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Abstract :   
 
The Marmara Sea (area 11,350 km2; volume 3,378 km3; central basins >1100 m deep) straddles the 
North Anatolian Transform Fault separating the Eurasian and Aegean-Anatolian tectonic plates. Along 
with the shallow straits of Dardanelles and Bosphorus (depths ~63 m and ~40 m, respectively), the 
Marmara Sea forms the only marine connection between the Black Sea and the eastern Mediterranean. 
During Pleistocene glacial stages, the modern straits were subaerial valleys and the modern Marmara 
basin was occupied by the landlocked Propontis Lake. Previous researchers attributed major portions of 
a widely distributed uppermost Pleistocene–Holocene mud blanket (locally >10–25 m thick; volume 43–
47 km3) to transport of suspended load through one or both of the straits, as either the Aegean Sea (at 
~13.8 cal ka) or the Neoeuxine Lake (today's Black Sea, at ~11.1 cal ka) began to spill into the Marmara 
basin. To test these suggestions, the thicknesses and volume of the mud blanket were determined 
from >5000 line-km of airgun, sparker and boomer profiles and >100 cores, and compared with the 
contemporary supply from local rivers to decide, by difference, if the straits might have had a significant 
role. Volume calculations for the detrital supply from rivers rely on (1) decades of daily water- and 
sediment-discharge data from gauging stations, acquired before 20th century dam construction and, 
independently, (2) the BQART model which uses a variety of hydrological, geomorphic, geological and 
climate data. These calculations demonstrate that >85–90% of the detritus in the offshore mud blanket 
was supplied by steep rivers (Kocasu River and its tributaries) and mountainous streams draining the 
highlands of the southern Marmara region. Geochemistry of the <38 μm fraction supports this source. 
Any input through the Dardanelles has been sporadic and limited to perhaps ~5 Gt of suspended load 
(equivalent to ~5.2 km3 of porous mud when deposited) because of changing directions and rates of flow 
since the Last Glacial Maximum. Resedimentation through mass wasting and transgressive shoreface 
erosion appear to be minor compared with river supply. The isolated nature of the Marmara basin and its 
supply from mostly a single watershed afford an opportunity to verify the reliability of this type of hindcast 
analysis, based upon sediment-discharge data and catchment models – analysis which cannot be 
completed with a comparable level of certainty along open marine coastlines elsewhere. 
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Highlights 

► Latest Pleistocene–Holocene Unit 1 forms a blanket of 43–47 km3 in Marmara Sea ► Kocasu River 
and its tributaries can account for 85–90% of the volume of Unit 1 ► Sediment budget calculations rely 
on data from gauging stations and BQART model ► Isolated Marmara basins allow reliable quantification 
of the sedimentary budget 
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Geomorphologists, sedimentologists and stratigraphers have long sought to understand 

the various factors which control the rate of delivery of sediment from river drainage basins to 

the sea (Syvitski and Milliman, 2007, and references therein). These factors include area and 

relief of the drainage basin; climate as it controls soil development, vegetation cover and water 

discharge (both its average and extremes); bedrock composition (which controls erosion rate), 

and human perturbations to any of the above (e.g., deforestation, agricultural practices, damming 

of rivers). Once the suspended load reaches the sea, it is generally redistributed over wide areas 

of the adjacent shelf and basin (e.g., Hill et al., 2007; Liu et al., 2009). Coarser sand fractions 

tend to be retained near the shore in littoral drift cells (Warrick, 2020). Off-shelf transport is 

greatest when sealevel is at lowstands, although some rivers with direct access to the nearshore 

heads of modern submarine canyons may continue to transfer sediment into deep water even at 

highstands (e.g., Sakarya River, Algan et al., 2002; Congo River; Azpiroz-Zabala et al., 2017). 

The dispersal of suspended load generally makes it difficult to test and validate hindcast 

calculations and modelling results for the long-term sediment contributions of modern rivers. 

The small size and isolated nature of the Marmara Sea, western Turkey (Fig. 1) prevent escape of 

even the finest detritus. This allows quantification and tracking of the sediment supplied to its 

offshore since the rising Mediterranean Sea breached the ~ –75 m sill in the Strait of Dardanelles 

at ~13.8 cal ka (calibrated using Marine13 dataset). This sediment forms a mud blanket (or 

drape) locally >10–20 m thick, the facies and biota of which are well known from previous 

studies (Table 1). The Kocasu River draining the Susurluk Drainage Basin (Fig. 2) (Kazancı et 

al., 2019) accounts for ~80% of the freshwater and ~90% of the suspended-sediment discharge to 

the Marmara Sea (Aksu et al., 1999). The remainder is almost entirely accounted for by the Biga 

and Gönen streams which also drain the southern Marmara region (Fig. 2). Small quantities of 
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freshwater reach the sea via the Kemer creek near the Strait of Dardanelles, and via a number of 

mostly ephemeral streams which head north of the Marmara Sea, including the Ana, Kınıklı, 

Kula and Kurbağalıdere creeks (Fig. 1). None of these are significant sediment sources. 

 The tributaries of the Kocasu River (Fig. 2) have their own names (i.e., the Nilüfer, 

Orhaneli, Emet, Simav and Kocaçay branches). They coalesce to flow in a single channel 

through the Karacabey Gorge and into the Marmara Sea. Today, the Kocaçay and Emet branches 

have their seaward flow interrupted by the small Manyas and Uluabat Lakes, respectively, but 

this was not the case before ~4.1 cal ka (Kazancı et al., 2004). All tributaries have been dammed 

to varying degrees since ~1985 (with a few earlier exceptions).  

 There has never been a quantitative study to assess whether the Susurluk Drainage Basin 

(i.e., Kocasu River and its tributaries) could have provided the bulk of the mud in the uppermost 

Pleistocene to Holocene drape across the Marmara Sea. An alternative sediment supply through 

the straits of  ardanelles ( a t rk et al., 1986  Göka an et al., 2010) and Bosphorus (Aksu et al., 

2016; Hiscott et al., 2017) has been advocated, but never compared with the local river supply. 

Past detrital supply from the Susurluk Drainage Basin can be reliably estimated for two main 

reasons: (1) there are numerous gauging stations along the various tributaries of the Kocasu 

River (as well as the Gönen and Biga streams), with records of daily water discharge over 30–60 

years, as well as sediment-trap data to establish relationships between water discharge and 

suspended-sediment discharge; (2) although farming is practiced in the lowland area around the 

Manyas and Uluabat Lakes, the upland areas covering much of the inland portion of the drainage 

basin are forested with limited human disturbance (Google Earth™ satellite imagery acquired 30 

December, 2016), so potentially experience erosion today as they did during the Holocene. With 

appropriate caveats, the enclosed nature of the Marmara basin might allow a quantitative 
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comparison of the long-term sediment supply by rivers and streams of the Susurluk Drainage 

Basin to the post-13.8 cal ka mud drape. There is no reason to suspect loss of sediment through 

either the Strait of Dardanelles or Strait of Bosphorus (Fig. 1), which are narrow and presently 

are controlled by sills only ~63 m and ~40 m deep, respectively, with saline Mediterranean water 

moving northward along their floors since ~13.8 cal ka (Dardanelles; Aksu et al., 2016) and ~9.4 

cal ka (Bosphorus; Yanchilina et al., 2017; Ankindinova et al., 2019).  

 In this study, we compare and contrast (1) the volume and fine-fraction (<38 m) 

geochemistry of uppermost Pleistocene and Holocene sediment deposited across the shelves and 

basins of the Marmara Sea since its reconnection with the Aegean Sea at ~13.8 cal ka with (2) 

the volume of sediment supplied over this same time interval by the Kocasu River and the Gönen 

and Biga streams draining the southern Marmara region, as well as the fine-fraction 

geochemistry of samples from the modern Kocasu Delta. Other possible sediment sources are 

critiqued. The aim is to ascertain whether rivers of the Susurluk Drainage Basin can account for 

the offshore mud drape. 

 

2. Setting 

 The Marmara Sea is a ~220 km long and ~70 km wide east–west-trending inland 

depression, developed over the western extension of the North Anatolian Fault zone (Fig. 1). It 

has a surface area of ~11,350 km² and a water volume of 3,378 km
3
. The Marmara Sea is 

connected to the Black Sea and the Aegean Sea via the straits of Bosphorus and Dardanelles, 

respectively (Fig. 1). The Black Sea receives continental runoff from European rivers and 

exports ~300 km
3
 yr

-1
 of brackish water to the Marmara Sea and onward into the eastern 

Mediterranean Sea (Polat and Tuğrul, 1996  Özsoy et al., 2001). The present water exchange 
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across both straits occurs as a two-layer flow. A cooler, lower salinity (S = 17–20 practical 

salinity units, hereafter unitless) surface layer 20–30 m thick exits the Black Sea and a warmer, 

higher salinity (S = 38–39) layer of Mediterranean water flows northward through the straits at 

greater depths (Polat and Tuğrul, 1996; Özsoy et al., 2001). Shear between the upper and lower 

layers provides a mechanism to enhance sediment suspension and advection in the Marmara Sea, 

as does agitation under storm waves. Today, the Marmara Sea is subjected to frequent gale-force 

winds (Deniz et al., 2013), with 100-year storms generating 23.9 m s
-1

 (or ~86 km hr
-1

) winds 

(Öztunalı-Özbahçeci, 2020). Given the N–S fetch distance of ~60–70 km across the Marmara 

Sea, these 100-year storms can generate average wavelengths of 150–190 m (e.g., Thurman, 

1988), with a storm wave base in the range 75–85 m (i.e., half the wavelength; Garrison, 2005).  

 The Marmara Sea straddles an elongated, in-line negative flower structure situated above 

a central master fault (e.g., Aksu et al., 2000). Between the northern and southern shelves and 

steep fringing slopes, there are four central basins separated by three intervening ridges. The 

western Tekirdağ and Central basins are elongate, southwest-trending rhombohedral depressions 

where water depths exceed 1100–1200 m (Fig. 1). The easternmost Çınarcık  asin is a west–

northwest-trending elongate depression with water depth >1200 m. The smaller and significantly 

shallower Kumburgaz Basin (~800 m deep) is situated on the broad southwest-trending ridge 

separating the Central and Çınarcık basins (Fig. 1). A fifth basin outside the central zone is a 

shallow (~370 m deep), crescent-shaped depression perched high on the southern slope of the 

Çınarcık  asin, called the İmralı  asin (e.g., Sorlien et al., 2012). The three ridges which 

separate the Tekirdağ, Central and Çınarcık basins have water depths generally shallower than 

600 m. The shelf edge occurs at water depths of 90–100 m around the Marmara Sea, and very 

steep slopes of 10º–30º lead to the abyssal depths of the central basins. The northern shelf is 
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narrow (3–10 km wide), whereas an approximately 20–30 km-wide shelf occurs across the 

southern Marmara Sea (Fig. 1). The former is characterised by eroded Tertiary bedrock overlain 

by a very thin veneer of Holocene sediments, whereas the latter is characterised by a thick 

succession of Miocene–Recent stacked and north-prograded delta wedges (Aksu et al., 1999; 

Sorlien et al., 2012; Vardar et al., 2014).  

 The Marmara Sea experienced a lowstand from ~25–13.8 cal ka (e.g., Aksu et al., 1999, 

2016  Yaltırak et al., 2002), when the global ocean was lower than the floor of the Strait of 

Dardanelles (Lambeck et al., 2007). Lowstand terraces at ~ –85 m elevation (Çağatay et al., 

2009) and down-stepping of southern shelf deltas to an ~ –100 m topset–foreset transition point 

(Aksu et al., 1999) pin the lowest stand of the Marmara lake to an elevation of ~ –85 m to ~ –90 

m, which is 10–15 m below the latest Pleistocene sill elevation of –75 m in the Strait of 

Dardanelles (Aksu et al., 2016). The drawdown of the lake level would only be possible if 

evaporation exceeded the input from local rivers and streams during the latest Pleistocene.  

 The Susurluk Drainage Basin (~23,000 km
2
) consists of two distinct regions: (a) a rugged 

upland reaching elevations of >2500 m and drained by tributaries of the Kocasu River, and (b) a 

lowland depression (~1060 km
2
) confined on its northern side by Karadağ Mountain and an 

adjacent prominent line of hills, with a single exit through the Karacabey Gorge (Kazancı et al., 

2019) (Fig. 2). The depression has an elevation less than +15 m and, today, is a swampy inland 

extension of the Kocasu delta plain (together, they cover ~1350 km
2
). Through the latest 

Pleistocene and early Holocene, the depression was an area of bypass until the level of the 

Marmara Sea approached its current highstand at ~7.0 cal ka (Lambeck et al., 2007). 

Subsequently, floodplain deposits started to infill the depression, and at ~4.1 cal ka (Kazancı et 

al., 2004) lacustine muds started to accumulate in what are now the Manyas and Uluabat Lakes. 
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Late Holocene mini-deltas have developed where branches of the Kocasu system enter the lakes. 

Hence, these lakes have been traps for both bedload and some suspended load since ~4.1 cal ka. 

Kazancı et al. (1999, 2004) documented upper Holocene sediments ~11 m thick and ~8 m thick 

in the Manyas and Uluabat Lakes, respectively, as well as 5–40 m thick fluviatile sediments 

across the surrounding lowland depression.  

 The bedrock in the Susurluk Drainage Basin is extremely varied (Fig. 3). Ehrmann et al. 

(2007) attributed high proportions of smectite in the western Marmara Sea to weathering and 

erosion of the widespread volcanic rocks in the southern Marmara region. Kazancı et al. (2014) 

linked high levels of boron in sediments of Lake Uluabat to valley incision into economic 

deposits crossed by the Emet branch of the Kocasu system. Although carbonates are not 

abundant in the Susurluk Drainage Basin, CaCO3 accounts for 6–7% of the fine-grained infill of 

Lake Uluabat at core site LV 10 (Fig.2) (Kazancı et al., 2014). 

 

3. Data and methods 

 3.1. Seismic reflection profiles and cores 

 This paper is based on (a) ~3300 line-km of single-channel airgun profiles with ~135 ms 

(~100 cm) vertical resolution and ~100–300 ms maximum penetration at shelf depths to ~500–

900 ms penetration in deep basins, (b) 1940 line-km of Huntec deep-tow-system (DTS) 

boomer/sparker profiles with ~20–25 ms (~15–20 cm) vertical resolution and ~20–40 ms 

maximum penetration at shelf depths to ~50–90 ms penetration in deep basins, and (c) visual 

description of 74 gravity and 35 piston cores (Fig. 4). Piston cores were collected using a 

Mooring Systems Inc™ Kullenburg-type piston corer (original  enthos™ design) with split 

piston option, 1000 kg head weight, triggered ~4.5 m above the sediment-water interface using a 
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50 kg trigger weight. Core-table descriptions recorded texture, colour (Geological Society of 

America, 1984), approximate carbonate content from reaction to 1N HCl, physical sedimentary 

structures, bioturbation intensity, ichnotaxa wherever possible, mollusc and (rarely) echinoderm 

genus and species identity. The airgun profiles were acquired using a 40 cubic inch (655 cm
3
) 

sleeve gun with the reflections received by a 21-element 9 m long streamer and filtered to 150–

1500 Hz. The Huntec DTS profiles were collected using a 500 J boomer or periodically a 1000 J 

multi-tip sparker source, with echoes recorded using a single internal hydrophone as well as a 

21-element 6 m long streamer and filtered to 600–6000 Hz. Navigational fixes from GPS (global 

positioning system) receivers were recorded every 10 minutes while surveying at a ship speed of 

~10 km hr
-1

. The two-way travel time was converted to sediment thickness using an acoustic 

velocity of 1500 m s
-1

 (consistent with Dal Forno and Gasperini, 2008).  

 The volume of the uppermost Pleistocene to Holocene Unit 1 was determined by 

tabulating and then contouring the thickness of the unit at each navigation fix (or fraction of a 

navigation fix where additional detail was needed). The contouring was done using two methods: 

(a) applying Global Mapper™ software to the xyz dataset (latitude, longitude, thickness) and (b) 

hand-contouring in AutoCad™ after the xyz data were imported into MapInfo™ and thicknesses 

placed at navigation points as tags. In both cases the volume of sediments in Unit 1 was 

determined as a last step by Global Mapper™. The two methods differed in their volume 

estimates by <5%. 

 

 3.2. Elemental composition of silt-to-clay fractions – laser ablation ICPMS  

 To compare the Kocasu source and both shelf and basinal examples of Unit 1 muds, 38 

medium-grained silt to clay samples (<38 μm) were taken from cores acquired in 2002, and 
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 10 

seven samples were collected in 2017 on the subaerial top of the modern Kocasu Delta (samples 

M17-1 to M17-7; Fig. 2). The cores recovered typical Unit 1 facies (Table 1) so are not 

described here. Geographic coordinates, sample depths and ages of the deepest Unit 1 sample in 

each core are given in Supplementary material 1. Ages are based on calibrated radiocarbon dates 

(Supplementary material 2) and confirm that the samples come from Unit 1. At each sample 

depth, ~25 cm
3
 of mud was extracted, treated with 10 mL 15% H2O2 and wet-sieved through a 

38 μm sieve. The fine fractions were collected in 1 L beakers, and the suspensions were 

flocculated using 20 mL of saturated CaCl2 solution. The excess water was decanted and the 

residues were transferred into 500 mL beakers and acidified using 25–50 mL 10% HCl to 

remove carbonates. The carbonate-free residues were rinsed several times with settling 

accelerated using a centrifuge. They were oven dried at 40ºC and powdered in the Memorial 

University of Newfoundland rock crushing facility using titanium rings. The powdered samples 

were sent to Actlabs
TM

 (Ancaster, Ontario, Canada) for the preparation of lithium borate glasses 

(or fused disks) for laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) 

analyses. Small chips from each fused disk were mounted on glass slides using double-sided 

sticky tape. For the LA-ICPMS analyses, a 193 nm ArF Excimer GeoLas™ laser system 

(Coherent, Germany) was coupled to an Element XR™ (Thermo Fisher, Germany). The laser 

ablation system at Memorial University of Newfoundland is equipped with a cylindrical ablation 

cell with a volume of ~10 cm
3
 capable of holding one sample slide at a time. NIST SRM 610 

was used as the primary standard and BCR-2G as the secondary standard.  

 The laser was operated with a repetition rate of 4 Hz, an energy density of 4 J cm
-2

 and 

five pre-ablation shots were carried out on each sample. Pre-ablation shots are used to remove 

the upper layer of each glass chip. The carrier gas flow was 1L/min He and the ICPMS was 
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 11 

optimised for high sensitivity and a low oxide formation ratio (i.e., a ThO+/Th + ratio of <0.2 

%). A crater size of 40 μm was used during the ablations. In each sample, three spots were 

ablated. The concentrations of 55 elements (Al, Ag, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, 

Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Pt, Rb, Re, 

Sb, Sc, Si, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Y, Yb, Zn, Zr) were measured.  

 

 3.3. River and stream loads 

 The Turkish General Directorate of Waterworks (EIE, 1950–2011) has collected daily 

water discharge and sediment load data at strategic points along various tributaries since the 

1950s. The EIE databases (EIE, 1982, 1987, 1993, 2000) relate water discharge (units m
3
 s

-1
) to 

suspended sediment load (units tonnes day
-1

), but the only data which are useful for this study 

are from un-dammed water courses. Fortunately, the EIE measurements started before post-1985 

dam construction. The 1972–1985 data from the Gönen stream (147 measurements), the 1971–

1990 data from the Kocaçay branch of the Kocasu River (219 measurements) and the 1964–1979 

data from the Emet branch (141 measurements) pre-date damming, and allow fitting of best-fit 

curves which can be used to estimate average loads of each watershed in the southern Marmara 

region (as tonnes yr
-1

) and long-term contributions to the offshore area. On log-log plots of water 

discharge versus sediment load, data points define trends which can be summarised by second-

order polynomial trends (Fig. 5), indicating that high-discharge events transport particularly high 

amounts of suspended sediment. Bedload is not accounted for in EIE datasets, so an increment is 

required to estimate the total sediment load. Data for similar watersheds elsewhere (e.g., 

Turowski et al., 2010) suggest an increment of ~20%, which has been applied in this study. 
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 12 

 Estimates of annual suspended-sediment contributions to Unit 1from the Kocasu, Gönen 

and Biga watersheds were calculated using long-term records of daily discharges. Day-by-day 

conversions to sediment discharges capture as much short-term variation as possible, for 

example the high sediment loads characteristic of flood events. Daily water discharges were 

reduced to 67% of modern measurements before 11.7 cal ka to acknowledge a drier climate 

during the Younger Dryas (Mudie et al., 2002a; Valsecchi et al., 2012). After accounting for 

bedload, the result (as solid mineral mass, in Gt) was reduced by 60% to recognise the loss of a 

significant amount of river detritus to floodplains and delta construction before the remainder 

escapes to offshore, marine areas. The figure of 60% is from Kukal (1971, p. 38), who argued 

that only ~40% of the river supply successfully bypasses floodplains and the delta proper to 

contribute to contemporary marine successions. 

 A second, independent method of estimating sediment contributions from rivers and 

streams is provided by a global database of river loads and yields. Equation 1, from Syvitski and 

Milliman (2007, their equation 7a), estimates the annual suspended-load discharge (Qs, [Mt yr
-1

]) 

of a river when a number of parameters are known or can be reliably estimated. In situations 

without anthropogenic effects, the difference between BQART estimates and directly measured 

values of annual load are ~5–7% of the estimate. The relationship is given by: 

 

 Qs = 0.0006 B Q
0.31

 A
0.5

 R T       (1) 

 

where B is a substrate factor set to 1.0 or 1.2 in the Susurluk Drainage Basin based on the 

bedrock composition (Konak, 2002; Türkecan and Yurtsever, 2002) (Fig. 3), Q is the annual 

water discharge [km
3
], A is the area of the drainage basin [km

2
], R is the maximum drainage-

basin relief in headwater areas [km], and T is the annual average temperature [°C]. Areas (A) 
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drained by individual branches of the Kocasu system and the Gönen and Biga streams were 

digitised from topographic maps; the maximum relief (R) was measured in cross sections from 

upland areas acquired in Google Earth™ ( ecember 30, 2016 imagery) using the pull-down 

menu Ruler>Path>Profile, and values of average annual temperature were taken from Vidal et al. 

(2010) and Valsecchi et al. (2012). As with calculations based on gauging-station data, daily 

water discharges were reduced to 67% of modern measurements before 11.7 cal ka to 

acknowledge a drier climate during the Younger Dryas (Mudie et al., 2002a; Valsecchi et al., 

2012), a bedload increment of 20% was applied to most calculations (see specifics in Results), 

and only 40% of the resulting solid mass is estimated to have escaped the delta front to reach the 

open sea (and Unit 1 depocentres). 

 Comparison of river contributions to Unit 1 sediment volumes requires conversion of 

solid mineral masses (in Gt, for river loads) to equivalent volumes of porous mud (km
3
, 

consistent with seismic mapping of offshore successions). We first converted the sediment loads 

[Gt] to solid volume [km
3
] using an average assumed grain density of 2.65 t m

-3
 (silicate 

bedrock), then expanded this to a notional equivalent volume of porous sediment having a 

porosity of 60%, and finally incremented the result by an additional 10% to recognise the fact 

that marine Unit 1 contains ~10% biogenic carbonate not supplied by rivers (e.g., nannofossils, 

foraminifera; Çağatay et al., 2000  Ergin et al., 2007). This is in addition to the ~6–7% detrital 

carbonate carried in the suspended load of the Kocasu River (Kazancı et al., 2014). The 60% 

porosity is directly calculated from measurements of bulk density reported by Dal Forno and 

Gasperini (2008) for core IM-05 acquired in 153 m of water ~8 km east of İmralı Island (Fig. 4). 

There, Unit 1 is ~2.4 m thick and bulk density is 1.7 t m
-3

. With a pore-water density of 1.028 t 
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m
-3

 and grain density of 2.67 t m
-3

 (silicates and minor carbonate), this value of bulk density 

translates to a porosity of 59%.  

 

4. Results 

 4.1 Character and volume of uppermost Pleistocene to Holocene Unit 1 

 This paper deals entirely with the uppermost Pleistocene to Holocene sedimentary unit 

which was deposited after saline Mediterranean water entered the Marmara Sea at ~13.8 cal ka. 

Following Aksu et al. (1999), this is designated as Unit 1. The same unit has been recognised by 

Evans et al. (1989; their bioturbated muds), Wong et al. (1995; their unit 4), Smith et al. (1995; 

their unit A), Göka an et al. (2008, 2010, 2012  their unit 1), Çağatay et al. (2000  their unit 1), 

Çağatay et al. (2009  their seismostratigraphic units C1, P1, lithologic unit L1), Eri  et al. (2007  

their unit 1), Eri  et al. (2011  their seismostratigraphic unit S1, lithologic unit L1), Eri  et al. 

(2012; their unit 2), Vardar et al. (2014, their unit C3). Although authors have used different 

names in their publications (e.g., Çağatay et al., 2000, 2009  Eri  et al., 2007, 2011, 2012) the 

descriptions and the basal ages assigned to these units indicate that they are synonymous with the 

'transparent' drape (i.e., Unit 1) of this paper (characteristics in Table 1). Unit 1 has also been 

recognised in Calypso giant piston cores acquired by the RV Marion Dufresne from the deep 

Marmara Sea basins as a marine hemipelagic unit overlying a pre-Holocene lacustrine succession 

(e.g., Beck et al., 2007, 2015; Campos et al., 2013). Above the ~ –85 m level of the last 

lowstand, Unit 1 sits on a transgressive surface (called α1) which returns a strong, high 

amplitude reflection because of subaerial exposure during the lowstand. This simplifies mapping 

of the drape unit. In basinal areas, cores confirm the base of the post-transgressive mud with the 

arrival of euryhaline to stenohaline organisms like foraminifera, or chemical and mineralogical 
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changes (e.g., calcite spike of Reichel and Halbach, 2007; see also Beck et al., 2015). On steep 

basin-margin slopes, Holocene sediments are thin or absent because of unstable conditions which 

promote sliding and other mass flow processes (Beck et al., 2007; Zitter et al., 2012). 

 Away from the modern coastline, from active deltas of the southern basin margin (Aksu 

et al., 1999; Hiscott and Aksu, 2002), from the Holocene outflow delta immediately south of the 

Strait of Bosphorus (Hiscott et al., 2002, 2007a; Aksu et al., 2016), and from the saline inflow 

channel at the eastern exit of the Strait of Dardanelles (Aksu et al., 2018), Unit 1 is characterised 

by laterally continuous, high-frequency, acoustically weak reflections (leading to a 'transparent' 

appearance) which can be traced in Huntec DTS profiles across shelf portions of the entire study 

area (Fig. 6). This internal seismic architecture suggests that Unit 1 is composed predominantly 

of fine-grained sediments with thin beds of slightly coarser or denser material.  

 Across the southwestern Marmara Sea, Unit 1 onlaps the prominent erosional 

unconformity α1 (Fig. 6). The hiatus at α1 must be several millennia wherever it is mapped at 

elevations shallower than –75 m, because the underlying successions had to be subaerially 

exposed at those localities since marine isotopic stage (MIS) 3 (ending ~29 ka). This is the last 

time that the base level in the Marmara basin could have exceeded the sill depth in the Strait of 

Dardanelles because the base level in the Aegean Sea was in the vicinity of –30 m to –40 m 

(Skene et al., 1998; Svitoch et al., 2000). 

 An isopach map of Unit 1 (Fig. 7) allows the calculation of its volume (as sediment with 

water-filled pores). Graphic logs of Memorial University of Newfoundland cores (Fig. 8) and 

Marion Dufresne (Calypso) cores (Fig. 9) show the extent of thickness variations within Unit 1. 

Unit 1 is 15–25 m thick in the Tekirdağ, Central, Kumburgaz and Çınarcık basins along the 

central deep axis of the Marmara Sea (Figs. 7B, 9). It is equally thick within the İmralı  asin 
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perched on the southeastern slope. Across the southern shelf, Unit 1 is distributed as a broadly 

east–west-trending, >20 m-thick narrow belt which encircles the present-day mouth of the 

Kocasu River and which shows evidence of progradational clinoforms in water depths less than 

~35 m (Vardar and Alpar, 2017, their fig. 5a). This lobe extends north and northwest for a 

considerable distance onto the southern Marmara shelf. Similar, but distinctly smaller and 

thinner prodelta lobes occur seaward of the mouths of the Gönen and Biga streams. Unit 1 is 

only ~5 m thick in Gemlik Bay.  

 The thickness of Unit 1 varies from 7–15 m along the northern and southern levées of the 

Dardanelles channel to <5 m across the northwestern portion of the Strait of Dardanelles (Fig. 

7B) (Aksu et al., 2018). It is thickest along the northern levée where Unit 1 defines narrow, 

broadly east–west-trending, elongated lobes with central thicknesses locally exceeding 25 m. 

Similar narrow, but thinner lobes (15–20 m) also occur along the southern levée. Unlike broad 

areas of the middle and outer shelves, there is an internal unconformity (d-unconformity, Fig. 10) 

within Unit 1 in both levées of the Dardanelles channel, and the top of the unit is truncated along 

the northern side of the channel. These relationships suggest a more complex post-13.8 cal ka 

history of sedimentation in this area, with possible implications for significant sediment supply 

to Unit 1. 

 Atypical Unit 1 facies are also present at the southern exit of the Bosphorus Strait in the 

northeastern Marmara Sea. An older part of the unit (11.1–10.2 cal ka) constitutes an early 

Holocene mid-shelf delta characterised in Huntec DTS profiles by an elongate, lobate plan view 

shape and a climbing topset–foreset transition (Fig. 11). This deltaic wedge has a volume of 

~0.53 km
3
 and is sandwiched between the oldest muds of Unit 1 (between reflectors 3 and 2 

of Aksu et al., 2016) and the post-delta Holocene drape (1 to seabed, Fig. 11). This lobe 
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developed as a result of vigorous Black Sea outflow through the strait (Aksu et al., 2016; Hiscott 

et al., 2017), and must have introduced prodelta mud at least to that local area and perhaps to the 

nearby Çınarcık Basin (Fig. 1). If 60% of the load of the Bosphorus outflow was retained in the 

delta itself (Kukal, 1971), the offshore contribution would have been rather small, at ~0.35 km
3
. 

 For the purpose of a comparison between the volume of post-13.8 cal ka sediment across 

the Marmara Sea and the sediment contributions of the Kocasu River and the Gönen and Biga 

streams, the Marmara Sea and the Kocasu delta plain can be divided into five depositional 

domains: (1) the southern shelf, (2) the southwestern Marmara Sea at the entrance to the Strait of 

Dardanelles, (3) the northern shelf, including the early to middle Holocene mid-shelf delta at the 

Bosphorus exit, (4) the deep basins beyond the shelf edge and (5) the Manyas and Uluabat Lakes 

situated in the low-lying region south of Karadağ Mountain and adjacent coastal hills (Figs. 2, 

7A). Except for the finest clay-sized particles in long-term suspension by waves, there is no 

sediment pathway between the southern Marmara water courses and the northern shelf, including 

the vicinity of the Bosphorus exit (e.g., Aksu et al., 2016).  

 The entire volume of post-13.8 cal ka water-saturated sediment in the Marmara basin 

exclusive of the northern shelf and Bosphorus exit (thus domains 1, 2 and 4) is estimated to be 

45.0 km
3
 (Table 2). Uncertainty is expected to be of the order of about ±5%, so a reasonable 

range for this volume is 43–47 km
3
. The Manyas and Uluabat Lakes have accumulated an 

additional 1.1 km
3
 (Table 2). 

 

 4.2. Quantity of detritus provided by Kocasu, Gönen and Biga watersheds 

 Two approaches to the quantification of sediment supply from rivers and streams along 

the southern margin of the Marmara Sea are considered: (1) utilisation of data from gauging 
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stations on the Kocasu River and the Gönen and Biga streams to calculate long-term sediment 

supply, based on the assumption that latest Pleistocene to Holocene sediment loads of the various 

rivers and streams can be estimated from modern relationships (Fig. 5), and (2) application of the 

BQART model of Syvitski and Milliman (2007).  

 

 4.2.1. River supply using data from gauging stations  

 The Kocasu River and the Gönen and Biga streams are the only significant point sources 

in the Marmara Sea, with the Kocasu River dominating the sediment and water discharges. The 

equivalent volumes of porous sediment expected from these water courses, using pre-dam 

relationships (Fig. 5), are presented in Table 3 as sums over three time intervals: (a) 13.8–7.0 cal 

ka (transgression) when all load from the four Kocasu tributaries and from the Biga and Gönen 

streams escaped the river mouths, (b) 7.0–4.1 cal ka (early highstand) when only 40% of the load 

from all watersheds is hypothesised to have reached the open sea as the remainder constructed 

delta lobes and aggraded low-elevation floodplains, and (c) 4.1–0.0 cal ka (highstand) when no 

bedload from the Kocaçay, Emet and Orhaneli tributaries reached the sea, but other water 

courses continued to provide both 40% of their suspended load and 40% or their bedload. By this 

time, a portion of the bedload fraction would have likely remained in nearshore and shelf 

transport (Warrick, 2020) while the muddy suspended load would have more readily moved 

offshore to the outer shelf or deep basins.  

 Decades of data have been incorporated to improve the estimate of average annual 

suspended loads (e.g., 55 years of Kocaçay data = 20,075 conversions of water discharge to 

suspended-load discharge). Based on the scenarios explained above, the Kocasu, Gönen and 

Biga contributions of suspended load and bedload since 13.8 cal ka total ~44.3 km
3
 (Table 3). 
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More than 95% of this is attributed to the Kocasu River and its tributaries (i.e., the Susurluk 

Drainage Basin). This is essentially identical to the 45.0 km
3
 (with uncertainty, 43–47 km

3
) 

required to account for Unit 1 in the Marmara Sea (Table 2).  

 Furthermore, calculations suggest fthat 14.0–16.8 km
3
 of sediment were retained in 

floodplain and delta top settings, assuming in this case a porosity of 40–50% more typical of 

continental deposits (Manger, 1963). This can be tested against the measured volume around the 

Manyas and Uluabat Lakes and in the modern Kocasu Delta and its prodelta. If 14.0–16.8 km
3
 of 

sediment were retained in this area since ~7.0 cal ka, when sea level reached a near-modern 

elevation, the average sediment thickness over an area of 1350 km
2
 would be ~10.4–12.5 m. This 

range is very reasonable based on what is known about sediment thicknesses in the southern 

Marmara onshore region (Kazancı et al., 2019). 

 

 4.2.2. River supply using BQART equation of Syvitski and Milliman (2007) 

 Using the same temporal constraints that were imposed on calculations based on gauging-

station data, the BQART procedure gives a total sediment supply of 38.31 ± 2.68 km
3
 over the 

last 13.8 cal ka (Table 4), with ~12.2–14.7 km
3
 retained on land and in the subaerial portion of 

the highstand Kocasu Delta. This is 86% of the amount calculated independently using data from 

modern gauging stations, and strongly supports those results, although in detail the BQART 

estimates are less than those using station data for most tributaries of the Kocasu River, and are 

larger for the Nilüfer, Biga, Gönen and Keçi streams (Tables 3, 4). In the remainder of the paper, 

the 13.8–0.0 cal ka sediment supply from rivers and streams of the southern Marmara region is 

set to 40 km
3
 to simplify interpretations and discussion, and individual tributary and stream 
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values are taken to be averages of estimates in Tables 3 and 4. Uncertainty in the total supply is 

probably at least 5% of 40 km
3
, so notionally ±2 km

3
 of porous mud. 

 

 4.2.3. Fine-fraction geochemical linkages, Kocasu Delta to deep basins 

 Volumes aside, erosion products of the Susurluk Drainage Basin should have a 

composition consistent with Unit 1 muds to strengthen the case for a source-to-sink linkage. 

Given the dearth of sand in offshore portions of the mud drape, a geochemical approach has been 

selected. An exact match in the abundances and ratios of elements cannot be expected for several 

reasons: (1) although all samples consist of <38 m silt and clay, the samples surely have 

different proportions of coarse, medium and fine silt and clay, so likely different adsorption 

characteristics for certain chemical elements; (2) the modern samples from the subaerial Kocasu 

Delta are probably contaminated due to agricultural fertilisers and industry in the watershed; (3) 

in some cases there is considerable scatter in elemental abundances at single core sites, so 

although the source and sink may have overlapping ranges for particular elements, the mean 

values may not correspond. For these reasons, comparison of the seven Kocasu Delta samples to 

the offshore shelf and deep basin samples will focus on general similarity of abundances, 

overlapping 95% confidence intervals for mean abundances, and in many cases simply an 

indication that abundances are in the same range. 

 LA-ICPMS data are available in Supplementary Material 3, except for platinum which 

showed a high degree of scatter attributed to the use of platinum crucibles for the preparation of 

the fused disks. Mean values were calculated for (a) the Kocasu delta top, (b) the western shelf 

drape (cores M02-103P and M02-106P) and (c) deep basins (cores M02-88P, M02-89P, M02-

90P, M02-102P). The averages were then sorted from smallest to largest (for the Kocasu set; 
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Table 5) and plotted as pairs of log10 values to assess how closely the pairs of delta and marine 

values follow a straight line (Fig. 12). For both the western shelf and the deep basinal cores, 

linear regression coefficients (R
2
) exceed 0.97. This suggests an overall good similarity of mean 

values across the spectrum of elements, although matches for a few elements are poor (e.g., As, 

P, Sb, Mo in deep basin samples, and to some extent Cu and W) (Fig. 12). Arsenic is also high in 

modern sediments of Uluabat Lake (Katip et al., 2012) and its elevated level in delta-top samples 

M17-1 to M17-2 is similarily interpreted as an anthropogenic effect. Antimony (Sb) likewise is 

probably high in modern samples because of use in industry and agriculture (Li et al., 2018). 

 As a second approach, 95% confidence intervals around means for the Kocasu Delta 

samples versus (a) shelf samples and (b) basins samples were calculated with the objective of 

looking for overlapping confidence intervals as an indicator of good correspondence between 

means. This is similar to, but not as stringent as a two-tailed student t-test with the null 

hypothesis of equality of mean values (e.g., Tan and Tan, 2010) but our goal is to demonstrate 

general similarities between groups of samples, not that all samples are from the same 

population. Overlap of 95% confidence intervals characterises 17 minor, trace and rare-earth 

elements when the delta samples are compared with all marine samples (shelf and deep basin 

samples together) and an additional nine elements if delta and shelf fine fractions are considered 

alone (Table 5). For Kocasu Delta and shelf silt–clay samples alone (i.e., cores M02-103P and 

M02-106P), 15 of the 47 minor, trace and rare-earth elements have statistically indistinguishable 

means using a 2-tailed student t-test and the assumption of unequal variances. 

 Overall, there is nothing in the geochemical data to suggest that the Unit 1 silts and clays 

could not have been derived entirely from the suspended load of the Kocasu River, but neither is 

there a strong tracer element to prove this linkage. Kazancı et al. (2014) point to boron as a 
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possible tracer because there are economic borate deposits currently mined in the Emet 

watershed, and boron concentrations in lacustrine muds of Uluabat Lake sharply increase ~1000 

years ago. However, lithium borate flux was used in the preparation of LA-ICPMS fused glasses, 

so boron is not in our dataset. Also, the vast majority of the Unit 1 drape is older than ~1000 CE. 

 Molybdenum is 28 times more abundant in the average of basinal cores than in shelf 

cores M02-103P and M02-106P (Fig. 12 outlier). Otherwise there is only one difference 

marginally greater than a factor of two. Samples of Unit 1 from the early Holocene outflow delta 

at the southern exit of the Strait of Bosphorus have not been included in this study because of 

coarser mean grain size, some problems with authigenic gypsum raising Ca abundances in 

several samples, and poor similarity to samples at our other sites, particularly for Re (57 

multiplier), Cd (15 multiplier), Sb (13 multiplier) and As (7 multiplier) (see data in 

Supplementary Material 3). However, average Mo is 116 more abundant in the area of the 

Bosphorus exit than elsewhere in Unit 1 (average of 38 shelf and basin samples), and 1670 

more abundant than in our 15 shelf samples alone. None of these samples are younger than ~2.5 

cal ka, so apparently elevated Mo is a primary source characteristic of detritus from the 

Bosphorus outflow. 

 

 4.2.4. Denudation rate 

 Table 4, column 5 provides areas for the watersheds contributing to each gauging station. 

These areas pertain to the steeper upstream areas away from the lowland depression occupied by 

the Manyas and Uluabat Lakes, and were obtained using Global Mapper™ software. The 

denudation rate for the study area can be estimated from the summed solid volumes of suspended 

and bedload (Table 4, with 20% increment for bedload and a grain density of 2.65 kg m
-3

) 
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divided by the total watershed area and duration of erosion (13,800 years). The results are 

slightly different for gauging-station volumes and BQART estimates, but fall in the range of 

0.05–0.06 mm yr
-1

. This is far less than rates for steep watersheds with high annual rainfall in 

Japan (Sueoka et al., 2016) where denudation rates can locally reach ~10 mm yr
-1

. The lower rate 

in the Susurluk Drainage Basin results from a drier climate. 

 

5. Interpretation 

 The volume of uppermost Pleistocene to Holocene sediments (13.8–0.0 cal ka) buried 

across the southern Marmara shelf (9.09 km
3
; Table 2) can be accounted for by the Kocasu River 

(~38.0 km
3
 as porous equivalent, averaging gauging-station and BQART results). However, the 

Gönen and Biga streams (contribution of ~3.3 km
3
 equivalent since 13.8 cal ka) cannot account 

for the volume of contemporaneous sediments in the southwestern Marmara region near the 

entrance to the Strait of Dardanelles (4.55 km
3
, Table 2). Some of the mud in that domain must 

have been imported from elsewhere – either from the Kocasu system which appears to have 

generated an excess supply or from the initial entry of Aegean water through the Strait of 

Dardanelles at the time of the first reconnection of the Marmara Sea to the global ocean (Section 

6.2).  

 The deep Marmara basins contain ~31.4 km
3
 of uppermost Pleistocene to Holocene 

sediments (Table 2). Based solely on mean values, if it is assumed that the Kocasu, Gönen and 

Biga sediment loads (averaged across Tables 3 and 4) first fully accounted for deposits on the 

southern and southwestern shelves, then there might be the possibility of a deficit in supply of 

~3.5 km
3
 in the deep basins since 13.8 cal ka.  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 24 

 Uncertainties are likely in the calculations, stemming from the underlying assumptions, 

which might be sufficient to explain the apparent mismatch in riverine supply versus Unit 1 

volumes. In this study, modern relationships between sediment loads of rivers and water 

discharges have been extrapolated back to 13.8 cal ka. However, there is good evidence from 

around Turkey that 20
th

 century erosion rates are several times higher than previous rates 

because of intensive agriculture and urban development (Atalay, 1984; Özsoy et al., 2012). This 

would affect the equations used to calculate sediment loads if the water courses involved were in 

areas of intensive land use, but would increase rather than decrease the apparent mismatch in 

sediment volumes if pre-historical sediment yields were lower than today. Fortunately, the 

gauging stations for this study (Fig. 2) are close to the upstream, forested and little-developed 

parts of the various watersheds. It is implicit in the use of modern water and sediment discharges 

that the climate, in particular rainfall, has not varied significantly through the Holocene (whereas 

Younger Dryas dryness is incorporated into calculations; Tables 3, 4). Although some 

fluctuations are to be expected, pollen studies by Mudie et al. (2002a) and Roberts (2012) 

suggest persistent relatively warm and wet conditions in the region by ~9.7 cal ka and stability in 

these aspects of the climate by ~7.5 cal ka. If the period 13.8–9.7 cal ka was somewhat drier than 

assumed in the calculations of this study, then the possible deficit of supply to the central basins 

would be higher, not lower, than calculations suggest.  

 The fact that gauging station calculations (Table 3) seem to agree, within uncertainty, 

with the mapped volumes of Unit 1 (Table 2) should not be taken as proof that no other sources 

of silt and clay existed through the latest Pleistocene and Holocene. Certain critical assumptions 

on how to translate suspended-load detritus (in Gt) into equivalent volumes of porous marine 

sediment could be sufficiently incorrect to widen the disagreement between apparent supply and 
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the Unit 1 volume. The volume itself, calculated from seismic profiles, could be an 

underestimate. Strict adherence to a porosity of 60%, biogenic carbonate content of 10%, and 

retention of 60% of river load in floodplains and highstand deltas (Kukal, 1971) can all be 

questioned, certainly in detail. However, from what is known about marine muds (Kominz et al., 

2011), the present average porosity is not likely to be lower than 60%, and anything higher than 

60% would reduce (or even reverse) the already small difference in volume estimates between 

Kocasu, Gönen and Biga output and Unit 1. The same porosity, carbonate requirement and 

onland retention were applied to BQART estimates of sediment supply (Table 4), yet those are 

~15% lower than the estimates based on gauging station relationships. Although no single 

parameter can explain the differences between Tables 3 and 4, it is our view that an estimate in 

the lower range of gauging station results makes most sense, and that the post-13.8 cal ka 

contribution from the Susurluk Drainage Basin and Gönen and Biga watersheds was likely in the 

range of 38–40 km
3
 (at a notional porosity of 60% incremented by 10% biogenic carbonate 

introduced offshore). 

 

6. Discussion 

 The primary reason for insisting on a deficiency in supply from rivers alone is that there 

are several other processes which must have contributed fine-grained sediment, even if the river 

supply was dominant. The deep central basins contain thick post-reconnection deposits (Figs. 

7B, 9) with ubiquitous muddy turbidites and homogenites attesting to seismically-induced 

failures of portions of the very steep slopes which encircle these areas (e.g., Beck et al., 2007, 

2015  Eri  et al., 2012  Zitter et al., 2012; Campos, 2014). Any material mobilised in this way 

from Pleistocene and older deposits would not be accounted for by the calculations targeting 
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contemporaneous river supply. Roberts (2012) documents common presence and several spikes 

in reworked pre-Quaternary dinoflagellate cysts (600–1200 cysts g
-1

) and pollen in core M02-

89P from the İmralı Basin, confirming some input from older seafloor erosion and failures.  

 Another potential source for sediment in the deep basins is lateral transfer of detritus 

from the lowstand shelves during the 13.8–7.0 cal ka transgression. This process is called 

transgressive shoreface erosion, or ravinement (Swift, 1968). Ravinement depends on energetic 

waves to carve up to several metres of shoreface deposits away as the shoreline sweeps 

landward. Modern storm wave base at ~ –75 to 85 m (Section 2) is compatible with shoreface 

erosion, but the burial of pristine sand waves and delta lobes on parts of the southern shelf (Aksu 

et al., 1999) suggests minor downcutting during the latest Pleistocene to early Holocene 

transgression.  

 

 6.1. Possible Bosphorus contributions 

 A possible sediment source, at least from ~11.1–6.0 cal ka, is outflow from the Black Sea 

through the Strait of Bosphorus. The strait carried bedload in a one-way flow until ~10.2 cal ka 

(Aksu et al., 2016; Hiscott et al., 2017) and then suspended load until ~6.0 cal ka as a salt wedge 

penetrated, at depth, into the strait, presaging the eventual full penetration of a bottom-hugging 

saline density current into the Black Sea by ~9.4 cal ka (Flood et al., 2009; Ankindinova et al., 

2019).  

 The majority of the Unit 1 mud drape is younger than 10.2 cal ka when the Black Sea 

outflow started to weaken as indicated by abandonment of the climbing delta at the southern exit 

of the Strait of Bosphorus (Fig. 11). It is therefore likely that only small amounts of detritus 

introduced by Holocene Bosphorus outflow reached central and western parts of the Marmara 
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Sea to contribute to the Unit 1 mud drape. Based on the volume of the delta lobe itself, the 

offshore contribution might have been ~0.35–0.50 km
3
 (Section 4.1). Nevertheless, the Mo 

signature of deep basinal muds in this study (Fig. 12, average 20.8 g g
-1

) is consistent with the 

high Mo abundances in the silts and muds of the Holocene drape overlying the outflow delta 

itself (average 1243 g g
-1

 for 10 samples, but as high as 3715 g g
-1

 in M02-110P samples with 

an age of ~8.3 cal ka). A dedicated study based on deep basinal cores in the Çınarcık Basin 

would be required to investigate the extent of this source-to-sink relationship. 

 

 6.2. Possible Dardanelles contributions 

  a t rk et al. (1986) calculated the suspended-sediment discharge into the Marmara Sea 

through the Strait of Dardanelles to be ~0.9 Mt yr
-1

. This was based on discharge of the saline 

lower layer and the quantity of suspended sediment in water samples, captured on 1.2 m filter 

papers during a limited number of casts in March, April and July of 1986. We do not find the 

sampling frequency nor density to be sufficient for strong conclusions, and are somewhat 

skeptical because no rivers or large streams enter the strait to provide suspended material to the 

Aegean inflow. Also, there are fields of bioherms across most of the floor and at the northern end 

of the strait, in water up to 60 m deep (Aksu et al., 2018), constructed in part by coralline red 

algae which require diffuse sunlight to survive (i.e., relatively clear water well down into the 

saline lower layer). Nevertheless, we assess the possible impact of a sediment contribution of 

~0.9 Mt yr
-1

 below. 

 Melting of the Scandinavian ice sheet after the Last Glacial Maximum caused meltwater 

to spill from the Neoeuxine Lake (today's Black Sea), through the Propontis Lake (today's 

Marmara Sea) to the Aegean Sea (Grosswald, 1980; Tudryn et al., 2016; Yanchilina et al., 2019). 
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The overspill occurred ~17.2–15.7 cal ka (Tudryn et al., 2016). Then, the sill at the northern end 

of the Strait of Dardanelles had an elevation of ~ –76 to –77 m (Aksu et al., 2016) so the level of 

the Propontis Lake must have been somewhat higher, say ~–75 to –73 m. The Aegean Sea was 

significantly lower at ~ –120 m (Lambeck et al., 2014). The level of the Propontis Lake then fell 

to ~ –85 m when outflow from the Neoeuxine Lake ceased and net evaporation ensued (Aksu et 

al., 1999), resulting in isolation of the lake from the Aegean Sea.  

 Göka an et al. (2010) argued that the subsequent entry of Aegean water into the lowstand 

Marmara basin (starting 13.8 cal ka according to Aksu et al., 2016) carried large amounts of 

detritus eroded from the floor of the former Dardanelles valley. Because of the large difference 

in density between this Aegean inflow and the fresh to brackish waters of the pre-reconnection 

Propontis Lake, the initial inflow likely descended as an underflow into the westernmost 

Tekirdağ  asin, confining its sediment contribution to that basin. The spill depth between the 

Tekirdağ  asin and the Central  asin is at an elevation of –710 m, below which the Tekirdağ 

Basin has a volume of ~105 km
3
. This volume is sufficient to have retained ~75% of the dense, 

inspilling Aegean seawater needed to equalise the water levels of the Aegean and Marmara seas.  

 The initial inflow of Aegean surface water into the Marmara basin through the Strait of 

Dardanelles likely introduced sediment (Göka an et al., 2010). However, that inflow would have 

ceased once the level of the Marmara Sea rose to coincide with the level in the Aegean Sea, 

because there was no connection to the Neoeuxine Lake at this time. The level of the Propontis 

Lake immediately before entry of Aegean water was about –85 m, and its level by 13.2 cal ka 

was no shallower than –60 m (Lambeck et al., 2007). The volume of Aegean Sea water needed to 

raise the base level from –85 m to –60 m is ~140 km
3
, which is one-quarter to one-sixth of 

today's annual northward bottom flow (Polat and Tuğrul, 1996). At the time of first entry of 
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saline water the cross-sectional area of the strait would have been much less than today, so the 

flow velocity and erosional potential might have been greater. The α1 unconformity marking the 

base of Unit 1 where the Dardanelles inflow channel enters the Marmara Sea (Fig. 10) might 

have been created by scour during this event. The lower portion of Unit 1 (i.e., the sediments 

between the α1 unconformity and the d reflector, Fig. 10) potentially accumulated atop this 

scoured surface as the initial inflow waned and as water level rose to coincide with the level in 

the Aegean Sea.  

 The incoming seawater had to overtop a sill located at the northern end of the strait (Aksu 

et al., 2016, their fig. 3a). Because the strait deepens by ~20 m on the Aegean side of this point, 

erosion would have been limited to the area of the sill itself, and the descent from the sill to the 

lowstand Marmara shoreline, then ~ 30 km away. Given the modest water volume (~140 km
3
) 

and the short distance, the volume of sediment mobilised by the initial entry was likely 

considerably smaller than suggested by Göka an et al. (2010). If the suspended sediment 

concentration had been 1200 mg L
-1

 (0.0012 Gt km
-3

), which is high for rivers in flood (e.g., 

Blanchard et al., 2011; Ellison et al., 2014) and double the typical wet-season concentration for 

mountainous tributaries of the Amazon River (Gibbs, 1967) , then the 140 km
3
 of Aegean inflow 

would have transported 0.17 Gt of detritus into the Tekirdağ  asin, equivalent at 60% porosity 

and 10% biogenic carbonate to only 0.18 km
3
 of porous sediment.  

 After the equalisation of water levels, saline Aegean water probably continued to flow, 

albeit more slowly, into the Marmara basin (a) because of its density contrast with the pre-

existing brackish water mass and (b) to replenish evaporative losses. This slow inflow expelled 

and replaced ~2740 km
3
 of brackish water remaining from the lacustrine phase; at 10% of 

today's rate of inflow (so ~70 km
3
 yr

-1
) the replacement might have taken ~40 years to complete. 
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The Kocasu, Gönen and Biga watersheds only supply fresh water at ~5.2 km
3
 yr

-1
, so would not 

have significantly delayed the salination. 

 From ~13.2–11.1 cal ka, the Marmara Sea remained an embayment of the Mediterranean 

Sea, with full marine salinity (Table 6). The d reflector in the mud-prone levées at the eastern 

exit of the Strait of Dardanelles (Fig. 10) possibly records reduced sedimentation during 

stagnation of exchange at this time (i.e., little inflow or outflow). Subsequently, the rising 

Neoeuxine Lake began to export brackish water down the Bosphorus valley (Aksu et al., 2016), 

across the Marmara Sea and through the Dardanelles, but with no return flow because saline 

water had not yet gained access to the Neoeuxine Lake. The southward flow through both straits 

was one-way only, so opposite to the situation from ~13.8–13.2 cal ka (Table 6). The 

unidirectional outflow might have controlled deposition of the uppermost portion of Unit 1 

above the d reflector (Fig. 10). This situation continued until ~9.5 cal ka when the first saline 

water began to enter the Neoeuxine Lake/Black Sea (Major et al., 2006; Yanchilina et al., 2017; 

Ankindinova et al., 2019). Sustained two-way flow along the Strait of Bosphorus began later at 

~8.0 cal ka (Hiscott et al., 2007b), and it is only then that the northward flow of saline water 

along the floor of the Strait of Dardanelles might have become competent to transport ~0.9 Mt 

yr
-1

 of suspended sediment into the Marmara basin ( a t rk et al., 1986) and to cause the erosion 

seen in the modern walls of the  ardanelles channel (i.e., the α0 unconformity, Fig. 10). 

Integrated over 8,000 years, this flux would have been able to bring ~7.2 Gt of suspended 

sediment into the western Marmara Sea. As explained above, we believe this estimate is too 

large given other constraints, so 5 Gt might be a more realistic maximum, which is equivalent to 

~5.2 km
3
 of porous marine mud. A Dardanelles input of this amount, and only since ~8.0 cal ka, 

is ~12% of the 43–47 km
3
 of siliciclastic detritus in Unit 1 (Table 2).  
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7. Conclusions 

 The uppermost Quaternary, post-transgressive mud drape in the Marmara Sea provides a 

rare opportunity to quantitatively compare the supply of detritus from specific rivers and streams 

to the volume of material dispersed to offshore shelves and basins. More commonly, fine 

material of this calibre is advected far offshore and alongshore so that it cannot be confidently 

tracked backward to its source. In this study, sediment supply from rivers and streams along the 

southern margin of the Marmara Sea is estimated in two ways: (1) using hydrographic 

measurements of water and suspended-sediment discharge over several decades in these 

watersheds, and (2) using a multivariate model developed for a large number of rivers worldwide 

(BQART model), taking into consideration the area, relief and geology of the watersheds, 

climatic regime, and average water discharge. The predicted sediment supply since reconnection 

of the Marmara basin to the global ocean at ~13.8 cal ka approaches what is needed to account 

for all the coeval muddy Unit 1 across the modern marine shelves and basins, surpassing ~85–

90% of the requirement. Although other sediment sources must have been active, this study 

strongly suggests their limited contribution. These include: (a) products of shoreface erosion 

during the –85 m to 0 m transgression; (b) episodic transport of detritus through the Strait of 

Dardanelles (13.8–13.2 cal ka; 8.0–0 cal ka); (c) early Holocene supply of detritus through the 

Strait of Bosphorus, and (d) failure of older slope material adding to deep basin successions.  

 The application of a cap of 40% on the amount of river-borne detritus available to marine 

areas fits nicely with reasonable estimates of the volume of latest Quaternary floodplain and 

lacustrine deposits in the lower part of the Susurluk Drainage Basin, around the Manyas and 

Uluabat Lakes. If the sequestering of 60% of river load in floodplains and delta lobes had not 
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been specified in calculations, the post-13.8 cal ka supply would have significantly exceeded the 

volume of contemporary marine mud.  

 For the first time, the detrital input through the Strait of Dardanelles has been critically 

evaluated based on the complex history of flow in that waterway (both changing magnitude and 

direction). Unconformity-bounded sedimentary wedges beneath the banks of the Dardanelles 

channel as it enters the Marmara Sea are tentatively assigned to five distinct phases of flow: (1) 

13.8–13.2 cal ka erosion producing the late Pleistocene 1 unconformity; (2) accumulation of 

lenticular levée wedges under waning inflow from the Aegean Sea as the water level in the 

Marmara Sea approached the level of the global ocean; (3) development of an hiatus (~13.2–11.1 

cal ka) and minor unconformity (d reflector) when the Marmara Sea was a marine embayment of 

the Aegean Sea with limited water exchange in either direction; (4) accumulation of the 

uppermost levée wedges under westward-directed outflow toward the Aegean Sea, 11.1–8.0 cal 

ka, as the Neoeuxine Lake spilled outward without significant return flow; (5) full establishment 

of two-way flow in both straits so that the bottom water in the Strait of Dardanelles now moves 

persistently northeastward, widening the saline inflow channel (Fig. 10) and locally truncating 

older strata along its banks. 

 The primary objective of explaining the origin of the thick mostly Holocene mud drape in 

the tectonically active Marmara Sea has been addressed successfully, with relatively steep rivers 

and streams of the southern margin contributing the majority of the detritus. Further coring and 

dating will be necessary to test hypotheses advanced here on the origin of wedges of sediment 

beneath the banks of the submarine channel at the northeastern exit of the Strait of Dardanelles.  
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Figure Captions 

Figure 1. (A) Location of the study area in western Turkey. (B) Map of the Marmara Sea as a 

gateway linking the Black Sea to the Aegean Sea via the Straits of Bosphorus and 

Dardanelles. Coastline and rivers are from NOAA National Geophysical Data Center, 

extracted from http://www.ngdc.noaa.gov/mgg/shorelines/ shorelines.html. Topography 

and bathymetry compiled using GeoMapApp (Ryan et al., 2009), bathymetry of the 

Marmara Sea compiled from Rangin et al. (2001). White dashed line (long dashes) 

represents the catchment area of water courses draining into the Marmara Sea, delineated 

using the digital topography in Global Mapper. White lines with shorter dashes delimit the 

portion of this catchment called the Susurluk  rainage  asin (Kazancı et al., 2019) which 

includes tributaries of the Kocasu River. Note that the Kocasu River and the Gönen, Biga 

and Kemer streams enter Marmara Sea from the south, and several much smaller streams 

from the north, including A = Ana, Kı = Kınıklı, K = Kula, Ku = Kurbağalıdere streams. 

Tekirdağ, Central, Kumburgaz, Çınarcık and İmralı are basins and Manyas and Uluabat are 

Lakes discussed in text. 50 m and 100 m isobaths are from IOC (1981). Red box is 

illustrated in Figure 4. 

Figure 2. (A) Location of EIE stations (white filled circles with red numbers). Also shown are 

the drainage areas of the Kocasu River and the Gönen and Biga streams (white dashed 

lines). Emet, Kocaçay, Nilüfer, Orhaneli and Simav are branches of the Kocasu River. The 

inset (B) shows an enlargement of the Karacabey gorge and sample locations in that area 

(red filled circles). The gorge connects the low-lying alluvial plain (including the Manyas 

and Uluabat Lakes) behind the shore parallel rugged hills, including Karadağ Mountain, 

and the present-day coastal . Credits for the base maps are given in the Figure 1 caption.  
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Figure 3. Geological maps of the Marmara region, simplified and redrawn from the 1:500,000 

İzmir and İstanbul Map Sheets of Konak (2002) and Türkecan and Yurtsever (2002), 

respectively. Because of the complicated nature of the map, the pertinent geology is 

presented in four panels: (A) ophiolitic mélange and plutonic rocks; (B) metamorphic 

rocks, (C) volcanic rocks and (D) sedimentary rocks. b = Biga Stream, g = Gönen Stream, 

k = Kocasu River, c = coastal erosion along the southeastern Gallipoli Peninsula and 

northern shoreline of the Marmara Sea. Credits for the base map are given in the Figure 1 

caption. 

Figure 4. Map of the study area showing the locations of the seismic reflection profiles (white 

lines) and piston and gravity cores used in this study.   Red, aquamarine, white and yellow 

filled circles are gravity, piston, Calipso and Livingstone cores, respectively. Credits for 

the base map are given in the Figure 1 caption.  

Figure 5. Graphs showing the pre-dam relationships between water discharges and suspended 

sediment loads in the Emet and Kocaçay branches (stations 302 and 314) of the Kocasu 

River and the Gönen stream (station 210). Data are compiled from EIE (1982, 1987, 1993, 

2000) sources. The 2
nd

 order quadratic equations are used for the calculation of post-13.8 

cal ka sediment budgets. 

Figure 6. High-resolution Huntec seismic reflection profile showing the internal architecture of 

the sedimentary successions across the southwestern Marmara Sea and the correlation of 

seismostratigraphic Unit 1 with core M02-106P. Vertical scale is calculated using 1500 m 

s
-1

 acoustic velocity. Red numbers = navigation fix positions. Location is shown in the 

inset and Figure 4.  
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Figure 7. (A) Depositional domains for the purpose of comparison between the volumes of Unit 

1 sediments (latest Quaternary; post-13.8 cal ka) across the Marmara Sea and the sediment 

contributions of the Kocasu River and the Gönen and Biga streams. (B) Thickness 

distribution of Unit 1 (in metres, calculated using 1500 m s
-1

 acoustic velocity in seismic 

reflection profiles) across the Marmara Sea. Thicknesses of Holocene sediments in the 

Manyas and Uluabat Lakes are from Kazancı et al (2004). Also shown are the Kocasu 

River and the Gönen,  iga, Ana (A), Kınıklı (Kı), Kula (K) and Kurbağalıdere (Ku) 

streams. Note the thick accumulation of Unit 1 in the southwestern Marmara Sea at the 

entrance to the Strait of Dardanelles, off the mouth of the Kocasu River, as well as in deep 

water basins. Credits for the base map are given in the Figure 1 caption. 

Figure 8. Lithostratigraphic logs of cores used in this study, showing radiocarbon dates (in cal yr 

BP; see Supplementary Material 2 for raw 
14

C ages). Gravity cores at the sites of M02-

103P, M02-104P and M02-106P demonstrate core-top losses of 74 cm, 100 cm and 36 cm 

in those piston cores, respectively. The volcanic ash layer in cores M02-89P, M02-90P, 

M02-102P and M14-16P is the regionally widespread Y2 ash dated at 21,945 cal yr BP. 

Credits for the location map are given in the Figure 1 caption. On the map, a trailing P is 

omitted from every piston core name to reduce clutter.  

Figure 9. Summary core logs for Calypso cores raised from deep basins of the Marmara Sea, 

extracted from  eck et al. (2007, 2015), Çağatay et al. (2009), Vidal et al. (2010), Eri  et 

al. (2011, 2012), Campos (2014) and Aloisi et al. (2015). Unit 1 is the marine section, 

shown either as a green fill or grey (sapropel M1). Credits for the location map are given in 

the Figure 1 caption. 
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Figure 10. High-resolution Huntec seismic reflection showing the internal architecture of the 

sedimentary successions across the Dardanelles channel at the northeastern entrance to the 

Strait of Dardanelles. The d reflector (d for Dardanelles) is interpreted as an unconformity, 

explained in the text. Vertical scale in metres is calculated using 1500 m s
-1

 acoustic 

velocity; VE (vertical exaggeration) ~23. Red numbers at base = navigation fix positions. 

Location is shown in the inset where red- and aqua-filled circles are gravity and piston 

cores, respectively. 

Figure 11. Interpreted Huntec DTS profile across the 11.1–10.2 cal ka Holocene outflow delta at 

the southern exit of the Strait of Bosphorus, modified from Aksu et al. (2016). Subtle up-

and-down wobbles along the seabed result from towfish flight variations created by strong 

currents in the area. Ages of reflectors are: 1, 10.2 cal ka; 2, 11.8 cal ka; 3, 12.0 cal ka; 

4, 16.2 cal ka. Everything above 3 belongs to Unit 1 of this study. 

Figure 12. Log-log plot of average elemental abundances in the modern  versus abundances in 

shelf cores M02-103P and M02-106P (blue dots) and deep basinal cores (red dots). Blue 

dots are alway on top, so in places partially obscure other data points. The order of 

elements, left to right, is the same as the ranking in Table 5. Only the anomalies are 

labelled, but the identity of other pairs can be determined using the tabulated values. Blue 

and red dots for each element are aligned vertically, and their degree of separation is a 

qualitative indication of the difference in shelf and deep basin means. 
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Table Captions 

Table 1. Characteristics of Unit 1 (uppermost Pleistocene to Holocene mud drape), from 

literature sources. 

Table 2. Volumes of porous, water-saturated Unit 1 mud in various parts of the Marmara Sea. 

Thicknesses were determined from seismic profiles assuming an acoustic velocity of 

1500 m s
-1

. Values for domain 5 consider the lakes only and not adjacent portions of the 

inland depression.  

Table 3. Contributions of river and stream detritus to the Marmara basin as environmental 

conditions changed since 13.8 cal ka. Column 4 gives annual suspended loads from 

gauging station daily records and equations in Figure 5. The values in column 5 are the 

result of reducing daily water discharges to 67% of modern measurements to 

acknowledge a drier climate during the Younger Dryas. Columns 6–9 take account of 

constraints noted in Section 4.2.1 (e.g., 20% increment at certain times for bedload). 

Column 10 sums columns 6–9. Column 11 converts the values in column 10 to an 

equivalent volume of sediment with 60% porosity, a grain density of 2.65 t m
-3

, and a 

10% increment for the biogenic carbonate added to river input in the marine setting. To 

convert, divide by 2.65, then by 1.0–0.60 = 0.40 and finally multiply by 1.1. 

Table 4. Input values (columns 3–7) for BQART determinations (columns 8–11) of river 

suspended-load contributions. Column 4 presents averages over 30–60 years (gauging 

stations), reduced in Younger Dryas to account for less rainfall. Column 6 is from Google 

Earth™ (Ruler>Path>Profile). Column 7 is from Valsecchi et al. (2012) with an 

interpolated value of temperature for 11.7–7.0 cal ka. Columns 8–10 are calculated using 

equation 7a of Syvitski and Milliman (2007). The values in column 11 are based on totals 
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for each branch incremented by 20% for bedload (only before 4.1 cal ka for Emet and 

Kocaçay branches due to Manyas and Uluabat trapping afterward), then reduced to 40% 

of that amount (following the Kukal, 1971, suggestion that 60% remains on the 

floodplain and in the delta during highstands), then inflated to an assumed porosity of 

60% with an additional 10% increment for biogenic carbonate. These are estimates of the 

volumes available to Unit 1 since 13.8 cal ka. The TOTAL includes ±7% expected bias 

(Syvitski and Milliman, 2007). 

Table 5. Mean abundances of elements from LA-ICPMS measurements, ranked in order of 

decreasing abundance in the Kocasu Delta sample set. Column 1 averages samples M17-

1 to M17-7; column 3 averages samples from shelf cores M02-103P and M02-106P; 

column 4 averages samples from basinal cores M02-88P, M02-89P, M02-90P, M02-

102P. Column 5 indicates if 95% confidence intervals (C.I.) overlap for Kocasu and all 

marine data (shelves and basins); column 6 indicates if 95% confidence intervals overlap 

for delta and shelf samples only; column 7 indicates if delta and shelf samples have 

indistinguishable means based on a two-tailed student t-test. 

Table 6. Inferred evolution of Dardanelles valley and channel after the Last Glacial Maximum. 

SW flow is toward the Aegean Sea; NE flow is toward the Marmara Sea. 
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Table 1.   

Feature or parameter Value or description Sources 

Texture Mixtures of generally <10–

15% sand, clay >30% (rarely 

less near deltas and 

shorelines), silt >10% and 

<30% in deep basins.  Silt–

fine sandy laminae 

intercalated in deep basins. 

Ergin and Bodur (1999), Beck 

et al. (2007), Hiscott et al. 

(2017) 

Facies On shelves, either thoroughly 

bioturbated mud with subtle 

colour mottling, or pinstripe-

laminated (at millimetre scale) 

sapropel with no burrows or 

rare Chondrites traces.  

Bioturbated facies are 

dominant.  In deep basins, 

burrowing is less because of 

poor water-column 

oxygenation, finely laminated 

sapropel alternates with faintly 

banded mud punctuated by 

silt–sand laminae. 

Çağatay et al. (2000), Aksu et 

al. (2002, 2016), Beck et al. 

(2007), Eri  et al. (2012) 

Sand to coarse silt fraction Predominantly biogenic 

carbonate grains 

(foraminifera, juvenile or 

fragmented molluscs) with 

increased siliciclastic detritus 

in very fine sand fraction, 

including many mafic  

minerals and metamorphic 

Aksu et al. (2002), Beck et al. 

(2007), Hiscott et al. (2017) 
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grains.  In deep basins, silt is 

rich in fresh plagioclase, 

amphibole and pyroxene, 

brown  mica, opaques 

minerals and detrital (rather 

than biogenic  carbonate). 

Clay minerals ~50% smectite, ~25–30% 

illite, ~10–20% kaolinite, 

<10% chlorite 

Bayhan et al. (2001), Kazancı 

et al. (2004), Ehrmann et al. 

(2007) 

 

Table 1 continued.   

Feature or parameter Value or description Sources 

Organic carbon TOC mostly 0.5–3.0%, 

highest in deep basins and 

laminated sapropels. 

Çağatay et al. (2000), 

Abrajano et al. (2002), Ergin 

et al. (2007) 

Carbonate content 7–20% but typically ~10–15% 

as CaCO3 

Çağatay et al. (2000), Ergin et 

al. (2007), Beck et al. (2007) 

Macrofossils Molluscs: Corbula gibba, 

Mytilus galloprovincialis,  

Timoclia ovata, Paphia 

discrepans, Donax trunculus, 

Cardium (or Cerastoderma) 

edule, Parvicardium exiguum, 

Bittium reticureticulatum, 

Chlamys varia, Spisula 

subtruncata, Abra alba, 

Turritella communis, Myrtea 

spinifera; species of Vermetus, 

Patella, Cyrcomphalus, 

Hydrobia, Dentalium, Nucula. 

Çağatay et al. (2000), Aksu et 

al. (2016),   y kmeriç (2016) 
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Rare serpulid tubes, 

echinoderm plates, crustacean 

claws. 

Microfossil groups Benthic and planktonic 

foraminifera, nannofossils, 

dinoflagellate cysts, pollen 

and spores, diatoms 

Çağatay et al. (2000), Aksu et 

al. (2002), Kaminski et al. 

(2002), Mudie et al. (2002a, 

2002b), McHugh et al. (2008), 

Londeix et al. (2009), 

Valsecchi et al. (2012) 

Colour Dark yellowish brown 

(10YR4/2), olive gray 

(5Y4/1), brownish gray 

(5YR4/1), greenish gray 

(5GY4/1), to moderate olive 

gray (5Y4/2).  Sapropel is 

colour banded 5Y4/1 and 

5GY5/2. 

Aksu et al. (2002) 
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Table 3.   

1 2 3 4 5 6 7 8 9 10 11 
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m 
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ch 

yrs 

of 
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ly 
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a 

t yr
-1 

Holoce

ne 

t yr
-1 

YD 

13.

8–

11.
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Gt 

11.7

–7.0 

Gt 

7.0

–

4.1 

Gt 

4.1–
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Gt 
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l 

Gt 

Total 

at 

60% 

poros

ity 

(km
3
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su 

Kocaç

ay 
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6 
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14 

0.5

73 

2.74

9 

0.6

79 

0.79

9 
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0 
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 Emet 
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83 
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2.2

35 
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2.6
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26 
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16.2

28 
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0.1
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0
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.
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0
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.
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0

0
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0
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Table 5.   

1 2 3 4 5 6 7 
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
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=
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.
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.
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Table 5.  continued.  
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Table 6.   

Age span    Flow  Underlying cause 

 (cal ka) direction  

17.2–15.7 100% SW Melting of Scandinavian ice 

sheet swells Neoeuxine Lake 

which spills southward into 

the Marmara Sea and onward 

to the Aegean Sea.  Levels 

were, respectively, ~–35m, –

73 m and –120 m.   

15.7–13.8 Subaerial Evaporative drawdown of 

Marmara Sea to ~–84 m.  

Propontis valley Lake phase 

begins. 

13.8–~13.2 100% NE Rising global ocean overtops 

the Dardanelles sill, quickly 

raising the level of the 

Marmara Sea from ~–84 m to 

~–60 m.  Only ~140 km
3
 

would have been required, 

~75% of this pooling in the 
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Tekirdağ  asin.  The 

Marmara Sea became an 

embayment of the Aegean 

Sea. 

~13.2–11.1 50:50 Slow and weak density-driven 

exchange of saline Aegean 

water but a trickle for 

brackish residual Propontis 

Lake water, in equal amounts, 

as  base level in the Marmara 

Sea rises slowly from ~–60 m 

to ~–43  m. 

11.1–10.2 100% SW Vigorous outflow from the 

Neoeuxine Lake (at ~–35 m 

elevation)  into the Marmara 

Sea (at –43 m rising to ~–35 

m) caused by  increased 

central Asian and European 

river discharges and possible  

glacial-lake outburst floods.  

Entry of Aegean water was 

blocked  by this outflow as it 

continued southwestward 

through the Strait of  

Dardanelles. 

10.2–9.4 100% SW Weakening Neoeuxine Lake 

outflow is lifted off the floor 

of the  Strait of Bosphorus as 

a 'salt wedge' penetrates up 

that strait  against the surface 

brackish outflow.  With no 

entry of saline water  into the 

Neoeuxine Lake, flow 

through the Strait of 

Dardanelles continues to be 

entirely toward the Aegean 

Sea. 

9.4–8.0 >80% SW Significant but episodic 

intrusion of saline water into 

the Black Sea 

 <20% NE with a large initial pulse 

sufficient to sharply raise the 
87

Sr/
86

Sr  ratio but not to 

elevate salinity enough to 

accommodate euryhaline 
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faunas.  Aegean water started 

to move northeastward along 

the floor of the Dardanelles. 

8.0–7.5 <80% SW Establishment of two-way 

flow in both straits and 

eventual  

 >20% NE colonizing of the Black Sea 

by euryhaline molluscs and 

ostracods. 

7.5–today ~67% SW Modern two-way flow, so in 

the Strait of Dardanelles 

Aegean  

 ~33% NE S=39 water runs 

northeastward along the 

bottom (5–25 cm s
-1

)  and 

predominantly Black Sea 

S=20 water exits to the 

Aegean  Sea as an ~30 m-

thick surface layer (10–30 cm 

s
-1

). 
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Highlights 

 Latest Pleistocene–Holocene Unit 1 forms a blanket of 43–47 km
3
 in Marmara Sea 

 Kocasu River and its tributaries can account for 85–90% of the volume of Unit 1  

 Sediment budget calculations rely on data from gauging stations and BQART model 

 Isolated Marmara basins allow reliable quantification of the sedimentary budget 
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