series stations that fall within our temporal and spatial domains are the Hawaii Ocean 269 

Time-Series (HOT, Dore et al., 2009) and the Bermuda Atlantic Time Series Study (BATS, 270 

Bates et al., 2014).  271 

 272 

The HOT (http://www.soest.hawaii.edu/HOT_WOCE/ftp.html) and BATS 273 

(http://batsftp.bios.edu/BATS/bottle/A_README_BOTTLE.txt) databases consist of 274 

physical and biogeochemical ship data. The DIC measurements that form a part of these 275 

time-series datasets were taken from bottled sea-water samples. The HOT time-series 276 

extends from 1988 through 2017 for the upper ocean at 22°45’N, 158°00’W, north of the 277 

Hawaiian island chain, while the BATS time series extends from 1988 through 2016 at 278 

31°40’N, 64°10’W, near Bermuda in the northwestern Sargasso Sea (marked in Fig. 1a in 279 

the Main Text).  280 

 281 

For the validation, we compile all DIC measurements from the HOT and BATS databases 282 

and only keep the data that overlap with the period from our study (2004 through 2017). 283 

At BATS, while conducting our analysis, data from 2017 were not available, so here, the 284 

dataset ends in December 2016. We then compute a monthly climatology by taking the 285 

mean monthly values (hereafter DICHOT and DICBATS). While the HOT data extend to 1000 286 

m, at BATS, only a few observations exist below 600 m, so here we only use the top 600 287 

m for our validation. We test DICMOBO at the 1°x1° grid point closest to the HOT location 288 

(hereafter DICMOBO.HOT) and compare it to DICHOT. We also test how DICHAMOCC at the 289 

grid point closest to HOT (hereafter DICHAMOCC.HOT) compares to our estimate thereof 290 

(hereafter DICMOBO.HAMOCC.HOT). We do the same test at BATS: we compare DICMOBO.BATS 291 

to DICBATS and DICMOBO.HAMOCC.BATS to DICHAMOCC.BATS. 292 
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 293 

Although DICMOBO.HOT represents the DIC phase and amplitude at station HOT well, it 294 

tends to underestimate DICHOT at most depths, except at 500 m depth (Fig. S7). Most of 295 

the concentrations illustrated in Fig. S7b are based on only a few observations. Therefore, 296 

these differences might be subject to internal variability at HOT that is not represented in 297 

our mean climatology. Both DICMOBO.HOT and DICHOT illustrate the weak seasonal cycle of 298 

surface DIC in the subtropics (Fig. S7d). The signal to noise ratio in DICHOT is high, and 299 

hence, no strong seasonal cycle can be observed here, whereas DICMOBO.HOT demonstrates 300 

a slightly stronger seasonal cycle. Nonetheless, given the locality of the measurements 301 

compared to the global reconstruction, the mean surface values between DICHOT and 302 

DICMOBO.HOT compare remarkably well (1983 and 1974 µmol kg-1, respectively at 10 m) 303 

and the overall RMSE between DICHOT and DICMOBO.HOT is 14.2 µmol kg-1 and the bias is 304 

-7.9 µmol kg-1. 305 

 306 

DICHAMOCC.HOT is considerably lower than DICHOT (by ~80 µmol kg-1, Fig. S7d). 307 

Nonetheless, our method reproduces the seasonal cycle of DICMOBO.HAMOCC.HOT relatively 308 

well in terms of the mean and phase, with the highest DIC concentration in May. However, 309 

DICMOBO.HAMOCC.HOT, as observed before for the large scale regions, overestimates the 310 

amplitude of the seasonal cycle compared to DICHAMOCC.HOT (~9 µmol kg-1 compared to 311 

~4 µmol kg-1). The RMSE between DICHAMOCC.HOT and DICHAMOCC.HOT is 8.1 µmol kg-1. 312 

 313 

DICMOBO.BATS demonstrates a much more pronounced seasonal DIC cycle compared to the 314 

one observed at HOT. Overall, the concentrations are higher by ~5 µmol kg-1 than DICBATS 315 

in the top 100 m, while between 100 m and 600 m our estimate is lower by up to 18 µmol 316 

kg-1 (Fig. S8a-c). Again, given the locality of the time-series station, we find an 317 

encouraging agreement regarding the phase and amplitude of the seasonal cycle in 318 

DICMOBO.BATS at the surface (Fig. S8d). The surface seasonal cycle of DICBATS has 319 

approximately the same mean concentration as DICMOBO.BATS (2061 and 2067 µmol kg-1, 320 

respectively), as well as a matching phase of the seasonal cycle (largest value in March). 321 

However, DICMOBO.BATS underestimates the observed DIC concentrations in the winter 322 

months (up to 13 µmol kg-1) and the overall RMSE between DICBATS and DICMOBO.BATS is 323 

26.6 µmol kg-1 and the bias is -15.2 µmol kg-1. 324 

 325 

We find that DICHAMOCC.BATS is considerably lower than the DICBATS by ~90 µmol kg-1. 326 

Our method reproduces the amplitude of DICHAMOCC.BATS quite accurately 327 

(DICMOBO.HAMOCC.BATS), but there is a 2-month phase shift (Fig. S8d). The RMSE between 328 

DICHAMOCC.BATS and DICHAMOCC.BATS is 5.9 µmol kg-1. 329 

 330 

S4.4 Argo floats with biogeochemical sensors (SOCCOM floats) 331 

To test our method in the southern hemisphere, we use data from biogeochemical Argo 332 

floats that take measurements as part of the Southern Ocean Carbon and Climate 333 

Observations and Modelling project (SOCCOM, https://soccom.princeton.edu/). We 334 

compare the monthly mean DIC concentration calculated from the SOCCOM floats to 335 

DICMOBO at the month and location of the float measurements (DICMOBO.SOCCOM). The DIC 336 

from the SOCCOM floats is calculated using a combination of pH measurements, total 337 
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alkalinity estimated using the commonly used LIAR algorithm (Carter et al., 2018), and 338 

the CO2SYS analysis tool (van Heuven et al., 2011). As the SOCCOM float data is only 339 

available after 2014, we take the monthly mean values of DIC from 2014 through 2017. 340 

We then interpolate all SOCCOM float DIC measurements onto a 1°x1° grid and linearly 341 

interpolate the result onto our 33 depth levels (hereafter DICSOCCOM). We then compute the 342 

mean monthly fields regardless of the float location within the Southern Ocean. In the 343 

domain until 65°S, there are, on average, 160 grid cells that contain at least one SOCCOM 344 

float in each month of the year (see Fig. 1b in the Main Text). The data density of the 345 

SOCCOM floats is relatively high, although the period of these observations only extends 346 

over four years (2014 through 2017).  347 

 348 

We find that DICMOBO.SOCCOM agrees well in phase with the DICSOCCOM, but DICSOCCOM is, 349 

on average, 16 µmol kg-1 higher than DICMOBO.SOCCOM (Fig. S9). Comparatively higher 350 

carbon values measured by the SOCCOM floats have been reported in recent studies 351 

(Bushinsky et al., 2019; Gray et al., 2018; Williams et al., 2017), who found that SOCCOM 352 

floats demonstrated additional outgassing in austral winter months compared to estimates 353 

based on ship data. The mean surface seasonal cycle of DICMOBO.SOCCOM has a lower 354 

amplitude by ~6 µmol kg-1 (Fig. S9d), owing to the disagreement in austral winter. The 355 

overall RMSE between DICMOBO.SOCCOM and DICSOCCOM is 22.8 µmol kg-1 and the bias is -356 

16.1 µmol kg-1. 357 

 358 

Comparing the mean seasonal cycle of DICHAMOCC with DICHAMOCC.SOCCOM, we find that 359 

the seasonal cycle in DICHAMOCC.SOCCOM has a much larger amplitude (by ~19 µmol kg-1) 360 

than DICSOCCOM, and the phase is shifted backward by ~2 months. However, 361 

DICMOBO.HAMOCC.SOCCOM compares well with DICHAMOCC.SOCCOM, in phase, amplitude, and 362 

mean concentration, demonstrated by an RMSE of 7.4 µmol kg-1. 363 

 364 

S4.5 The surface seasonal cycle at Drake Passage time-series station 365 

In addition to the time-series stations that measure DIC in the water column, here, we 366 

compare DICMOBO with a time-series station that contains surface measurements of DIC, 367 

the Drake Passage time-series station (Munro et al., 2015). The Drake Passage time-series 368 

is one of the most comprehensive datasets of carbon measurements in the Southern Ocean, 369 

including DIC data from bottled sea-water samples during multiple ship crossings per year 370 

from 2004 through 2017 (Munro et al., 2015, 371 

https://www.nodc.noaa.gov/archive/arc0118/0171470/2.2/data/0-data/). We use all DIC 372 

measurements from that time-series that are south of 54°S and east of 70°W, i.e. between 373 

the southern tip of Chile and the Antarctic Peninsula. Fig. 1b in the Main Text delimits the 374 

region of the ship cruises that we use from this time-series, and the ship tracks can also be 375 

found under https://data.nodc.noaa.gov/cgi-bin/gfx?id=gov.noaa.nodc:0171470. The 376 

exclusion of some cruises further away from the main routes is to ensure a relatively 377 

uniform dataset, enabling us to investigate the temporal variability in this region. We put 378 

the DIC measurements from this dataset onto a regular 1°x1° grid, and compute the 379 

monthly means from 2004 through 2017 (hereafter DICDRAKE). Next, we compare 380 

DICDRAKE to DICMOBO at the month and location at the grid points of the Drake time-series 381 

measurements (DICMOBO.DRAKE).  382 

https://data.nodc.noaa.gov/cgi-bin/gfx?id=gov.noaa.nodc:0171470
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 383 

We find that the time-mean of DICMOBO.DRAKE and DICDRAKE are mostly in agreement with 384 

each other (Fig. S10a-c). One exception is unusually high values in DICMOBO.DRAKE in the 385 

north, which we expect are linked to internal variability and are not seasonally 386 

representative of this region. Overall, the RMSE between the two datasets is 29.6 µmol kg-387 
1 and the bias is 3.0 µmol kg-1, although most of the discrepancy between the two datasets 388 

stems from the high values in the north in DICDRAKE.  389 

 390 

Comparing DICHAMOCC at the time and location of the Drake Passage measurements 391 

(DICHAMOCC.DRAKE) with DICMOBO.HAMOCC at the same month and location (hereafter 392 

DICMOBO.HAMOCC.DRAKE), reveals broad agreement between the two estimates in terms of 393 

phase, mean, and amplitude, but DICMOBO.HAMOCC.DRAKE is a lot smoother. The overall 394 

RMSE between these two datasets is 17.8 µmol kg-1. As with the other validation tests with 395 

time-series, the HAMOCC model tends to be very different than the observational 396 

estimates, but our reconstruction thereof can adequately reproduce the model field.  397 

 398 

In summary, given the assessments above, we demonstrate that our method can reconstruct 399 

the phase of the seasonal cycle at the sea surface well. The overall RMSE between our DIC 400 

estimates (DICMOBO and DICMOBO.HAMOCC) and the validation data is between 5.9 and 26.6 401 

µmol kg-1 (see Fig. S11). As a large part of the discrepancies come from differences in time 402 

periods and internal variability rendering the observations not always seasonally 403 

representative, we argue that overall, our method adequately represents the monthly 404 

climatology of DIC. We demonstrate that DICMOBO is considerably closer to the 405 

independent test data that were not used to train the network (HOT, BATS, SOCCOM, 406 

Drake Passage) than the DICHAMOCC at those locations (Fig. S7d, S8d, and S9d), suggesting 407 

that our method may better capture the seasonal cycle of DIC than the HAMOCC model. 408 

 409 

Text S5. Seasonal response function (statistical drivers) 410 

To investigate how each of the predictors contributes to our estimate of the seasonal 411 

changes in DIC, we compute the seasonal response function for each of the predictors. We 412 

use an approach similar to the “profile method” described in Gevrey et al. (2003), which is 413 

commonly used in sensitivity analyses to determine how changes in the predictors affect 414 

the target data in a neural network. In the profile method, the network is trained as usual, 415 

and in the simulation step, each predictor is consecutively varied while holding the 416 

remaining predictors constant. As we are interested in the seasonal response in different 417 

regions, we adapt that method, only holding the time dimension constant (i.e., we use the 418 

time-mean of each grid-cell), while varying in space.  419 

 420 

Our method works as follows: We first calculate DICbase by training the network as usual 421 

and then apply the network while keeping all predictors constant in time (i.e., using the 422 

time-mean at each grid cell). Next, we simulate the network again consecutively for each 423 

predictor, while keeping all of the predictors except the predictor under evaluation constant 424 

in time. For example, we calculate DICtemperature by simulating the network with all of the 425 

predictors kept constant in time, except temperature. Lastly, for each predictor, we 426 

calculate DICinput by subtracting the DICinput of that predictor from the DICbase; for example, 427 
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for temperature: ΔDICtemperature = DICbase - DICtemperature. We repeat our bootstrapping 428 

approach by simulating these ten times to calculate the mean response over the ensemble. 429 

 430 

Near the sea surface, i.e., where we observe the largest seasonal amplitude in the different 431 

climate regions (Fig. S12), we find that most of the seasonal changes of DICMOBO at the 432 

surface are linked to temperature as our main predictor. Temperature is inversely linked to 433 

DIC (Takahashi et al., 2002) and contributes to the seasonality two-fold. Colder waters are 434 

linked to higher solubility and increased vertical mixing, and both increase the surface DIC 435 

pool (Heinze et al., 2015; Sarmiento and Gruber, 2006). In the temperate regions, nitrate, 436 

representing nutrient input to the surface, is also a strong statistical driver of DICMOBO, thus 437 

affecting the seasonal cycle at the surface. The strong influence of nitrate highlights the 438 

importance of including upwelling and biology in reconstructing the seasonal cycle. 439 

Nutrient availability through vertical mixing or river input triggers biological production, 440 

lowering the DIC concentration at the surface (Sarmiento and Gruber, 2006; Takahashi et 441 

al., 2002). Hence, the effects of temperature and biology are competing in the temperate 442 

regions as statistical drivers of pCO2, and thus, DIC, and both need to be considered to 443 

reconstruct the seasonal DIC cycle faithfully. The remaining proxies, i.e. salinity, dissolved 444 

oxygen, and silicate play overall a smaller statistical role in our reconstruction. 445 

 446 

Text S6. Interpretation of the nodal depth and validation of the nodal depth with 447 

synthetic data 448 

To better interpret the distribution of the nodal depth, we presented the difference between 449 

the nodal depth and the mean depth of the euphotic zone, as well as the difference between 450 

the nodal depth and the mean winter mixed layer depth (MLD) in Fig. 8 in the Main Text. 451 

Fig. S13 presents the mean winter MLD (a) and the mean depth of the euphotic zone (b).  452 

 453 

To test our estimate of DIC nodal depth, we return to the synthetic data from the HAMOCC 454 

model (Ilyina et al., 2013; Mauritsen et al., 2019). We compute the nodal depth the same 455 

way as described in the Main Text, but this time, we compute it first using DICHAMOCC and 456 

second using DICMOBO.HAMOCC (Fig. S14). The seasonal cycle of inorganic carbon is not 457 

very well captured in HAMOCC (e.g., Mongwe et al., 2018), rendering this comparison 458 

challenging to interpret. There are many areas, where our algorithm to determine the nodal 459 

depth does not pick up a nodal depth (see white patches in Fig. S12a-b). Nonetheless, this 460 

comparison provides us with an idea of the error of the nodal depth in our reconstruction 461 

of DIC. 462 

 463 

Comparing the nodal depth estimate using DICMOBO.HAMOCC and DICHAMOCC, we find that 464 

our reconstruction overestimates the DIC nodal depth in many places, and there are various 465 

patches of very deep nodal depths in DICMOBO.HAMOCC (Fig. S14a-c). However, the general 466 

distribution of the pattern is very similar in the two estimates and the RMSE between the 467 

nodal depth computed with DICMOBO.HAMOCC and DICMOBO.HAMOCC is 59 m. Fig. S14d 468 

depicts the DIC nodal depth using DICMOBO (adapted from Fig. 6b in the Main Text). Here, 469 

we also find patches of deeper nodal depths. Based on our test with synthetic data, we argue 470 

that the patchiness is likely a result of the data extrapolation and the sensitivity of the 471 

analysis towards uncertainties in the amplitude that can be significant.  472 
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 473 

Text S7. Validation of the summer net community production (NCP) with synthetic 474 

data 475 

We test our estimate of the summer NCP, using the HAMOCC model (Ilyina et al., 2013; 476 

Mauritsen et al., 2019) to test how well the seasonal draw-down of DIC in our 477 

reconstruction of the model (DICMOBO.HAMOCC) represents the seasonal draw-down of DIC 478 

in the model (DICHAMOCC). To do so, we first compute the summer NCP the same way as 479 

described in the Main Text, but with the variables from HAMOCC (hereafter Summer 480 

NCPHAMOCC). We then compute the summer NCP again with all HAMOCC variables and 481 

DICMOBO.HAMOCC to derive Summer NCPNN.HAMOCC.  482 

 483 

We find that Summer NCPNN.HAMOCC compares well with Summer NCPHAMOCC in terms of 484 

the distribution pattern, such as the large production in the Southern Ocean (Fig. S15a-c).  485 

However, there are some quantitative discrepancies, and the integrated Summer 486 

NCPNN.HAMOCC over the extra-tropics is 2.0 PgC summer-1, while the summer NCP is 1.5 487 

PgC summer-1 when computing it with DICHAMOCC. Upscaling the mean NCP onto the 488 

global ocean, we find a global summer NCP of 3.5 Pg summer-1 using DICHAMOCC, and 4.7 489 

PgC summer-1 using DICMOBO.HAMOCC. The NCP estimate in the HAMOCC model is 490 

considerably lower than our estimate based on DICMOBO, and some regions show slightly 491 

negative values for the NCP, in both HAMOCC-based NCP estimates. We suspect that this 492 

is due to a less well-represented seasonality in HAMOCC, as well as the missing horizontal 493 

divergence, that we have to neglect in the calculation of the NCP (see Eq. 1 in the Main 494 

Text). Other sources of error in our NCP estimate are discussed in the Main Text (Eq. 5). 495 

 496 

As an additional qualitative test for our summer NCP estimation, we show the carbon 497 

export at 100 m in HAMOCC (an output variable from the HAMOCC model that describes 498 

the sinking mole flux of particulate organic matter expressed as carbon in sea-water). 499 

Although the carbon export is not exactly the same as the NCP, as the latter does not 500 

account for the export of dissolved organic matter, and the production of biomass, it allows 501 

us to qualitatively compare it to Summer NCPHAMOCC. Our method does capture the main 502 

features seen in the carbon export, such as the pronounced export in the Southern Ocean 503 

and the North Pacific, adding confidence in our method of calculating the Summer NCP 504 

from the seasonal draw-down of DIC. The summer export in the extra-tropics is 4.1 PgC 505 

summer-1, which is considerably more than Summer NCPHAMOCC, likely linked to some 506 

negative values in Summer NCPHAMOCC, the missing horizontal divergence in Summer 507 

NCPHAMOCC, and the fact that the export is not exactly the same as the NCP, as the export 508 

accounts for the export of dissolved organic matter, and the production of biomass, while 509 

the NCP does not.  510 
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Figures and Tables 511 

 512 
Table S1. Input variables for the SOM and FFN for the three different depth slabs (2.5 to 513 

500 m, 600 to 1500 m, 1600 to 1975 m). The depth levels are expressed where 75:25:150 514 

means from 75 m to 150 m in steps of 25 m. For the SOM input variables, clim. DIC 515 

refers to the mean annual climatology by Lauvset et al. (2016). 516 

 517 

 518 
 519 
 520 

 521 
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 522 
Figure S1. Location and variability of SOM clusters. Spatial distribution of the SOM clusters in 523 
January for 4 depth levels (a: 10 m, b: 200 m; c: 1000 m; d: 1975 m) and the number of different 524 
clusters throughout the monthly climatology at two depth levels (e: 10 m, f: 200 m).  525 
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 526 
Figure S2. Schematic of our FFN configuration. Predictor data: silicate and nitrate until 500 m, 527 
dissolved oxygen until 1500 m, temperature and salinity until 1975 m; W: weight matrices; b: bias 528 
matrices, +: sum; f: transfer function; a: output matrices; subscripts indicate the number of the 529 
layer; boxes below the hidden layers indicate the number of neurons used. Modified from Hagan 530 
et al. (2014). 531 
  532 
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533 
Figure S3. The curves of the cosine and sine of the month of the year. 534 
 535 
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536 
Figure S4. Comparison between DICLAUVSET and DICMOBO. Zonal mean of the annual 537 

mean DICMOBO (a,d,g), DICLAUVSET (b,e,h), and the difference between the two (DICMOBO 538 

- DICLAUVSET (c,f,j). For each of the three sectors: Atlantic (a-c), Pacific (d-f); Indian (g-i). 539 

Zoomed into the top 200 m (delimited in black). Some isopycnals are illustrated as white 540 

lines in a,d,g (from top to bottom: 24.5, 26.2, 27.6, and 28.4 kg m-3).  541 
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542 
Figure S5. Comparison between the DICHAMOCC and DICMOBO.HAMOCC. Zonal mean of the 543 

DICMOBO.HAMOCC (a,d,g), DICHAMOCC (b,e,h), and the difference between the two 544 

(DICMOBO.HAMOCC - DICHAMOCC (c,f,j). For each of the three sectors: Atlantic (a-c), Pacific 545 

(d-f); Indian (g-i). Zoomed into the top 200 m (delimited in black).546 
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547 
Figure S6. Seasonal cycle of DICHAMOCC and DICMOBO.HAMOCC at 10 m in different climate 548 

regions. DICHAMOCC (dashed line) and DICMOBO.HAMOCC (solid line): Temperate (35° to 65°, 549 

blue), subtropical (23° to 35°, orange), and tropical (0° to 23°, yellow) for the northern (a) 550 

and southern (b) hemispheres.   551 
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552 
Figure S7. Comparison between the DICHOT and DICMOBO.HOT. a) DICMOBO.HOT; b) DICHOT 553 

c) the difference between the two (DICMOBO.HOT – DICHOT). d) Seasonal cycle at 10 m from 554 

DICHOT (purple dashed), DICMOBO.HOT (purple) solid, DICHAMOCC.HOT (orange dashed), 555 

DICMOBO.HAMOCC.HOT (orange solid), illustrating the calculated value (filled circles) and the 556 

least-squares fit (solid lines); a-c are zoomed into the top 200 m. 557 

 558 

 559 
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560 
Figure S8. Comparison between the DICBATS and DICMOBO.BATS. a) DICMOBO.BATS; b) 561 

DICBATS c) the difference between the two (DICMOBO.BATS – DICBATS). d) Seasonal cycle 562 

at 10 m from DICBATS (purple dashed), DICMOBO.BATS (purple solid), DICHAMOCC.BATS 563 

(orange dashed), DICMOBO.HAMOCC.BATS (orange solid); a-c are zoomed into the top 200 m. 564 
  565 
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566 
Figure S9. Comparison between the DICSOCCOM and DICMOBO.SOCCOM. a) 567 

DICMOBO.SOCCOM; b) DICSOCCOM c) the difference between the two (DICMOBO.SOCCOM – 568 

DICSOCCOM). d) Seasonal cycle at 10 m from DICSOCCOM (purple dashed), 569 

DICMOBO.SOCCOM (purple solid), DICHAMOCC.SOCCOM (orange dashed), 570 

DICMOBO.HAMOCC.SOCCOM (orange solid); a-c are zoomed into the top 200 m. 571 

  572 
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 573 
Figure S10. Comparison between the DICDRAKE and DICMOBO.DRAKE. a) DICMOBO.DRAKE; b) 574 

DICDRAKE c) the difference between the two (DICMOBO.DRAKE – DICDRAKE). d) Surface 575 

seasonal cycle from DICDRAKE (purple dashed), DICMOBO.DRAKE (purple solid), 576 

DICHAMOCC.DRAKE (orange dashed), DICMOBO.HAMOCC.DRAKE (orange solid). 577 
  578 
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 579 

 580 
Figure S11. Summary of validation tests. RMSE as a function of depth for the Atlantic (a), Pacific 581 
(b), Indian (c), and Southern (d) Ocean. Showing the difference between DICMOBO and DICLAUVSET 582 
(green). The residuals of DICMOBO from the observations (dark blue), and the difference between 583 
the DICMOBO.HAMOCC and DICHAMOCC (light blue). The basins with independent observational data 584 
also show the difference between that (i.e. DICBATS (a), DICHOT (b), and DICSOCCOM (c)) and 585 
DICMOBO (magenta). As the Drake Passage time-series only covers the sea-surface, the RMSE is 586 
not included here. 587 
  588 
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589 
Figure S12. The seasonal response function at 2.5 m in different climate regions. 590 

Temperate (a,d; 35° to 65°), subtropical (b,e; 23° to 35°), and tropical (c,f; 0° to 23°) for 591 

the northern (a-c) and southern (d-f) hemisphere, ΔDICtemperature (orange), ΔDICsalinity 592 

(purple), ΔDICdissolved.oxygen (magenta), ΔDICsilicate (light green), ΔDICnitrate (yellow). The 593 

mean of the 10-member ensemble is illustrated as solid line, and one standard deviation 594 

around the mean in shading. ΔDIC (dark green) is the mean seasonal anomaly at 10 m from 595 

our data estimate. 596 

  597 
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 598 

599 
Figure S13. Additional plots for the analysis of the nodal depth. (a) Temporal mean depth 600 

of the 1% euphotic zone (Zeu). (b) Maximum winter MLD. Note the different color scales 601 

in (a) and (b).   602 
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603 
Figure S14. Test of the DIC nodal depth with synthetic data. a) Nodal depth calculated 604 

with DICMOBO.HAMOCC b) Nodal depth calculated with DICHAMOCC c) Residual (Fig. S14a – 605 

Fig S14b). d) Nodal depth calculated with DICMOBO (modified from Fig. 6 in the Main 606 

Text).607 
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608 
Figure S15. Test of Summer NCP with synthetic data. a) Summer NCP calculated with 609 

DICMOBO.HAMOCC and variables from HAMOCC b) Summer NCP calculated with 610 

DICHAMOCC and variables from HAMOCC c) Residual (Fig. S15a – Fig S15b). d) Carbon 611 

export over hemispheric summer in HAMOCC (sinking mole flux of particulate organic). 612 

 613 


