Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models

Type Article
Date 2018-05
Language English
Author(s) Russell Joellen L.1, Kamenkovich Igor2, Bitz CeciliaORCID3, Ferrari RaffaeleORCID4, Gille Sarah T.5, Goodman Paul J.1, Hallberg Robert6, Johnson KennethORCID7, Khazmutdinova Karina8, Marinov Irina9, Mazloff MatthewORCID5, Riser Stephen10, Sarmiento Jorge L.11, Speer Kevin8, Talley Lynne D.5, Wanninkhof Rik12
Affiliation(s) 1 : Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
2 : Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
3 : Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.
4 : MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA.
5 : Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
6 : Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA.
7 : Monterey Bay Aquarium Res Inst, Moss Landing, CA USA.
8 : Florida State Univ, Geophys Fluid Dynam Inst, Tallahassee, FL 32306 USA.
9 : Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA.
10 : Univ Washington, Sch Oceanog, Seattle, WA 98195 USA.
11 : Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
12 : Natl Ocean & Atmospher Adm, Atlantic Oceanog & Meteorol Lab, Miami, FL USA.
Source Journal Of Geophysical Research-oceans (2169-9275) (Amer Geophysical Union), 2018-05 , Vol. 123 , N. 5 , P. 3120-3143
DOI 10.1002/2017JC013461
WOS© Times Cited 13
Note This article also appears in: The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Project: Technologies,
Keyword(s) Southern Ocean, heat uptake, carbon uptake, observationally based metrics
Abstract

The Southern Ocean is central to the global climate and the global carbon cycle, and to the climate's response to increasing levels of atmospheric greenhouse gases, as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic trend. Due to the region's complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes, and topography. Observationally based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate and earth system models. New observations and understanding have allowed for progress in the creation of observationally based data/model metrics for the Southern Ocean. Metrics presented here provide a means to assess multiple simulations relative to the best available observations and observational products. Climate models that perform better according to these metrics also better simulate the uptake of heat and carbon by the Southern Ocean. This report is not strictly an intercomparison, but rather a distillation of key metrics that can reliably quantify the "accuracy" of a simulation against observed, or at least observable, quantities. One overall goal is to recommend standardization of observationally based benchmarks that the modeling community should aspire to meet in order to reduce uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake. Plain Language Summary Observationally based metrics are essential for the standardized evaluation of climate and earth system models, and for reducing the uncertainty associated with future projections by those models.

Full Text
File Pages Size Access
Publisher's official version 24 2 MB Open access
Supporting Information S1 68 KB Open access
Figure S1 3 MB Open access
Figure S2 2 MB Open access
Figure S3 4 MB Open access
Figure S4 3 MB Open access
Figure S5 2 MB Open access
Figure S6 3 MB Open access
Figure S7 3 MB Open access
Figure S8 3 MB Open access
Figure S9 2 MB Open access
Figure S10 2 MB Open access
Figure S11 2 MB Open access
Figure S12 2 MB Open access
Figure S13 4 MB Open access
Figure S14 4 MB Open access
Figure S15 3 MB Open access
Top of the page

How to cite 

Russell Joellen L., Kamenkovich Igor, Bitz Cecilia, Ferrari Raffaele, Gille Sarah T., Goodman Paul J., Hallberg Robert, Johnson Kenneth, Khazmutdinova Karina, Marinov Irina, Mazloff Matthew, Riser Stephen, Sarmiento Jorge L., Speer Kevin, Talley Lynne D., Wanninkhof Rik (2018). Metrics for the Evaluation of the Southern Ocean in Coupled Climate Models and Earth System Models. Journal Of Geophysical Research-oceans, 123(5), 3120-3143. Publisher's official version : https://doi.org/10.1002/2017JC013461 , Open Access version : https://archimer.ifremer.fr/doc/00673/78491/